

Harmful Algal Bloom (HAB): Lady Bird Lake

Brent Bellinger, Ph.D., Liz Johnston Watershed Protection Department 8/13/2020

Agenda

HAB Background

Review of 2019 HAB

• 2020 Plan

Feedback and Questions

What is a "Harmful Algal Bloom?"

It occurs when algae produces toxins

 Most commonly occur with Cyanobacteria (blue-green algae)

HAB types

Planktonic (free floating)
(Most common)
Lake Erie

Cohesive mats (benthic or floating)

Lady Bird

Cyanobacteria Toxins

Species may produce a toxin from four main groups

- Anatoxin-a (neurotoxin)
- Cylindrospermopsin (cytotoxicity, liver/kidney toxicity)
- Microcystin (hepatotoxin)
- Saxitoxin (neurotoxin)

Drinking water standards

- EPA microcystins 0.3 μ g/L; Cylindrospermopsin 0.7 μ g/L
- * States Anatoxin-a 0.7 20 $\mu g/L$; Saxitoxin 0.3 3 $\mu g/L$

A lot of toxin variants!

For example, over 100 types of microcystin structurally ID'd

Human and animal health

Economic

Perception

Health Impacts of Cyanotoxins

Note: Not all cyanotoxins lead to all of these health impacts. These listed impacts are caused by microcystins or cylindrospermopsin, the two cyanotoxins that EPA has issued Health Advisories for.

What Happened in 2019?

Lady Bird, specifically Red Bud and Auditorium shores, experienced benthic-surface HAB event

Locations

Red Bud Isle (below Tom Miller Dam)

Auditorium Shores (across from Downtown)

The City's Response to 2019 HAB

Response Initiation and Timeline

• Fast! Samples collected first weekend dog deaths reported, parks/launches closed, signage up, media engaged

How we kept people informed?

Media, social media, on-site signage

How we monitored

 Approx. bi-weekly sampling of water quality and mats to determine nutrient dynamics at sites, duration of bloom

The 2019 Bloom

Species in the Order Oscillatorialles

- Many known toxin producers in this group
- UT developing species database

Within algae mats dihydroanatoxin dominant

Contents = <1 - >130 ng/g wet weight mat (or 0.13 mg/kg)

- State and federal guidelines and criteria have been developed for water (i.e., ug/L concentrations)
- Means that there is no guidance as to what is a "safe" level of toxin present
- Toxicology study suggested 0.3 mg/kg acute toxicity for dogs

The 2019 Bloom

Water Temps

>30°C weekend of dog deaths

Nutrients

- **Abundant** Nitrogen (esp NH₃??) and Phosphorus
- **Distinct water** quality @RB compared to previous years

Site name and ID (n)	TSS (mg/L)	NH3 (ug/L)	Nox (ug/L)	TKN (ug/L)	TN (ug/L)	TP (ug/L)	N:P
Red Bud West 1996 (4)	n/a	41.1 ± 7.7	111.0 ± 42.2	401.0 ± 28.7	513.5 ± 40.6	26.0 ± 20.8	87.1 ± 72.7
Auditorium Shores 1252 (4)	n/a	24.1 ± 20.3	396.0 ± 148.0	404.5 ± 56.5	798.3 ± 200.9	17.7 ± 6.5	119.1 ± 74.3
Red Bud 5 (9)	2.6 ± 0.9	10.8 ± 8.3	130.8 ± 81.5	424.6 ± 133.6	555.4 ± 119.2	12.6 ± 9.3	125.4 ± 47.0
Red Bud 5 (5)	2.1 ± 1.1	21.5 ± 22.0	477.9 ± 622.0	370.8 ± 56.1	848.7 ± 621.2	29.6 ± 17.2	81.3 ± 66.6
1st St. 2 (9)	3.7 ± 2.0	20.4 ± 37.3	247.1 ± 208.5	485.9 ± 206.0	733.0 ± 275.5	13.4 ± 8.2	153.5 ± 83.4
1st St. 2 (5)	1.9 ± 0.4	16.1 ± 11.1	434.6 ± 184.0	388.4 ± 33.2	823.0 ± 213.2	15.7 ± 11.7	160.1 ± 75.5
	Red Bud West 1996 (4) Auditorium Shores 1252 (4) Red Bud 5 (9) Red Bud 5 (5) 1st St. 2 (9)	Red Bud West 1996 (4) n/a Auditorium Shores 1252 (4) n/a Red Bud 5 (9) 2.6 ± 0.9 Red Bud 5 (5) 2.1 ± 1.1 1st St. 2 (9) 3.7 ± 2.0	Red Bud West 1996 (4) n/a 41.1 ± 7.7 Auditorium Shores 1252 (4) n/a 24.1 ± 20.3 Red Bud 5 (9) 2.6 ± 0.9 10.8 ± 8.3 Red Bud 5 (5) 2.1 ± 1.1 21.5 ± 22.0 1st St. 2 (9) 3.7 ± 2.0 20.4 ± 37.3	Red Bud West 1996 (4) n/a 41.1 ± 7.7 111.0 ± 42.2 Auditorium Shores 1252 (4) n/a 24.1 ± 20.3 396.0 ± 148.0 Red Bud 5 (9) 2.6 ± 0.9 10.8 ± 8.3 130.8 ± 81.5 Red Bud 5 (5) 2.1 ± 1.1 21.5 ± 22.0 477.9 ± 622.0 1st St. 2 (9) 3.7 ± 2.0 20.4 ± 37.3 247.1 ± 208.5	Red Bud West 1996 (4) n/a 41.1 ± 7.7 111.0 ± 42.2 401.0 ± 28.7 Auditorium Shores 1252 (4) n/a 24.1 ± 20.3 396.0 ± 148.0 404.5 ± 56.5 Red Bud 5 (9) 2.6 ± 0.9 10.8 ± 8.3 130.8 ± 81.5 424.6 ± 133.6 Red Bud 5 (5) 2.1 ± 1.1 21.5 ± 22.0 477.9 ± 622.0 370.8 ± 56.1 1st St. 2 (9) 3.7 ± 2.0 20.4 ± 37.3 247.1 ± 208.5 485.9 ± 206.0	Red Bud West 1996 (4) n/a 41.1 ± 7.7 111.0 ± 42.2 401.0 ± 28.7 513.5 ± 40.6 Auditorium Shores 1252 (4) n/a 24.1 ± 20.3 396.0 ± 148.0 404.5 ± 56.5 798.3 ± 200.9 Red Bud 5 (9) 2.6 ± 0.9 10.8 ± 8.3 130.8 ± 81.5 424.6 ± 133.6 555.4 ± 119.2 Red Bud 5 (5) 2.1 ± 1.1 21.5 ± 22.0 477.9 ± 622.0 370.8 ± 56.1 848.7 ± 621.2 1st St. 2 (9) 3.7 ± 2.0 20.4 ± 37.3 247.1 ± 208.5 485.9 ± 206.0 733.0 ± 275.5	Red Bud West 1996 (4) n/a 41.1 ± 7.7 111.0 ± 42.2 401.0 ± 28.7 513.5 ± 40.6 26.0 ± 20.8 Auditorium Shores 1252 (4) n/a 24.1 ± 20.3 396.0 ± 148.0 404.5 ± 56.5 798.3 ± 200.9 17.7 ± 6.5 Red Bud 5 (9) 2.6 ± 0.9 10.8 ± 8.3 130.8 ± 81.5 424.6 ± 133.6 555.4 ± 119.2 12.6 ± 9.3 Red Bud 5 (5) 2.1 ± 1.1 21.5 ± 22.0 477.9 ± 622.0 370.8 ± 56.1 848.7 ± 621.2 29.6 ± 17.2 1st St. 2 (9) 3.7 ± 2.0 20.4 ± 37.3 247.1 ± 208.5 485.9 ± 206.0 733.0 ± 275.5 13.4 ± 8.2

Discharge rates

Late July drop in discharge coincided with bloom and toxins event

The 2019 Bloom

Discharge rates

Late July drop in discharge coincided with bloom and toxins event

Ave was lower than previous 3-year period

Cyano. Pop. Drivers

Cyanobacteria growth follows regular seasonal cycles

- Late summer hot, low flows, lack of rain
- Add in nutrients recipe for a bloom

What Made 2019 Different?

- Zebra mussels? (new)
 - Alter water chemistry
 - Promote dense benthic growth
- Large flooding, runoff, depositional events? (new)
 - Altered sediment and water chemistry?
- Climate change? (new)
- Dog waste? (old)
- Low flows (old)
 - But now coupled with new drivers!

Monitoring Plan 2020

Routine Monitoring

- 9 times per year at 3 fixed sites for water chemistry
- Purpose is to see long-term trends

HAB Monitoring

- Began in June at 4 sites
- Collaboration with UT
 - DNA fingerprinting, toxin ID and content
- Water quality
 - Nutrients, water temp, pH
- Tracking discharge velocities through LBL

Some (new) Data

How about in 2020?

Similar cyanobacteria appear to be present (matching observations with 2019 DNA library)

Toxins identified earlier

Discharges declined earlier than in 2019

Nutrients still abundant

Communication Plan 2020

Signage around Lady Bird Lake

Engage Key Stakeholders

- Other CoA Depts (PARD, AW, APH) and Partner Agencies (LCRA)
- Concessionaires, the Trail Foundation
- Veterinary Associations, Austin Pets Alive
- Downtown Austin Alliance, Austin Visitors Bureau

Engage Media and Social Media

- Continue to work with media partners w/occasional news release
- Announce initial monitoring, changes in risk status using Facebook, Twitter, and Next door, listservs

Most current information at austintexas.gov/algae

- Current status low, increased, or high risk
- Summary of test results for toxins
- Information about algae present on the lake
- Information about temperatures and flow

Questions?

Brent Bellinger, Ph.D., Environmental Scientist Senior brent.bellinger@austintexas.gov

Liz Johnston, Environmental Program Coordinator_ liz.Johnston@austintexas.gov_

CITY OF AUSTIN WATERSHED PROTECTION DEPARTMENT