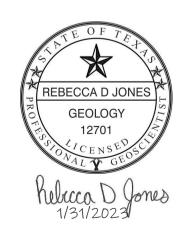


COAL COMBUSTION RESIDUAL LANDFILL

ANNUAL GROUNDWATER MONITORING REPORT

Calendar Year 2022



Prepared by:

Rebecca D. Jones, P.G. # 12701

Lower Colorado River Authority

Fayette Power Plant Project 6549 Power Plant Rd. La Grange, Texas 78945

EXECUTIVE SUMMARY

The LCRA Fayette Power Project (FPP) is a coal-fired power plant located east of La Grange in Fayette County, Texas. Coal Combustion Residuals (CCRs) generated at the facility are disposed of in the Combustion Byproducts Landfill (CBL) which is an existing landfill CCR Unit under the U.S. Environmental Protection Agency's Coal Combustion Residuals (CCR) Rules as codified in Title 40 of the Code of Federal Regulations (CFR), Chapter 257, Subpart D and the Texas Commission of Environmental Quality 30 Texas Administrative Code Chapter 352, Subchapter H.

At the beginning of calendar year 2022, the CBL was operating under detection monitoring. All groundwater sampling was conducted in accordance with 40 CFR § 257.93/30 TAC Chapter 352, Subchapter H - Groundwater sampling and analysis requirements and 40 CFR § 257.94. - Detection Monitoring. At the end of calendar year 2022, the CBL was operating under detection monitoring. The CBL will remain in detection monitoring for 2023.

TABLE OF CONTENTS

Sec	ction		Page
1.0	BAC	CKGROUND	1
2.0	PUR	POSE	1
3.0	GRO	OUNDWATER MONITORING SYSTEM	1
4.0	STA	TUS OF THE GROUNDWATER MONITORING PROGRAM	2
5.0	STA	TISTICAL EVALUATIONS AND ALTERNATE SOURCE DETE 2	RMINATION
	5.1	STATISTICAL ANALYSIS OF FIRST QUARTER 2022 DATA	2
	5.2	STATISTICAL ANALYSIS THIRD QUARTER 2022 DATA	2
6.0	PLA	NNED ACTIVITIES	3

TABLES

CCR Unit and Monitoring Well Location Map

	FIGURES
TABLE 3	Groundwater Monitoring Results Summary
TABLE 2	2022 CCR Groundwater Monitoring Events
TABLE 1	Groundwater Monitoring Well Details

FIGURE 1

APPENDICES

APPENDIX A	CCR Groundwater Detection Monitoring Program Evaluation of First Quarter 2022 Potentiometric Surface Data Collected from the CBL, Bullock, Bennett & Associates, LLC, May 31, 2022 CCR Groundwater Detection Monitoring Program Evaluation of Third Quarter 2022 Potentiometric Surface Data Collected from the CBL, Bullock, Bennett & Associates, LLC, November 17, 2022
APPENDIX B	Results of the Groundwater Statistics for the Lower Colorado River Authority First Semi-Annual Monitoring Event in 2022, Otter Creek Environmental Services, LLC, May 2022
APPENDIX C	Results of the Groundwater Statistics for the Lower Colorado River Authority Second Semi-Annual Monitoring Event in 2022, Otter Creek Environmental Services, LLC, November 2022
APPENDIX D	Analytical Data for Calendar Year 2022

2022 Groundwater Monitoring Report

Fayette Power Project La Grange, TX

1.0 BACKGROUND

The LCRA Fayette Power Project (FPP) is a coal-fired power plant located east of La Grange in Fayette County, Texas. Coal Combustion Residuals (CCRs) generated at the facility are disposed of in the Combustion Byproducts Landfill (CBL) located south of the power plant and north of the railroad that borders the FPP site (Figure 1). The existing CBL consists of Cell 1 and Sub-cell 2D. Cell 1 was constructed in 1988 and sub-cell 2D in 2015; therefore, both active cells are considered existing landfill units under the U.S. Environmental Protection Agency's Coal Combustion Residuals (CCR) Rules as codified in Title 40 of the Code of Federal Regulations (CFR), Chapter 257, Subpart D.

2.0 PURPOSE

This report was prepared pursuant to 40 CFR § 257.90(e), as amended on Aug. 28, 2020, and 30 Texas Administrative Code Chapter 352, Subchapter H which requires the owner or operator of an existing CCR landfill to prepare an annual groundwater monitoring report for the preceding calendar year.

3.0 GROUNDWATER MONITORING SYSTEM

The groundwater monitoring well network for 2022 consisted of six wells as described below and additionally in Table 1:

- Background CBL-340I
- Down-gradient CBL-301I, CBL-302I, CBL-306I, CBL-308I and CBL-341I

No groundwater monitoring wells were installed or decommissioned in 2022. The locations of the monitoring wells are shown on Figure 1.

In accordance with 40 CFR § 257.93(c) and 30 Tex. Admin. Code §352.931, groundwater elevations were measured in each monitoring well prior to purging and sampling for each semi-annual sampling event. Consistent with prior CBL potentiometric surface elevation maps, the inferred groundwater flow direction is towards the south-southwest. Groundwater flow rates were

estimated along two transects for each groundwater sampling event. The western area transect has an approximate flow rate of 22-24 feet per year and the eastern area transect has an approximate flow rate of 45-61 feet per year. Detailed information is contained in the Technical Memorandum's dated May 31, 2022 and November 17, 2022 prepared by Bullock, Bennett & Associates, LLC (BBA), which are included in Appendix A.

4.0 STATUS OF THE GROUNDWATER MONITORING PROGRAM

At the beginning of calendar year 2022, the CBL was operating under detection monitoring. All groundwater sampling was conducted in accordance with 40 CFR § 257.93 - Groundwater sampling and analysis requirements and § 257.94. - Detection Monitoring. Table 2 summarizes the sampling events. At the end of calendar year 2022, the CBL was operating under detection monitoring. As discussed in Section 5, the CBL will remain in detection monitoring for 2023. Table 3 contains a summary of the analytical data collected in 2022. In accordance with 30 TAC § 352.901, Table 3 also contains a summary of all groundwater monitoring data collected since October 19, 2015.

5.0 STATISTICAL EVALUATIONS AND ALTERNATE SOURCE DETERMINATION

5.1 Statistical Analysis of First Quarter 2022 Data

In May 2022, Otter Creek Environmental Services, LLC (Otter Creek) completed the statistical analysis of the first quarter detection monitoring Appendix III constituent data utilizing the prediction limit intrawell method. Samples were collected on January 26-28, 2022. The field parameters and analytical results were consistent with historic analytical results. The results indicated that there were no SSIs for any constituents in any well. Detailed information is contained in the May 2022 *Results for the Groundwater Statistics* prepared by Otter Creek which is included in Appendix B.

5.2 Statistical Analysis Third Quarter 2022 Data

In November 2022, Otter Creek completed the statistical analysis of the third quarter detection monitoring Appendix III constituent data utilizing the prediction limit intrawell method. Third quarter samples were collected between July 27-28, 2022.

Based on the July 2022 sampling data, there was an initial exceedance for boron in CBL-301I. Because these are initial exceedances in a 1 of 2 resampling method, well CBL-301I was resampled on August 30, 2022. A second exceedance was detected for boron in CBL-301I and another resample was required to confirm the exceedance. The 2 of 2 resample was collected on October 25,2022 and a split sample was collected to be sent to a second laboratory. Based on the resample analytical results, there were no confirmed control chart exceedances detected and a statistically significant exceedance was not confirmed. Detailed information is contained in the November 2022 *Results for the Groundwater Statistics* prepared by Otter Creek which is included in Appendix C. Historically, well CBL-301I's boron analyses have regularly been below detection limits with occasional detections, followed by the subsequent sample being below detection limit again (See Table 3). The laboratory analytical results are included in Appendix D.

6.0 PLANNED ACTIVITIES

Planned activities for 2023 include continued semi-annual detection monitoring with associated statistical analysis and responding in accordance with the CCR rules as new information is developed.

TABLE 1
MONITOR WELL DETAILS

	T	T		T		I
Well ID	CBL-340I (Background Well)	CBL-301I	CBL-302I	CBL-306I	CBL-308I	CBL -341I
Installation Date	12/17/2015	5/23/2011	5/24/2011	6/3/2011	12/20/2011	11/14/2016
Hydrogeologic Unit Monitored	Intermediate Sand	Intermediate Sand	Intermediate Sand	Intermediate Sand	Intermediate Sand	Intermediate Sand
Casing Type	2" PVC	2" PVC	2" PVC	2" PVC	2" PVC	2" PVC
Total Well Depth (ft bgs)	37	51	24	14	32	43
Screened Interval (ft bgs)	22-37	41-51	14-24	9-14	22-32	33-43
Ground Surface Elevation (ft MSL)	374.69	369.75	355.99	337.93	364.93	364.03
TOC Elevation (ft MSL)	376.98	372.11	358.99	339.96	368.67	366.65
Northing	9949069.45	9946563.44	9947806.017	9946445.582	9947619.46	9947139.86
Easting	3428311.38	3429862.181	3429260.844	3428730.533	3428574.38	3429525.31
Survey Datum	Horizontal Datum: NAD83/2011- EPOCH 2012 Vertical Datum: NAVD88- GEOIDIZA	Horizontal Datum: NAD83/NSRS 2007 Vertical Datum: NAVD88	Horizontal Datum: NAD83/NSRS 2007 Vertical Datum: NAVD88	Horizontal Datum: NAD83/NSRS 2007 Vertical Datum: NAVD88	Horizontal Datum: NAD83/NSRS 2007 Vertical Datum: NAVD88	Horizontal Datum: NAD83/2011- EPOCH 2012 Vertical Datum: NAVD88- GEOIDIZA

TABLE 2
2022 CCR GROUNDWATER MONITORING EVENTS

Well #	Date of sample collection	# Samples collected for analysis	Monitoring program
CBL 340I	1/28/2022	1	Detection monitoring
CDL 3 101	7/28/2022	1	Detection monitoring
	1/26/2022	1	Detection monitoring
CBL 301I	7/27/2022	1	Detection monitoring
CBL 3011	8/30/2022	1	Detection monitoring
	10/25/2022	1	Detection monitoring
CBL 302I	1/27/2022	1	Detection monitoring
CBL 3021	7/28/2022	1	Detection monitoring
CBL 306I	1/27/2022	1	Detection monitoring
CBL 3001	7/28/2022	1	Detection monitoring
CBL 308I	1/27/2022	1	Detection monitoring
CDL 3001	7/27/2022	1	Detection monitoring
CBL 341I	1/27/2022	1	Detection monitoring
CDL 3411	7/28/2022	1	Detection monitoring

TABLE 3 GROUNDWATER MONITORING RESULTS SUMMARY

	ı	1																									1		
		Dogulatory							Total Dissolved														Radium	Radium	Radium		DO		Specific
Monitoring Well	Sample Date	Regulatory Phase	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Solids (Residue Filterable)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	226	228	Combined	Temp C	mg/L	DO %	Conductivity
MCL including EPA													,							•							Ť	20.0	,
Phase 1			NE	NE	NE	4.0	NE	NE	NE	0.006	0.010	2.000	0.004	0.005	0.100	0.006	0.015	0.040	0.002	0.1	0.05	0.002			5 pCi/l	NE	NE	NE	NE
							SM4500H+																						
Analytical Method			SW3010A	SW3010A	E300.0	E300.0	В	E300.0	DM2450C	SW6020	SW6020	SW6010B	SW6010B	SW6020	SW6020	SW6020	SW6020	SW6020	SM2540C	SW6020	SW6020	SW6020	E903.0	E904.0		-			-
Method Detection Limit			0.02	0.35	20	0.2		20	250	0.0004	0.0007	0.004	0.001	0.0004	0.0004	0.0004	0.0004	0.0004	0.07 ug/L	0.0004	0.0017	0.0004	1	1					-
Practical Quantitation			0.05		F0	0.5		FO	250	0.001	0.002	0.01	0.004	0.001	0.001	0.001	0.001	0.001	0.2//	0.001	0.005	0.001							
Limit			0.05	'	50	0.5		50	250	0.001	0.002	0.01	0.004	0.001	0.001	0.001	0.001	0.001	0.2 ug/L	0.001	0.005	0.001	'	<u>'</u>		-		-	-
CBL Background/Up-gra			0.0500		2270	100	. 50	450	4000	2.224	0.000	0.0247	0.004	0.004	0.0011/	0.00400	0.00400	0.0005	0.0000	0.00304	2.225	0.004		4.45	4.15	00.47		50.4	0404
CBL-340I	1/21/2016	В	<0.0500	564 560	2370	1.09	6.52	652	4990	<0.001	<0.002	0.0267	<0.004	<0.001	0.00116	<0.00100	-		<0.0002		<0.005	<0.001	<1.0	1.45	1.45	22.47	4.42	52.4	8121 8159
CBL-340I CBL-340I	5/4/2016 7/27/2016	В	0.0832 0.081	575	2260 2350	1.92 1.06	6.13 6.95	616 668	5230 6250	<0.00100 <0.001	<0.00200 <0.002	0.0235 0.0271	<0.004 <0.004	<0.001 <0.001	0.00114 0.00146	<0.00100 <0.001	<0.00100 <0.001	0.085 0.0711	<0.0002 <0.0002	0.00309 0.00301	<0.005 <0.005	<0.001 <0.001	<1.0 1.89	1.22 1.16	1.22 3.05	22.96 24.72	4.12 6.99	49.3 84.4	1272
CBL-340I	10/24/2016	В	0.158	607	2380	1.26	6.19	675	5670	<0.001	<0.002	0.0303	<0.004	<0.001	0.00176	<0.001	<0.001	0.0843	<0.0002	0.00334	0.00725	<0.001	1.47	1.39	2.86	22.76	3.34	39.8	8427
CBL-340I	1/23/2017	В	<0.050	627	2070	0.84	5.46	571	6230	<0.001	<0.002	0.0275	<0.004	<0.001	0.00179	<0.001	<0.001	0.0887	<0.0002	0.00284	<0.005	<0.001	<1.00	<1.00	<1.00	22.79	NA	NA	8259
CBL-340I	3/22/2017	В	0.174	581	2280	8.44	6.49	635	5480	<0.001	<0.002	0.0259	<0.004	<0.001	< 0.0001	< 0.001	<0.001	0.0684	<0.0002	0.00229	< 0.005	<0.001	<1.00	2.71	2.71	22.37	NA	NA	7900
CBL-340I	5/16/2017	В	0.104	584	2520	1.01	5.77	715	5470	<0.001	<0.002	0.027	<0.004	<0.001	0.001	<0.001	<0.001	0.101	<0.0002	0.00248	<0.005	<0.001	<1.00	<1.00	<1.00	22.51	NA	NA	8286
CBL-340I	7/27/2017	В	0.0816	571	2380	0.85	6.42	685	4880	<0.001	<0.002	0.0272	<0.004	<0.001	<0.001	<0.001	<0.001	0.0875	<0.0002	0.00261	<0.005	<0.001	NA	NA	NA	22.73	NA	NA	8292
CBL-340I	2/8/2018	В	0.0638	555	2730	1.00	6.41	752	5290	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	21.61	NA	NA	NA
CBL-340I	7/27/2018	В	<0.0500	544	2450	1.3	6.25	711	5100	NA	NA	NA	NA	NA	NA	NA	NA	0.0968	NA	NA	NA	NA	NA	NA	NA	23.2	NA	NA	8131
CBL-340I	1/22/2019	В	<0.0500	518	2250 2280	0.83	6.59	639	4720	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-340I CBL-340I	7/31/2019 1/30/2020	B B	0.124 0.0562	518 539	2240	0.88 0.87	6.45 6.49	684	5560 5080	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CBL-340I	9/18/2020	В	0.0562	547	2130	0.87	6.32	608	5430	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
CBL-340I	1/28/2021	В	<0.0500	607	2260	0.835	6.32	634	5520	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
CBL-340I	7/22/2021	В	0.384	532	2200	0.865	6.24	618	4990	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-340I	1/28/2022	В	0.160	597	2200	1.06	6.42	619	4870	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-340I	7/28/2022	В	0.285	538	2160	0.865	6.35	614	5490	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL Down-gradient Wel	T	DM	-0 OF	005	2200	.0.250	(22	22/	4200	.0.001	.0.002	0.0427	.0.004	.0.001	0.00271	-0.001	0.00105	0.0040	.0.000	0.00104	-0.005	.0.001	.1.0	.1.0	.1.0	24.12	0.41	F 0	7122
CBL-301I CBL-301I	1/21/2016 5/4/2016	DM DM	<0.05 <0.0500	905 949	2300	<0.250	6.33	336	4380 5050	<0.001	<0.002	0.0436	<0.004 <0.00400	<0.001 <0.00100	0.00371 0.00867	<0.001 <0.00100	0.00105 0.00153	0.0949 0.0847	<0.0002 <0.0002	0.00124 0.00189	<0.005 <0.00500	<0.001 <0.00100	<1.0	<1.0 <1.0	<1.0	24.12 25.02	0.41 1.21	5.0	7133 7202
CBL-3011	7/27/2016	DM	<0.050	925	2160 2290	<0.500 <0.01	6.26 5.95	311 336	6020	<0.00100 <0.001	<0.00200 <0.002	0.0423 0.0661	<0.00400	<0.00100	0.00867	<0.00100	0.00133	0.0847	<0.0002	0.00169	<0.005	<0.00100	<1.0 <1.0	<1.0	<1.0 <1.0	23.47	3.08	15 37.3	9807
CBL-301I	10/24/2016	DM	<0.05	978	2250	<0.250	6.23	326	4570	<0.001	<0.002	0.0907	<0.004	<0.001	0.0142	<0.001	0.00168	0.0932	<0.0002	0.00252	<0.005	<0.001	<1.0	1.15	1.15	25.09	0.77	9.6	7261
CBL-301I	1/23/2017	DM	<0.05	1000	3200	0.312	6.26	488	6140	<0.001	<0.002	0.0497	<0.004	<0.001	<0.001	< 0.001	<0.001	0.091	<0.0002	<0.001	< 0.005	<0.001	<1.0	<1.0	<1.0	23.83	NA	NA	7532
CBL-301I	3/22/2017	DM	<0.05	1030	2390	<0.500	6.31	337	6570	<0.001	<0.002	0.0662	<0.004	<0.001	0.00546	<0.001	<0.001	0.095	<0.0002	0.00137	<0.005	<0.001	<1.0	<1.0	<1.0	24.93	NA	NA	7495
CBL-301I	5/18/2017	DM	0.0707	1060	2420	<0.500	5.95	342	6430	<0.001	<0.002	0.0774	<0.004	<0.001	0.0165	0.00133	0.00186	0.116	<0.0002	0.0024	<0.005	<0.001	<1.0	<1.0	<1.0	25.92	NA	NA	7532
CBL-301I	7/26/2017	DM	<0.05	961	2500	<0.01	6.02	381	4290	<0.001	<0.002	0.0467	<0.004	<0.001	0.0022	<0.001	<0.001	0.0941	<0.0002	0.00109	<0.005	<0.001	NA	NA	NA	24.95	NA	NA	7365
CBL-301I	2/8/2018	DM	<0.05	873	2480	<0.01	6.17	344	5120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	23.37	NA	NA	NA
CBL-301I	7/25/2018	DM	<0.05	993	1330	<0.500	6.04	196	5390	NA	NA	NA	NA	NA	NA	NA	NA NA	0.0971	NA	NA	NA	NA	NA	NA	NA NA	24.46	NA	NA	7446
CBL-301I CBL-301I	1/17/2019 5/2/2019	DM DM	<0.05 <0.05	156 762	619 1910	0.219 0.112	7.16 6.14	104 398	1460 5650	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CBL-3011	7/31/2019	DM	<0.05	783	2240	0.051	6.19	332	6040	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA
CBL-301I	1/28/2020	DM	<0.05	851	2360	0.13	6.26	349	4790	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-301I	9/17/2020	DM	0.0801	1060	2270	<.25	6.13	350	6340	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-301I	1/26/2021	DM	<0.0500	1130	2420	<0.500	6.06	374	6060	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-301I	7/20/2021	DM	0.0826	1100	25910	2.68	6.13	419	5870	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-301I	9/7/2021	DM	<0.0500	NA	NA	<0.500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-301I	1/26/2022	DM	<0.0500	999	2440	<0.500	6.27	406	4700	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-301I	7/27/2022	DM	0.085	1010	1840	0.156	6.08	285	4590	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-301I	8/30/2022	DM	0.107	NA NA	NA NA	NA NA	6.14	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA
CBL-301I (split sample)	10/25/2022 10/25/2022	DM DM	0.0645 0.0769	NA NA	NA NA	NA NA	6.21 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
ODE 30 H (Split Sample)	1012312022	DIVI	0.0707	IVA	IVA	INA	IVA	INA	INA	INA	INA	1974	INA	INA	IVA	IVA	INA	INA	1974	INV	INA	INA	IVA	INA	INV	INA	IVA	INU	INA
L				I .		I	1		<u> </u>			1	I	1		1	1	1	1		I			<u> </u>	1				

TABLE 3
GROUNDWATER MONITORING RESULTS SUMMARY

																											1 1		
									Total Dissolved																				
	Sample Date	Regulatory	Poron	Calaium	Chlorido	Eluarida	nU	Culfata	Solids (Residue	Antimony	Arconio	Dorium	Dorullium	Codmium	Chromium	Cobalt	Load	Lithium	Moroury	Mohibdonim	Colonium	Thallium	Radium	Radium	Radium	Town C	DO mg/l	500	Specific
Monitoring Well	Sample Date	Phase	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	Filterable)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	226	228	Combined	Temp C	mg/L	DO %	Conductivity
MCL including EPA Phase 1			NE	NE	NE	4.0	NE	NE	NE	0.006	0.010	2.000	0.004	0.005	0.100	0.006	0.015	0.040	0.002	0.1	0.05	0.002			5 pCi/l	NE	NE	NE	NE
							SM4500H+																						
Analytical Method			SW3010A	SW3010A	E300.0	E300.0	В	E300.0	DM2450C	SW6020	SW6020	SW6010B	SW6010B	SW6020	SW6020	SW6020	SW6020	SW6020	SM2540C	SW6020	SW6020	SW6020	E903.0	E904.0					
Method Detection Limit			0.02	0.35	20	0.2		20	250	0.0004	0.0007	0.004	0.001	0.0004	0.0004	0.0004	0.0004	0.0004	0.07 ug/L	0.0004	0.0017	0.0004	1	1					
Practical Quantitation				0.00						0.000	0.0007	0.00	0.001	0.000	0.000	1 0.0001	0.000	0.000	0.07 a.g.=	0.0001	0.0017	0.000	 	<u> </u>					
Limit			0.05	1	50	0.5		50	250	0.001	0.002	0.01	0.004	0.001	0.001	0.001	0.001	0.001	0.2 ug/L	0.001	0.005	0.001	1	1					-
CBL-302I	1/22/2016	DM	<0.05	1030	2190	<0.250	6.29	1020	5500	<0.001	<0.002	0.0226	<0.004	<0.001	<0.001	<0.001	<0.001	0.0487	<0.0002	<0.001	<0.005	<0.001	<1.0	1.98	1.98	20.93	1.42	16.4	7835
CBL-302I	5/4/2016	DM	<0.05	1010	2130	<0.500	6.01	993	5390	<0.001	<0.002	0.0218	<0.004	<0.001	<0.001	<0.001	<0.001	0.042	<0.0002	<0.001	<0.005	<0.001	<1.0	<1.0	<1.0	20.84	1.51	17.3	7911
CBL-302I	7/27/2016	DM	<0.05	1030	2210	<0.500	5.17	1090	6850	<0.001	<0.002	0.0251	<0.004	<0.001	<0.001	<0.001	<0.001	0.0411	<0.0002	<0.001	<0.005	<0.001	<1.0	<1.0	<1.0	21.98	1.13	13.3	7906
CBL-302I	10/24/2016	DM	0.156	1070	2170	<0.250	7.75	1180	4210	<0.001	<0.002	0.0269	<0.004	<0.001	<0.001	<0.001	<0.001	0.0483	<0.0002	<0.001	<0.005	<0.001	<1.0	1.13	1.13	22.00	8.71	103.3	11017
CBL-302I CBL-302I	1/23/2017 3/22/2017	DM DM	<0.05 0.297	1100 1090	2080 2050	0.332 <0.500	5.36 5.40	1150 1120	6430 6460	<0.001 <0.001	<0.002 <0.002	0.0269 0.0277	<0.004 <0.004	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	0.0402 0.0558	<0.0002 <0.0002	0.00286 <0.001	<0.005 <0.005	<0.001 <0.001	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	22.13 21.79	NA NA	NA NA	7723 7753
CBL-302I	5/16/2017	DM	<0.05	1100	2230	<0.500	4.94	1230	5860	<0.001	<0.002	0.0277	<0.004	<0.001	<0.001	<0.001	<0.001	0.0558	<0.0002	<0.001	<0.005	<0.001	<1.0	<1.0	<1.0	21.79	NA NA	NA	7777
CBL-302I	7/27/2017	DM	<0.05	1040	2040	<0.02	6.20	1180	5120	<0.001	<0.002	0.0260	<0.004	<0.001	<0.001	<0.001	<0.001	0.0534	<0.0002	<0.001	< 0.005	<0.001	NA	NA	NA	22.10	NA	NA	7753
CBL-302I	2/8/2018	DM	<0.05	934	2080	0.112	6.21	1240	6010	NA	NA	NA	NA	NA	NA	NA	20.47	NA	NA	NA									
CBL-302I	7/27/2018	DM	<0.05	995	1980	<0.500	5.77	1390	5510	NA	0.0489	NA	NA	NA	NA	NA	NA	NA	22.20	NA	NA	NA							
CBL-302I	1/22/2019	DM	<0.05	855	1960	0.0402	6.44	1250	5060	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
CBL-302I	7/31/2019	DM	<0.05	914	1540	.0605	6.15	1260	4190	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
CBL-302I	1/30/2020	DM	<0.05	838	1540	0.193	6.34	1350	4790	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
CBL-302I	9/17/2020	DM	<0.05	853	1410	<0.25	6.2	1280	4990	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
CBL-302I	1/28/2021	DM	<0.0500	1020	1370	<0.500	6.21	1290	4800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
CBL-302I	7/21/2021	DM	0.0743	844	1380	2.25	6.06	1350	4810	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
CBL-302I	9/7/2021	DM	NA 0.0500	NA 75.4	NA 1212	<0.250	NA (22	NA 1242	NA 4510	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
CBL-302I	1/27/2022 7/28/2022	DM DM	<0.0500	754	1310 1300	<0.500	6.32	1340	4510 5120	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA									
CBL-302I	112012022	DIVI	<0.0500	750	1300	0.165	6.21	1300	5120	NA	NA	NA	IVA	IVA	IVA	NA	NA	IVA	IVA	INA	INA	IVA	INA	INA	IVA	NA	IVA	NA	IVA
CBL-306I	1/21/2016	DM	<0.0500	137	155	2.5	7.09	266	1280	<0.001	<0.002	0.0512	<0.004	<0.001	<0.001	<0.001	<0.001	0.0239	<0.0002	0.00532	<0.005	<0.001	<1.0	<1.0	<1.0	20.4	6.6	73.5	1854
CBL-306I	5/4/2016	DM	0.0717	47.2	20.0	1.00	6.69	29.5	431	<0.001	<0.002	0.0313	<0.004	<0.001	<0.001	<0.001	<0.001	0.006	<0.0002	0.00305	<0.005	<0.001	<1.0	<1.0	<1.0	21.13	6.14	69.1	672
CBL-306I	7/26/2016	DM	0.0998	105	114	1.37	6.95	139	790	<0.001	<0.002	0.0976	<0.004	<0.001	<0.001	0.00123	<0.001	0.0127	<0.0002	0.00234	<0.005	<0.001	<1.0	<1.0	<1.0	24.72	6.99	84.4	1272
CBL-306I	10/24/2016	DM	0.0556	198	330	2.38	6.72	432	1150	<0.001	<0.002	0.0841	<0.004	<0.001	<0.001	0.00287	<0.001	0.0265	<0.0002	0.00327	<0.005	<0.001	<1.0	1.05	1.05	26.13	7.93	98.6	2423
CBL-306I	1/19/2017	DM	<0.05	174	197	1.85	7.29	270	1320	<0.001	<0.002	0.0706	<0.004	<0.001	<0.001	<0.001	<0.001	0.0281	<0.0002	<0.001	0.00652	<0.001	<1.0	<1.0	<1.0	20.83	NA	NA	1422
CBL-306I	3/22/2017	DM	0.124	204	231	12.6	4.41	340	1460	<0.001	<0.002	0.0688	<0.004	<0.001	<0.001	<0.001	<0.001	0.0229	<0.0002	0.00266	<0.005	<0.001	<1.0	<1.0	<1.0	22.38	NA	NA	2176
CBL-306I	5/18/2017	DM	0.0832	205	289	2.20	5.61	412	1440	<0.001	<0.002	0.0577	<0.004	<0.001	<0.001	<0.001	<0.001	0.0325	<0.0002	0.00195	<0.005	<0.001	<1.0	<1.0	<1.0	23.60	NA	NA	2151
CBL-306I	7/27/2017	DM	0.0531	234	350	2.91	6.94	513	1280	<0.001	<0.002	0.0648	<0.004	<0.001	<0.001	<0.001	<0.001	0.0332	<0.0002	0.00352	<0.005	<0.001	NA	NA	NA	23.89	NA	NA	2687
CBL-306I	2/8/2018	DM	<0.0500	230	385	2.81	6.67	493	1760	NA	NA	NA	NA	NA	NA	NA	19.32	NA	NA	NA									
CBL-306I	7/27/2018	DM	<0.0500	275	283	2.95	6.86	406	1450	NA	0.0298	NA	NA	NA	NA	NA	NA	NA	24.05	NA	NA	1996							
CBL-306I	1/16/2019	DM	<0.0500	180	215	1.98	6.78	292	1220	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA
CBL-306I	7/31/2019	DM	0.0824	106	538	9.26	6.92	816	676	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 27.49	NA NA	NA	NA 2479									
CBL-306I	8/23/2019 1/29/2020	DM DM	0.05 <0.0500	226 247	318 445	2.66	6.83	387 561	1710 1830	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	27.48 NA	NA NA	NA NA	2478 NA									
CBL-306I	9/19/2020	DM	0.0773	260	420	2.72	7.16	506	1730	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA
CBL-306I	1/28/2021	DM	<0.0500	257	292	2.90	6.84	388	1420	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA									
CBL-306I	7/21/2021	DM	0.0927	216	255	2.42	6.55	336	1320	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
CBL-306I	1/27/2022	DM	0.0548	212	384	2.99	6.87	510	1730	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
CBL-306I	7/28/2022	DM	0.11	182	261	2.26	6.70	348	1540	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA									
							-			-			-		-	-		-	•				-	-	-				

TABLE 3
GROUNDWATER MONITORING RESULTS SUMMARY

Part		Ī		1	•																									
Part										Total Dissolved																				
Part	Nonitoring Well	Sample Date		Boron	Calcium	Chloride	Fluoride	рН	Sulfate	Solids (Residue	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium				Temp C	DO mg/L	DO %	Specific Conductivity
Name				NE	NE	NE	4.0	NE	NE	NE	0.006	0.010	2.000	0.004	0.005	0.100	0.006	0.015	0.040	0.002	0.1	0.05	0.002			5 pCi/l	NE	NE	NE	NE
	tical Method			SW3010A	SW3010A	E300.0	E300.0	1	E300.0	DM2450C	SW6020	SW6020	SW6010B	SW6010B	SW6020	SW6020	SW6020	SW6020	SW6020	SM2540C	SW6020	SW6020	SW6020	E903.0	E904.0					
	od Detection Limit			0.02	0.35	20	0.2		20	250	0.0004	0.0007	0.004	0.001	0.0004	0.0004	0.0004	0.0004	0.0004	0.07 ug/L	0.0004	0.0017	0.0004	1	1					
Second S	cal Quantitation			0.05	1	50	0.5		50	250	0.001	0.002	0.01	0.004	0.001	0.001	0.001	0.001	0.001	0.2 ug/L	0.001	0.005	0.001	1	1					
50.50 70.00 7	3081	1/22/2016	DM	< 0.0500	903	2760	1.49	6.36	1490	6820	<0.00100	<0.00200	0.0413	<0.00400	<0.00100	<0.00100	<0.001	<0.00100	0.116	<0.0002	0.00106	0.00693	<0.00100	<1.0	1.11	1.11	21.45	2.82	32.9	9772
Section 1982	3081	5/4/2016	DM	0.121	870	2580	2.3	6.13	1410	6120	<0.00100	<0.00200	0.0395	<0.00400	<0.00100	<0.00100	<0.001	<0.00100	0.134	<0.0002	0.00113	0.00823	<0.00100	<1.0	<1.0	<1.0	22.87	2.81	33.8	9726
1,000 1,00	1808	7/26/2016	DM	0.186	911	2680	1.64	5.95	1490	7890	<0.001	<0.002	0.0462	<0.004	<0.001	<0.001	<0.001	<0.001	0.0854	<0.0002	<0.001	0.00793	<0.001	<1.0	1.21	1.21	23.47	3.08	37.3	9807
Section 1979 1984	1808	10/24/2016	DM	0.256	939	2870	1.59	6.27	1550	10200	<0.001	<0.002	<0.05	<0.004	<0.001	<0.001	<0.001	<0.001	0.106	<0.0002	0.00104	0.00887	<0.001	<1.0	1.66	1.66	23.06	1.6	19.3	10000
SH-1288 SH-2017 DM	1808	1/19/2017	DM	<0.05	919	2360	1.33	6.83	1320	9620	<0.001	<0.002	0.0458	<0.004	<0.001	<0.001	<0.001	<0.001	0.106	<0.0002	0.0013	0.00995	<0.001	<1.0	1.41	1.41	22.11	NA	NA	9681
Fig. 1888 7520717 DM	1803	3/22/2017		0.545	947	2530	9.05		1470	7260	<0.001	<0.002		<0.004	<0.001	<0.001	<0.001	<0.001	0.123	<0.0002	0.00105	0.00761	<0.001	<1.0	1.37		22.67	NA	NA	9659
EB-308 28/2078 DM	3081									6590		<0.002	0.0494		<0.001	<0.001		.	0.13	1		ł						NA	NA	9697
CBL-308 77550718 DM													1		ł			.	ł	1		ł					24.75	NA	NA	9929
CBL 308 119/2019 DM															<u> </u>				.									NA	NA	NA
CBL 308 7/31/2019 DM												1			<u> </u>				.								23.43	NA	NA	9313
CBL 388						-						-			+			1	!			 						NA	NA	NA
CBL-308 9/18/2020 DM 0.103 8.38 2410 1.33 6.22 1310 6.860 NA NA NA NA NA NA NA N										ł		-			+				1			-						NA	NA	NA
EBL-3081 1/28/2021 DM 1/28/2022 DM 1/28/2021 DM 1/28/2022 DM 1/28/2021 DM <a href="</td"><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>}</td><td></td><td>-</td><td></td><td></td><td>+</td><td></td><td></td><td></td><td>ł</td><td>1</td><td>ł</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>NA</td><td>NA</td><td>NA</td>							+			}		-			+				ł	1	ł	-						NA	NA	NA
CBL-308 7/21/2021 DM							+			ł		-			+				1			 						NA	NA	NA
CBL-308 1/27/2022 DM <0.0500 974 2020 1.75 6.36 1310 5320 NA NA NA NA NA NA NA N										}									ł	1	ł	-						NA	NA	NA
CBL-308 7/27/2022 DM 0.0790 736 2470 1.43 6.23 1190 6840 NA NA NA NA NA NA NA N							+			ł		_			-				1			-						NA	NA	NA
CBL3411 1/23/2017 DM <0.05 854 1600 0.53 5.74 307 5000 <0.001 <0.002 <0.0733 <0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001															<u> </u>				.			<u> </u>						NA	NA	NA NA
CBL-3411 2/23/2017 DM <0.05 870 2000 <0.50 5.23 404 4520 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.005 <0.001 <0.005 <0.005 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00	1081	112112022	DIVI	0.0790	/30	2470	1.43	0.23	1190	6840	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	IVA	NA	NA	NA	NA
CBL-3411 2/23/2017 DM <0.05 870 2000 <0.50 5.23 404 4520 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.005 <0.001 <0.005 <0.005 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.00	2411	1/22/2017	DM	۰0.0E	OE 4	1400	0.52	E 74	207	E000	-0.001	<0.002	0.0702	-0.004	رم مرم دم مرم	-0.001	-0.001	رم مرم درم مرم	0.0000	-0.0003	0.00112	40 00E	-0.001	-10	1 22	1 22	21.05	NA	NA	6053
CBL-3411 3/2/2017 DM							+			}					l				ł		ł	ł		-				NA NA	NA NA	6030
CBL-3411													1		ł			.	1	1		ł						NA NA	NA NA	6014
CBL:3411 5/16/2017 DM 0.0896 860 1900 <0.50 5.54 369 4840 <0.001 <0.002 0.0706 <0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0835 <0.0002 <0.001 <0.005 <0.001 <1.00 1.29 1.29 22.18 CBL:3411 6/20/2017 DM 0.0668 950 1820 0.335 6.19 363 5940 <0.001 <0.002 0.0693 <0.001 <0.002 0.0693 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0825 <0.0002 0.0328 0.00692 <0.001 NA													1		l				 	1		ł						NA NA	NA	6038
CBL-341I 6/20/2017 DM 0.0668 950 1820 0.335 6.19 363 5940 <0.001 <0.002 0.0693 <0.004 <0.001 <0.001 0.00163 <0.001 0.0825 <0.0002 0.00328 0.00692 <0.001 NA													1		ł			.	1									NA NA	NA	6108
CBL-341I 7/27/2017 DM 0.0507 829 1970 0.055 6.21 419 4150 <0.001 <0.002 0.0685 <0.004 <0.001 <0.001 <0.001 <0.001 <0.001 0.0912 <0.0002 <0.001 <0.005 <0.001 NA								1											ł	1	ł	ł						NA NA	NA	5931
CBL-341I 2/862018 DM <0.05 810 2110 0.106 6.18 383 4320 NA							_										-		 								23.17	NA NA	NA NA	6036
CBL-341I 8/24/2018 DM <0.05 824 1910 0.114 5.82 376 4800 NA			DM						383															NA				NA	NA	4320
CBL-341I 1/22/2019 DM <0.05 782 1790 0.0546 6.38 358 3870 NA										}			1						ł			ł						NA	NA	6076
CBL-341I 7/31/2019 DM <0.05 714 1650 0.1 6.23 329 5370 NA							+			ł					l				ł			l						NA	NA	NA
							+						1		+			.	ł	1		ł						NA	NA	NA
וודט בעסן אווי אוויסן סטוניים בעסטייים בעסטיים בעסטי		1/30/2020	DM	<0.05	767	1780	0.153	6.27	351	4900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-341I 9/17/2020 DM 0.102 814 1700 <0.25 6.14 336 4930 NA																			.									NA	NA	NA
CBL-341I 1/27/2021 DM <0.0500 874 1800 <0.500 6.06 324 3940 NA												NA	1	NA	ł			.	1	1		ł				NA		NA	NA	NA
CBL-341I 7/22/2021 DM 0.111 852 1750 1.16 5.98 316 4520 NA		7/22/2021	DM	0.111	852		1.16			4520		NA	NA	NA	NA	NA		NA	 			NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-341I 9/7/2021 DM NA NA NA <0.250 NA		9/7/2021	DM	NA	NA	NA	<0.250	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-341I 1/27/2022 DM <0.0500 1040 1810 <0.500 6.26 320 3800 NA	3411	1/27/2022	DM	<0.0500	1040	1810	<0.500	6.26	320	3800	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CBL-341I 7/28/2022 DM 0.115 704 1690 0.141 6.16 296 4910 NA	3411	7/28/2022	DM	0.115	704	1690	0.141	6.16	296	4910	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

Regulatory Phase: Background (B), Detection Monitoring (DM), Assessment Monitoring (AM), Corrective Action (CA) All concentrations reported in mg/L (milligrams per liter)

NE = Not established, EPA considers these compounds are not a concern from a human health standpoint

All concentrations reported in mg/L (milligrams per liter)

NA = Not analyzed in accordance with 40 CFR 257.94

Appendix III to Part 257 Constituents for Detection Monitoring
Appendix IV to Part 257 Constituents for Assessment Monitoring

FIGURE 1

MONITOR WELL LOCATION MAP

Appendix A

CCR Groundwater Detection Monitoring Program
Evaluation of First Quarter 2022
Potentiometric Surface Data Collected from the CBL
Bullock, Bennett & Associates, LLC
May 31, 2022

CCR Groundwater Detection Monitoring Program
Evaluation of Third Quarter 2022
Potentiometric Surface Data Collected from the CBL
Bullock, Bennett & Associates, LLC
November 17, 2022

Bullock, Bennett & Associates, LLC

www.bbaengineering.com 165 N. Lampasas St. • Bertram, Texas 78605 • (512) 355-9198

Technical Memorandum

To: Rebecca D. Jones, P.G. Project No. 22482

Environmental Coordinator

Lower Colorado River Authority (LCRA)

From: Charlie Macon, P.G.

Date: May 31, 2022

Subject: CCR GROUNDWATER DETECTION MONITORING PROGRAM

EVALUATION OF FIRST QUARTER 2022 POTENTIOMETRIC SURFACE

DATA COLLECTED FROM THE CBL

1.0 INTRODUCTION

This Technical Memorandum (Tech Memo) documents the evaluation of the Intermediate Sand groundwater bearing unit potentiometric surface data obtained during the First Quarter-2022 Combustion Byproducts Landfill (CBL) Groundwater Monitoring Event. The groundwater monitoring is being performed as part of the CBL Groundwater Monitoring Program (GMP) in accordance with the Coal Combustion Residuals (CCR) regulations as codified in 40 Code of Federal Regulations (CFR) 257.93. The CBL is located at the Lower Colorado River Authority's (LCRA's) Fayette Power Project (FPP) facility near La Grange, Texas. This measurement of the potentiometric surface evaluation and determination of groundwater flow direction and flow rate is conducted for each groundwater monitoring event pursuant to the GMP requirements of 40 CFR 257.93(c) and 30 Tex. Admin. Code §352.931.

2.0 POTENTIOMETRIC SURFACE DATA COLLECTION, MAPPING, AND GRADIENT DETERMINATION

All groundwater monitoring and sampling activities were performed by an LCRA technician. Prior to conducting well purging and collection of groundwater samples for chemical analysis, the technician used an electronic well probe to determine depth to the Intermediate Sand groundwater surface below the surveyed top of monitoring well casing elevation. Table 1 presents the summary of groundwater measurements obtained from the CBL Groundwater Monitoring network in the First Quarter–2022 event.

Based on the measured groundwater elevations, a potentiometric surface map was prepared to document the First Quarter-2022 monitoring event (Figure 1). The map shows a groundwater potentiometric surface that is relatively consistent with those presented for all prior CBL GMP monitoring events. As illustrated by the map shown in Figure 1, the groundwater flow direction is to the south-southwest. The calculated gradient for the western portion of the CBL is 0.010 ft/ft. For the eastern portion of the CBL, a gradient of 0.021 ft/ft was calculated.

3.0 GROUNDWATER FLOW RATE CALCULATION

Groundwater flow rate was calculated along two transects, one along the western area having the lower gradient, and one along the eastern area having the higher gradient. As documented in the CBL Hydrogeology Report (Amec, 2013), a hydraulic conductivity value (K) of 6.3 x 10⁻⁴ centimeters per second (cm/sec) has been estimated for the Intermediate Sand. The hydraulic conductivity value is based on the rising-head slug test data obtained from monitoring well CBL-302I. Consistent with past evaluations of the Intermediate Sand, this hydraulic conductivity value was utilized for the First Quarter-2022 event to calculate the groundwater flow rate. Also consistent with past evaluations, an assumed porosity value of 0.30 was utilized based on the dominant aquifer lithology (clayey sands and silty sands).

Given the constants $K = 6.3 \times 10^{-4} \text{ cm/sec}$ (= 648.9 feet/year) and Porosity = 0.30, the following groundwater flow velocities are calculated:

Eastern Transect (gradient of 0.021 ft/ft): 45 ft/yr (rounded) Western Transect (gradient of 0.010 ft/ft): 22 ft/yr (rounded)

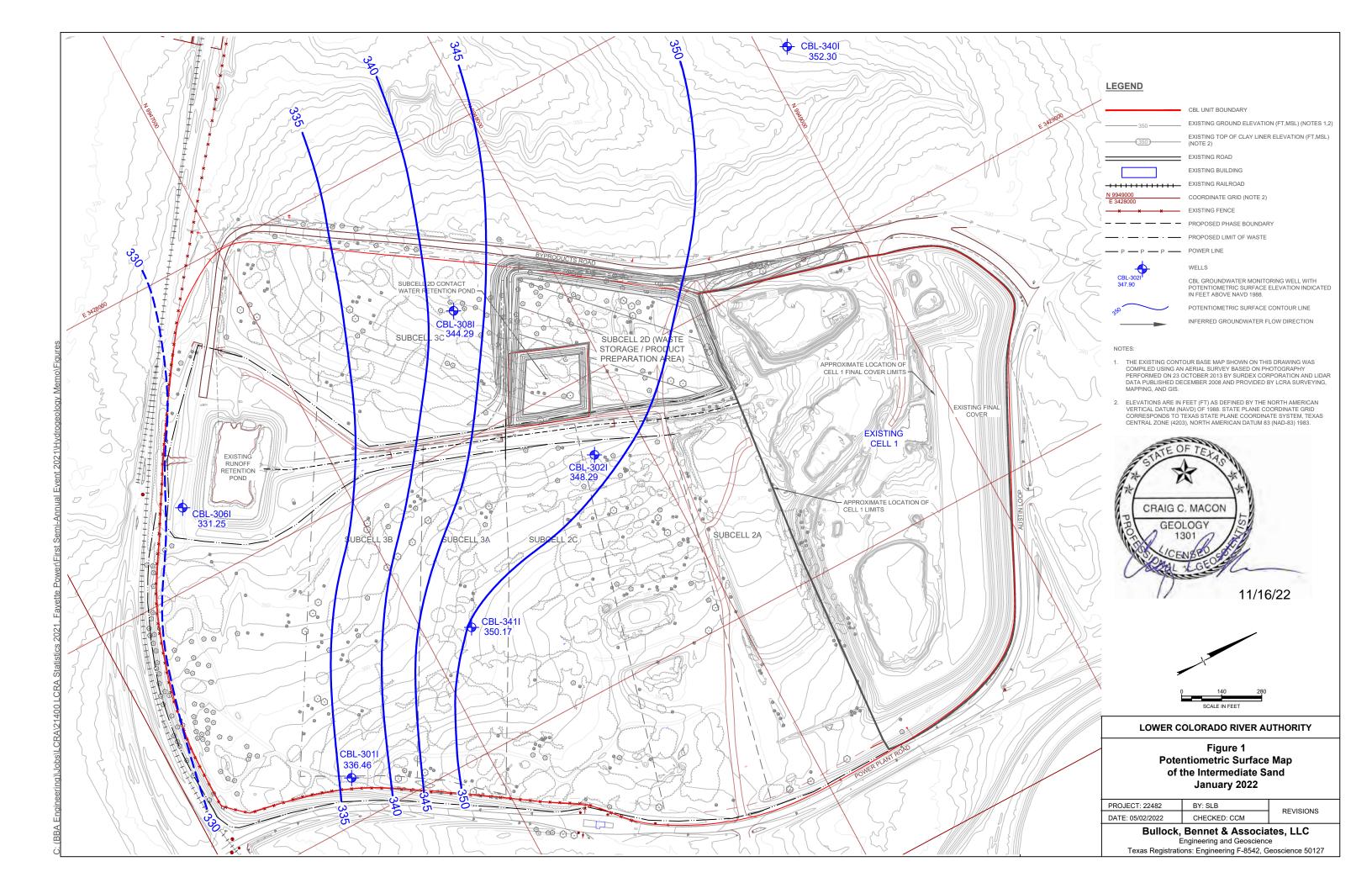
4.0 REFERENCES

Amec Environment & Infrastructure, Inc. (Amec), 2013: *Hydrogeologic Evaluation of Combustion Byproducts Landfill (CBL) Area Report, Fayette Power Project,* December 2013.

TABLE 1

Combustion Byproducts Landfill Groundwater Monitoring Well System January 2022 Potentiometric Surface Data

Fayette Power Project La Grange, Texas


Well ID	СВІ	₋ -340I	CBL	301I	CBL	3021	CBL	₋ -306I	СВІ	₋ -308I	CBL	-3411
Well Top of Casing Elevation	37	6.98	37	2.11	35	8.99	33	9.96	36	8.67	36	6.65
Date	DTW (ft btoc)	Elevation (ft NGVD)										
1/26/2022	NM	NM	35.65	336.46	NM	NM	NM	NM	NM	NM	NM	NM
1/27/2022	NM	NM	NM	NM	10.70	348.29	8.71	331.25	24.38	344.29	16.48	350.17
1/28/2022	24.68	352.30	NM	NM								

Notes:

NM = Not Measured

ft btoc = feet below top of casing

ft NGVD =feet above National Geodetic Vertical Datum

Bullock, Bennett & Associates, LLC

www.bbaengineering.com 165 N. Lampasas St. • Bertram, Texas 78605 • (512) 355-9198

Technical Memorandum

To: Rebecca D. Jones, P.G. Project No. 22482

Environmental Coordinator

Lower Colorado River Authority (LCRA)

From: Charlie Macon, P.G. Date: November 17, 2022

Subject: CCR GROUNDWATER DETECTION MONITORING PROGRAM

EVALUATION OF THIRD QUARTER 2022 POTENTIOMETRIC SURFACE

DATA COLLECTED FROM THE CBL

1.0 INTRODUCTION

This Technical Memorandum (Tech Memo) documents the evaluation of the Intermediate Sand groundwater bearing unit potentiometric surface data obtained during the Third Quarter-2022 Combustion Byproducts Landfill (CBL) Groundwater Monitoring Event. The groundwater monitoring is being performed as part of the CBL Groundwater Monitoring Program (GMP) in accordance with the Coal Combustion Residuals (CCR) regulations as codified in 40 Code of Federal Regulations (CFR) 257.93. The CBL is located at the Lower Colorado River Authority's (LCRA's) Fayette Power Project (FPP) facility near La Grange, Texas. This measurement of the potentiometric surface evaluation and determination of groundwater flow direction and flow rate is conducted for each groundwater monitoring event pursuant to the GMP requirements of 40 CFR 257.93(c) and 30 Tex. Admin. Code §352.931.

2.0 POTENTIOMETRIC SURFACE DATA COLLECTION, MAPPING, AND GRADIENT DETERMINATION

All groundwater monitoring and sampling activities were performed by an LCRA technician. Prior to conducting well purging and collection of groundwater samples for chemical analysis, the technician used an electronic well probe to determine depth to the Intermediate Sand groundwater surface below the surveyed top of monitoring well casing elevation. Table 1 presents the summary of groundwater measurements obtained from the CBL Groundwater Monitoring network in the Third Quarter–2022 event.

Based on the measured groundwater elevations, a potentiometric surface map was prepared to document the Third Quarter-2022 monitoring event (Figure 1). The map shows a groundwater potentiometric surface that is relatively consistent with those presented for all prior CBL GMP monitoring events. As illustrated by the map shown in Figure 1, the groundwater flow direction is to the south-southwest. The calculated gradient for the western portion of the CBL is 0.011 ft/ft. For the eastern portion of the CBL, a gradient of 0.028 ft/ft was calculated.

Ms. Rebecca D. Jones, P.G. LCRA November 17, 2022 Page 2

3.0 GROUNDWATER FLOW RATE CALCULATION

Groundwater flow rate was calculated along two transects, one along the western area having the lower gradient, and one along the eastern area having the higher gradient. As documented in the CBL Hydrogeology Report (Amec, 2013), a hydraulic conductivity value (K) of 6.3 x 10⁻⁴ centimeters per second (cm/sec) has been estimated for the Intermediate Sand. The hydraulic conductivity value is based on the rising-head slug test data obtained from monitoring well CBL-302I. Consistent with past evaluations of the Intermediate Sand, this hydraulic conductivity value was utilized for the Third Quarter-2022 event to calculate the groundwater flow rate. Also consistent with past evaluations, an assumed porosity value of 0.30 was utilized based on the dominant aquifer lithology (clayey sands and silty sands).

Given the constants $K = 6.3 \times 10^{-4} \text{ cm/sec}$ (= 648.9 feet/year) and Porosity = 0.30, the following groundwater flow velocities are calculated:

Eastern Transect (gradient of 0.028 ft/ft): 61 ft/yr (rounded) Western Transect (gradient of 0.011 ft/ft): 24 ft/yr (rounded)

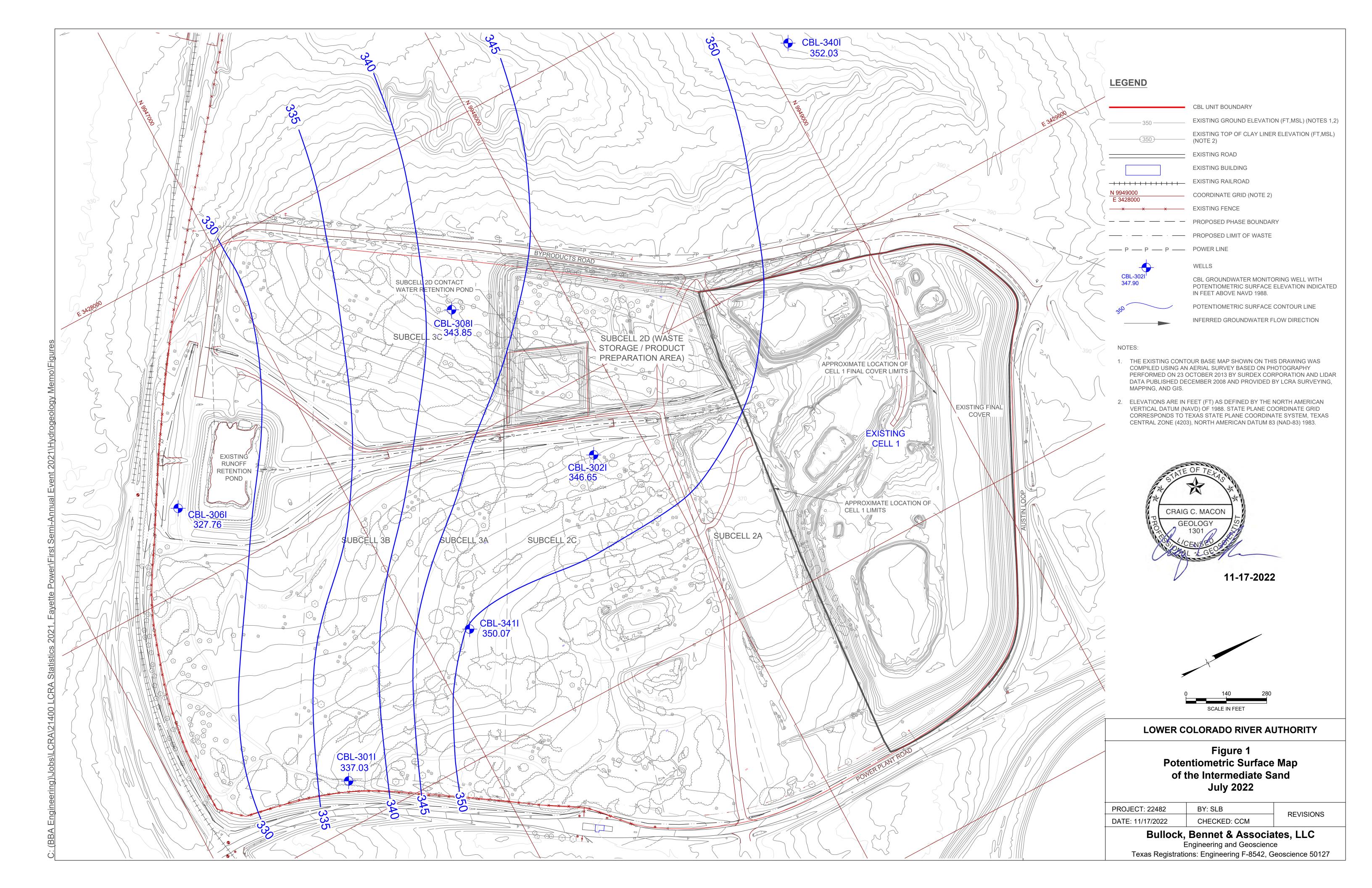
4.0 REFERENCES

Amec Environment & Infrastructure, Inc. (Amec), 2013: *Hydrogeologic Evaluation of Combustion Byproducts Landfill (CBL) Area Report, Fayette Power Project,* December 2013.

TABLE 1

Combustion Byproducts Landfill Groundwater Monitoring Well System July 2022 Potentiometric Surface Data

Fayette Power Project La Grange, Texas


Well ID	CBL	-3401	CBI	-3011	CBL	-3021	СВІ	306I	СВІ	₋ -308I	СВІ	341I
Well Top of Casing Elevation	37	6.98	37	2.11	35	8.99	33	9.96	36	8.67	36	6.65
Date	DTW (ft btoc)	Elevation (ft NGVD)										
7/27/2022	NM	NM	35.08	337.03	NM	NM	NM	NM	24.82	343.85	NM	NM
7/28/2022	<i>'</i> '		NM	NM	12.34	346.65	12.20	327.76	NM	NM	16.58	350.07

Notes:

NM = Not Measured

ft btoc = feet below top of casing

ft NGVD =feet above National Geodetic Vertical Datum

APPENDIX B

Results of the Groundwater Statistics for the Lower Colorado River Authority
First Semi-Annual Monitoring Event in 2022
Otter Creek Environmental Services, LLC
May 2022

Results of the Groundwater Statistics for Lower Colorado River Authority Fayette Power Project

First Semi-Annual Monitoring Event in 2022

Prepared for:
Lower Colorado River Authority (LCRA)
Fayette Power Project

Fayette Power Project LaGrange, TX

Prepared by:
Jeffrey A. Holmgren
Otter Creek Environmental Services, L.L.C.
40W565 Foxwick Court
Elgin, IL 60124
(847) 464-1355

May 2022

INTRODUCTION

This report contains the results of the statistical analyses used to evaluate the groundwater data obtained during the first semi-annual monitoring event in 2022 at the Lower Colorado River Authority (LCRA) Fayette Power Project (FPP) Combustion Byproducts Landfill (CBL), the Coal Combustion Residuals (CCR) unit addressed in this report. The groundwater at the FPP is monitored by wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, CBL-340I, and CBL-341I.

Statistical comparisons and evaluation for statistically significant increases (SSIs) are conducted on all wells with the exception of former background (side-gradient) monitoring well CBL-340I. Based on the Alternative Source Determination (ASD) study conducted in 2018, the identification of natural aquifer heterogeneity resulted in determination that CBL-340I could not be used to reliably characterize the background geochemistry of the groundwater flowing beneath the CCR unit. As such, intrawell analysis of wells potentially affected by CCR operation was selected at that time, and the need for use of CBL-340I geochemical data was negated. A Groundwater Monitoring System Addendum Certification was prepared in 2018, documenting the transition from former interwell analysis to intrawell analysis.

The statistical plan is designed to detect a release from the facility at the earliest indication. An intrawell methodology is described and then applied to the FPP data. The statistical method conforms with the Coal Combustion Residual (CCR) rule (40 CFR 257), USEPA Guidance document ("Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Unified Guidance", March 2009), and the American Society for Testing and Materials (ASTM) standard D6312-98, Developing Appropriate Statistical Approaches for Ground-Water Detection Monitoring Programs. The intrawell statistical evaluations were completed within 90 days of receipt of laboratory data.

Groundwater Monitoring Program

The groundwater monitoring program (GMP) network for FPP consists of monitoring wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, CBL-340I, and CBL-341I. Each of the groundwater monitoring wells is to be sampled at least semiannually and analyzed for the detection monitoring parameters listed in Appendix III of 40 CFR Part 257, as follows:

Boron
Calcium
Chloride
Fluoride
pH
Sulfate
Total Dissolved Solids

Statistical analysis is conducted on data from all GMP wells with the exception of CBL-340I, as described above. The groundwater data obtained for statistical evaluation during the first semi-annual monitoring event in 2022 are summarized in Attachment A. Historical Appendix III data is summarized in Attachment B.

LCRAFayette2022s1- Final.docx May 2022

STATISTICAL METHODOLOGIES FOR DETECTION MONITORING

The CCR rule for statistical analysis provides several options for evaluating the groundwater data [40 CFR 257.93(f)]. As referenced in Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (EPA 530/R-09-007), the preferred methods for comparing groundwater data are using either prediction limits or using control charts. The control chart procedure offers an advantage over the prediction limits procedure as more data is generated over time, because they generate a graph of compliance data over time and allow for better identification of long-term trends.

An intrawell control chart method was applied to the FPP 2022 Q1 data using the DUMPStat® statistical program. DUMPStat® is a program for the statistical analysis of groundwater monitoring data using methods described in "Statistical Methods for Groundwater Monitoring" by Dr. Robert D. Gibbons. Groundwater statistics are conducted on the Appendix III constituents listed above.

Intrawell statistics

Intrawell statistics compare new measurements to the historical data at each groundwater monitoring well independently. The Unified Guidance-recommended technique for intrawell comparisons is the combined Shewhart-CUSUM control chart. This control chart procedure is useful because it will detect changes in analyte concentrations both in terms of constituent concentration and cumulative concentration increases. This method is also extremely sensitive to sudden and gradual releases. A requirement for constructing these control charts is that the parameter is detected at a frequency greater than or equal to 25%, otherwise the data variance is not properly defined.

The combined Shewhart-CUSUM control chart assumes that the data are independent and normally distributed with a fixed mean and a constant variance. Independent data is much more critical than the normality assumption. To achieve independence, it is recommended that data are collected no more frequently than quarterly to account for seasonal variation. The combined Shewhart-CUSUM control chart is robust to deviations from normality. Because the control charts do not use a specific multiplier based on a normal distribution, it is more conservative to assume normality.

Some groundwater monitoring parameters are not detected at a frequency great enough to generate the combined Shewhart-CUSUM control charts. For constituents that are detected less than 25% of the time at a particular well, the data are plotted as a time series until a sufficient number of data points are available to provide a 99% confidence nonparametric prediction limit. Thirteen independent measurements (with 1 resample) are necessary to achieve a 99% confidence (1% false positive rate) nonparametric prediction limit. Eight independent measurements (for pass 1 of 2 resamples) are necessary to achieve a 99% confidence nonparametric prediction limit. The nonparametric prediction limit is the largest determination out of the data set collected for that well and parameter. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

LCRAFayette2022s1-Final.docx May 2022

In developing the statistical background, the historical data must be thoroughly screened for anomalous data due to sampling error, analytical error, or simply by chance alone. An erroneous data point, if not removed prior to the mean and variance computations, would yield a larger control limit thus increasing the false negative rate. The DUMPStat® program screens for outliers using the Dixon test. If the Dixon test indicates an outlier, the value is compared to three times the median value for intrawell analyses. If the value fails both criteria of the two-stage screening, the value is considered a statistical outlier and will not be used in the mean and variance determinations. Anomalous data will still be plotted on the graphs (with a unique symbol) but will not be included in the calculations.

The verification resample plan is an integral function of the statistical plan to reduce the probability that anomalous data obtained after the background has been established, is indicative of a landfill release. Should an indication of an SSI be identified, the resampling plan is implemented by the operator to collect a verification sample within 60 days of identification.

Results of the Intrawell Statistics

The Appendix III parameter data from wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I were evaluated using the combined Shewhart-CUSUM control chart method.

The initial background was established with the ProUCL software using data obtained in 2016 and 2017. Initial exceedances for boron at CBL-301I and boron at CBL-341I were reported following the second semi-annual monitoring in 2020. Since the boron concentrations determined subsequently in January 2021 at CBL-301I (<0.050 mg/L) and CBL-341I (<0.050 mg/L) do not exceed the baseline threshold values (BTV), the previous exceedances are not statistically significant. BTV will be analogous to control limits in this report and future reports.

As groundwater monitoring at a CCR facility proceeds, it is recommended to update monitoring well background data sets periodically with valid detection monitoring results that are representative of background groundwater quality. Failure to update background data sets will exclude factors such as natural temporal variation, changes in field or laboratory methodologies, and changes in the water table due to meteorological conditions or other influences. Since there were no exceedances attributed to the unit, the background data in this evaluation includes historical data obtained from 2016 through 2020 for wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I.

A summary of the intrawell statistics is included in Attachment C, Table 1 "Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts." The control charts or time series graphs follow the summary table. For the parameters evaluated, there were no control limit exceedances detected.

A slight increasing trend was detected in the background data for sulfate at CBL-302I.

A control chart factor was selected to provide a balance of the site-wide false positive and false negative rates. A statistical power curve indicates the expected false assessments for the site as a whole. The site-wide false positive rate is 5% and the test becomes sensitive to 3 standard deviation units over background.

LCRAFayette2022s1- Final.docx May 2022

CONCLUSIONS

This document describes a comprehensive statistical plan designated for the FPP. The groundwater monitoring network for FPP, utilized for statistical evaluation, consists of monitoring wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I. Each of the groundwater monitoring wells is sampled and analyzed for the detection monitoring parameters listed in Appendix III of 40 CFR Part 257. The current groundwater data was compared to background using intrawell control charts. Using intrawell comparisons, there were no control limit exceedances detected.

LCRAFayette2022s1-Final.docx May 2022

Attachment A

Groundwater Data obtained during the First Semi-Annual Monitoring Event in 2022

LCRAFayette2022s1-ccm.docx May 2022

Table 1

Analytical Data Summary for 1/26/2022 to 1/28/2022

Constituents	Units	CBL-301I	CBL-302I	CBL-306I	CBL-308I	CBL-341I
Boron, Total	mg/L	<.0500	<.0500	.0548	<.0500	<.0500
Calcium, Total	mg/L	999	754	212	974	1040
Chloride	mg/L	2440	1310	384	2020	1810
Fluoride	mg/L	<.05	<.05	2.99	1.75	<.05
pH	S.Ŭ.	6.27	6.32	6.87	6.36	6.26
Sulfate	mg/L	406	1340	510	1310	320
Total Dissolved Solids	mg/L	4700	4510	1730	5320	3800

Attachment B

Historical Appendix III Groundwater Data

LCRAFayette2022s1-ccm.docx May 2022

Table 1

Analytical Data Summary for CBL-301I

Constituents	Units	1/21/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/18/2017	7/26/2017	2/8/2018	7/25/2018	1/17/2019	5/2/2019	7/31/2019
Boron, Total	mg/L	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	.0707	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	905	949	925	978	1000	1030	1060	961	873	993	156	762	783
Chloride	mg/L	2300	2160	2290	2250	3200	2390	2420	2500	2480	1330	619	1910	2240
Fluoride	mg/L	<.250	<.500	<.500	<.250	.312	<.500	<.500	<.500	<.500	<.500	.219	.112	.051
pH	S.Ŭ.	6.33	6.26	5.95	6.23	6.26	6.31	5.95	6.02	6.17	6.04	7.16	6.14	6.19
Sulfate	mg/L	336	311	336	326	488	337	342	381	344	196	104	398	332
Total Dissolved Solids	mg/L	4380	5050	6020	4570	6140	6570	6430	4290	5120	5390	1460	5650	6040

Table 1

Analytical Data Summary for CBL-301I

Constituents	1/28/2020	9/17/2020	1/26/2021	7/20/2021	9/7/2021	1/26/2022
Boron, Total	<.0500	.0801	<.0500	.0826	<.0500	<.0500
Calcium, Total	851	1060	1130	1100		999
Chloride	2360	2270	2420	2590		2440
Fluoride	.130	<.250	<.500	2.680	<.500	<.050
pH	6.26	6.13	6.06	6.13	6.14	6.27
Sulfate	349	350	374	419		406
Total Dissolved Solids	4790	6340	6060	5870		4700

Table 2

Analytical Data Summary for CBL-302I

Constituents	Units	1/22/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/16/2017	7/27/2017	2/8/2018	7/27/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.1560	<.0500	.2970	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	1030	1010	1030	1070	1100	1090	1100	1040	934	995	855	914	838
Chloride	mg/L	2190	2130	2210	2170	2080	2050	2230	2040	2080	1980	1960	1540	1540
Fluoride	mg/L	<.2500	<.5000	<.5000	<.2500	.3320	<.5000	<.5000	<.5000	.1120	<.5000	.0402	.0605	.1930
pH	S.Ū.	6.29	6.01	5.17	7.75	5.36	5.40	4.94	6.20	6.21	5.77	6.44	6.15	6.34
Sulfate	mg/L	1020	993	1090	1180	1150	1120	1230	1180	1240	1390	1250	1260	1350
Total Dissolved Solids	mg/L	5500	5390	6850	4210	6430	6460	5860	5120	6010	5510	5060	4190	4790

Table 2

Analytical Data Summary for CBL-302I

Constituents	9/17/2020	1/28/2021	7/21/2021	9/7/2021	1/27/2022
Boron, Total	<.0500	<.0500	.0743		<.0500
Calcium, Total	853	1020	844		754
Chloride	1410	1370	1380		1310
Fluoride	<.2500	<.5000	2.2500	<.2500	<.0500
pH	6.20	6.21	6.06	6.28	6.32
Sulfate	1280	1290	1350		1340
Total Dissolved Solids	4990	4800	4810		4510

Table 3

Analytical Data Summary for CBL-306I

Constituents	Units	1/21/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/18/2017	7/27/2017	2/8/2018	7/27/2018	1/16/2019	7/31/2019	8/23/2019
Boron, Total	mg/L	<.0500	.0717	.0998	.0556	<.0500	.1240	.0832	.0531	<.0500	<.0500	<.0500	.0824	.0500
Calcium, Total	mg/L	137			198	174	204	205	234	230	275	180	106	226
Chloride	mg/L	155	20		330	197	231	289	350	385	283	215	538	318
Fluoride	mg/L	2.50	1.00	1.37	2.38	1.85	12.60	2.20	2.91	2.81	2.95	1.98	9.26	2.66
pH	S.Ū.	7.09	6.69	6.95	6.72	7.29	4.41	5.61	6.94	6.67	6.86	6.78	6.92	6.83
Sulfate	mg/L	266.0	29.5	139.0	432.0	270.0	340.0	412.0	513.0	493.0	406.0	292.0	816.0	387.0
Total Dissolved Solids	mg/L	1280	431	790	1150	1320	1460	1440	1280	1760	1450	1220	676	1710

Table 3

Analytical Data Summary for CBL-306I

Constituents	1/29/2020	9/19/2020	1/28/2021	7/21/2021	1/27/2022
Boron, Total	<.0500	.0773	<.0500	.0927	.0548
Calcium, Total	247	260	257	216	212
Chloride	445	420	292	255	384
Fluoride	2.83	2.72	2.90	2.42	2.99
pH	6.70	7.16	6.84	6.55	6.87
Sulfate	561.0	506.0	388.0	336.0	510.0
Total Dissolved Solids	1830	1730	1420	1320	1730

Table 4

Analytical Data Summary for CBL-308I

Constituents	Units	1/22/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/16/2017	7/26/2017	2/6/2018	7/25/2018	1/18/2019	7/31/2019	1/29/2020
Boron, Total	mg/L	<.0500	.1210	.1860	.2560	<.0500	.5450	.1090	.0799	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	903	870	911	939	919	947	954	878	859	863	760	840	745
Chloride	mg/L	2760	2580	2680	2870	2360	2530	2740	2760	2750	2680	2240	2290	2110
Fluoride	mg/L	1.49	2.30	1.64	1.59	1.33	9.05	1.70	1.90	1.76	2.10	1.68	1.62	1.60
pH	S.Ū.	6.36	6.13	5.95	6.27	6.83	6.27	5.54	6.27	6.26	6.07	6.39	6.25	6.37
Sulfate	mg/L	1490	1410	1490	1550	1320	1470	1580	1550	1570	1540	1520	1420	1340
Total Dissolved Solids	mg/L	6820	6120	7890	10200	9620	7260	6590	6480	6200	6320	4760	5820	5980

Table 4

Analytical Data Summary for CBL-308I

Constituents	9/18/2020	1/28/2021	7/21/2021	1/27/2022
Boron, Total	.1030	<.0500	.1300	<.0500
Calcium, Total	838	830	684	974
Chloride	2410	2200	1780	2020
Fluoride	1.33	1.44	1.74	1.75
pH	6.22	6.26	6.16	6.36
Sulfate	1310	1340	1240	1310
Total Dissolved Solids	6860	6190	5270	5320

Table 5

Analytical Data Summary for CBL-341I

Constituents	Units	1/23/2017	2/23/2017	3/22/2017	4/20/2017	5/16/2017	6/20/2017	7/27/2017	2/8/2018	8/24/2018	1/22/2019	7/31/2019	1/30/2020	9/17/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.0587	.0896	.0668	.0507	<.0500	<.0500	<.0500	<.0500	<.0500	.1020
Calcium, Total	mg/L	854	870	906	898	860	950	829	810	824	782	714	767	814
Chloride	mg/L	1600	2000	1780	1770	1900	1820	1970	2110	1910	1790	1650	1780	1700
Fluoride	mg/L	.5300	<.5000	<.5000	<.5000	<.5000	.3350	.0550	.1060	.1140	.0546	.1000	.1530	<.2500
pH	S.Ŭ.	5.74		5.72	5.73	5.54	6.19	6.21	6.18	5.82	6.38	6.23	6.27	6.14
Sulfate	mg/L	307	404	346	336	369	363	419	383	376	358	329	351	336
Total Dissolved Solids	mg/L	5000	4520	5110	4240	4840	5940	4150	4320	4800	3870	5370	4900	4930

Table 5

Analytical Data Summary for CBL-341I

Constituents	1/27/2021	7/22/2021	9/7/2021	1/27/2022
Boron, Total	<.0500	.1110		<.0500
Calcium, Total	874	852		1040
Chloride	1800	1750		1810
Fluoride	<.5000	1.1600	<.2500	<.0500
pH	6.06	5.98	6.18	6.26
Sulfate	324	316		320
Total Dissolved Solids	3940	4520		3800

Attachment C

Summary Tables and Graphs for the Intrawell Comparisons

LCRAFayette2022s1-ccm.docx May 2022

Table 1
Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Type	Conf	
Boron, Total	mg/L	CBL-301I	15	4	19			0.0500	0.0500			0.0801		.99	**
Boron, Total	mg/L	CBL-302I	14	3	17			0.0743	0.0500			0.2970	nonpar	.99	**
Boron, Total	mg/L	CBL-306I	15	3	18	0.0665	0.0228	0.0927	0.0548	0.0756	0.0665	0.1806	normal		
Boron, Total	mg/L	CBL-308I	14	3	17	0.1250	0.1357	0.1300	0.0500	0.1250	0.1250	0.8036	normal		
Boron, Total	mg/L	CBL-341I	13	3	16	0.0591	0.0172	0.1110	0.0500	0.0981	0.0591	0.1452	normal		
Calcium, Total	mg/L	CBL-301I	14	3	18	937.8571	94.2189	1100.0000	999.0000	1150.8144	1141.2931	1408.9518	normal		
Calcium, Total	mg/L	CBL-302I	14	3	17	989.9286	94.3541	844.0000	754.0000	989.9286	989.9286	1461.6988	normal		
Calcium, Total	mg/L	CBL-306I	13	3	18	205.8462	47.9997	216.0000	212.0000	205.8462	205.8462	445.8448	normal		
Calcium, Total	mg/L	CBL-308I	14	3	17	873.2857	63.6389	684.0000	974.0000	873.2857	926.2708	1191.4803	normal		
Calcium, Total	mg/L	CBL-341I	13	3	16	836.7692	63.0491	852.0000	1040.0000	836.7692	992.7132		normal		
Chloride	mg/L	CBL-301I	14	3	18	2292.8571	394.9183	2590.0000	2440.0000	2293.8113	2292.8571	4267.4485	normal		
Chloride	mg/L	CBL-302I	14	3	17	1972.1429	271.4967	1380.0000	1310.0000	1972.1429	1972.1429		normal		
Chloride	mg/L	CBL-306I	13	3	18	319.6923	108.7837	255.0000	384.0000	319.6923	319.6923	863.6109	normal		
Chloride	mg/L	CBL-308I	14	3	17	2554.2857	234.4458	1780.0000	2020.0000	2554.2857	2554.2857	3726.5147	normal		
Chloride	mg/L	CBL-341I	13	3	16	1829.2308	144.5373	1750.0000	1810.0000	1829.2308	1829.2308	2551.9172	normal		
Fluoride	mg/L	CBL-301I	15	4	19	0.3883	0.1724	0.5000	0.0500	0.3883	0.3883	1.2502	normal		
Fluoride	mg/L	CBL-302I	14	4	18	0.3741	0.1872	0.2500	0.0500	0.3741	0.3741		normal		
Fluoride	mg/L	CBL-306I	13	3	18	2.3200	0.6159	2.4200	2.9900	2.3200	2.5280	5.3997	normal		
Fluoride	mg/L	CBL-308I	13	3	17	1.6954	0.2759	1.7400	1.7500	1.6954	1.6954	3.0751			
Fluoride	mg/L	CBL-341I	13	4	17	0.3037	0.2058	0.2500	0.0500	0.5477	0.3037	1.3325	normal		
pH	S.U.	CBL-301I	15	4	19	6.2267	0.2859	6.1400	6.2700	6.2267	6.2267		normal		
pH	S.U.	CBL-302I	14	4	18	6.0164	0.6925	6.2800	6.3200	6.0164	6.0164		normal		
pH	S.U.	CBL-306I	15	3	18	6.6413	0.7227	6.5500	6.8700	6.6413	6.6413		normal		
pH	S.U.	CBL-308I	14	3	17	6.2271	0.2799	6.1600	6.3600	6.2271	6.2271		normal		
pH	S.U.	CBL-341I	12	4	17	6.0125	0.2802	6.1800	6.2600	6.0125	6.0499		normal		
Sulfate	mg/L	CBL-301I	14	3	18	344.7143	61.2164	419.0000	406.0000	373.0877	388.4611		normal		
Sulfate	mg/L	CBL-302I	14	3	17	1195.2143	114.4648	1350.0000	1340.0000	1273.0886	1332.0257	1767.5381	normal		
Sulfate	mg/L	CBL-306I	14	3	18	416.6429	163.4642	336.0000	510.0000	416.6429	416.6429	1233.9640	normal		
Sulfate	mg/L	CBL-308I	14	3	17	1468.5714	93.7146	1240.0000	1310.0000	1468.5714	1468.5714		normal		
Sulfate	mg/L	CBL-341I	13	3	16	359.7692	30.9493	316.0000	320.0000	359.7692	359.7692		normal		
Total Dissolved Solids	mg/L	CBL-301I	14	3	18	5484.2857	791.9083	5870.0000	4700.0000	5484.2857	5484.2857		normal		
Total Dissolved Solids	mg/L	CBL-302I	14	3	17	5455.0000	806.9387	4810.0000	4510.0000	5455.0000	5455.0000	9489.6933	normal		
Total Dissolved Solids	mg/L	CBL-306I	15	3	18	1301.8000	409.5196	1320.0000	1730.0000	1301.8000	1422.8603	3349.3981	normal		
Total Dissolved Solids	mg/L	CBL-308I	14	3	17	6922.8571	1459.6756	5270.0000	5320.0000	6922.8571	6922.8571	14221.2350	normal		
Total Dissolved Solids	mg/L	CBL-341I	13	3	16	4768.4615	554.2239	4520.0000	3800.0000	4768.4615	4768.4615	7539.5809	normal		

N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods.

N(tot) = All independent measurements for that constituent and well.

For transformed data, mean and SD in transformed units and control limit in original units.

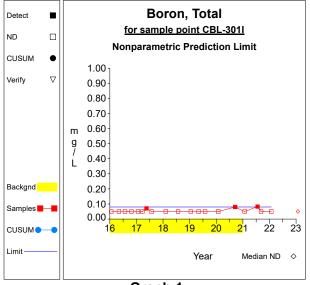
Conf = confidence level for passing initial test or one verification resample (nonparametric test only).

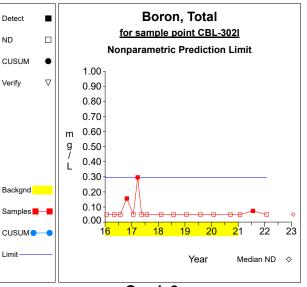
^{* -} Insufficient Data.

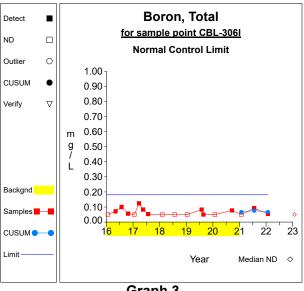
^{** -} Detection Frequency < 25%.

^{*** -} Zero Variance.

Table 4

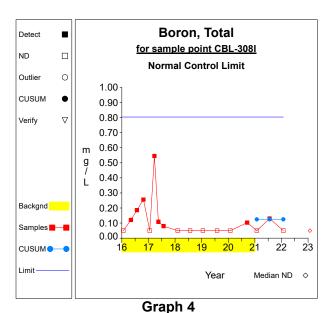

Dixon's Test Outliers 1% Significance Level

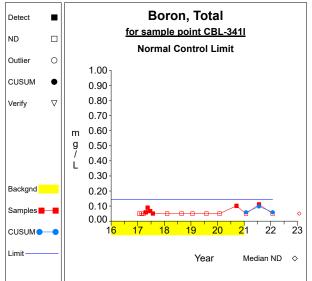

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value
Calcium, Total	mg/L	CBL-301I	01/17/2019	156.0000		01/21/2016-09/17/2020	15	0.6177
Chloride	mg/L	CBL-301I	01/17/2019	619.0000		01/21/2016-09/17/2020	15	0.6177
Chloride	mg/L	CBL-306I	05/04/2016	20.0000		01/21/2016-09/19/2020	14	0.6403
Fluoride	mg/L	CBL-306I	03/22/2017	12.6000		01/21/2016-09/19/2020	15	0.6403
Fluoride	mg/L	CBL-306I	07/31/2019	9.2600		01/21/2016-09/19/2020	15	0.6403
Fluoride	mg/L	CBL-308I	03/22/2017	9.0500		01/22/2016-09/18/2020	14	0.6403
Sulfate	mg/L	CBL-301I	01/17/2019	104.0000		01/21/2016-09/17/2020	15	0.6177
Sulfate	mg/L	CBL-306I	05/04/2016	29.5000		01/21/2016-09/19/2020	15	0.6177
Total Dissolved Solids	mg/L	CBL-301I	01/17/2019	1460.0000		01/21/2016-09/17/2020	15	0.6177

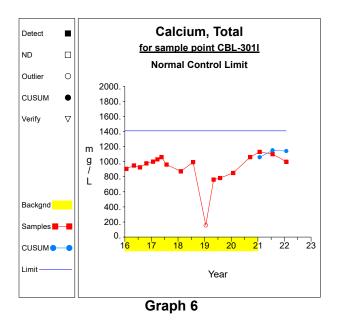

N = Total number of independent measurements in background at each well.

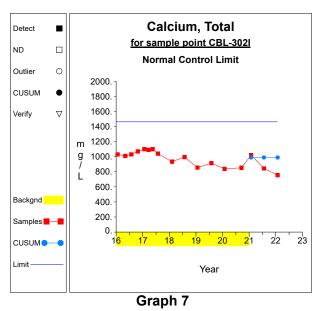
Date Range = Dates of the first and last measurements included in background at each well.

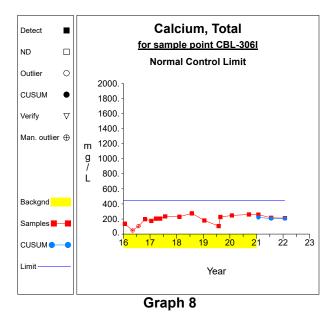
Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

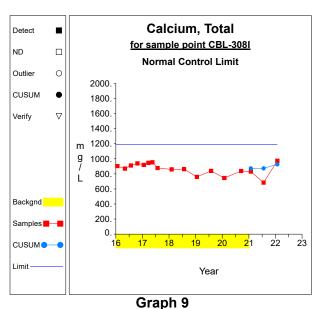


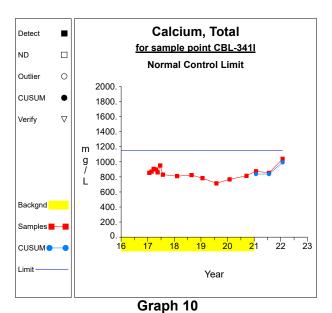


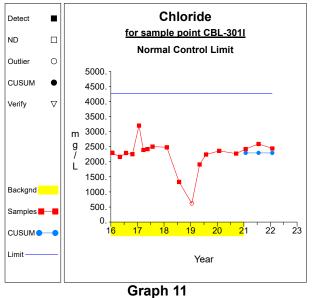

Graph 1

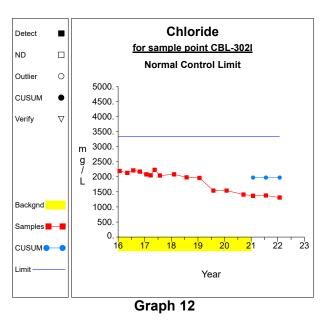

Graph 2

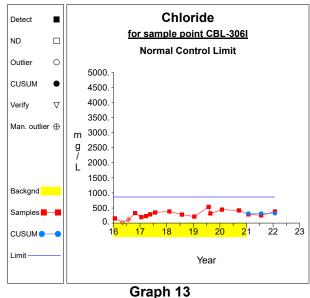

Graph 3

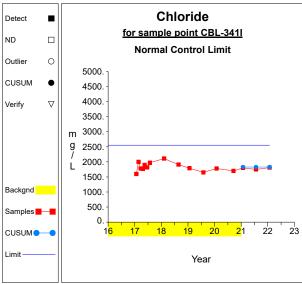


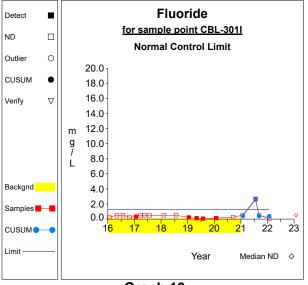


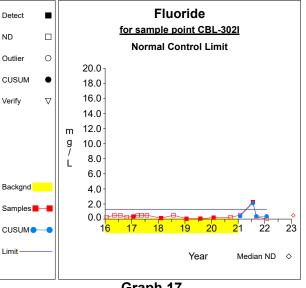


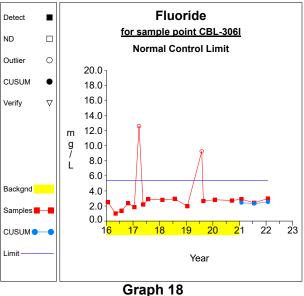






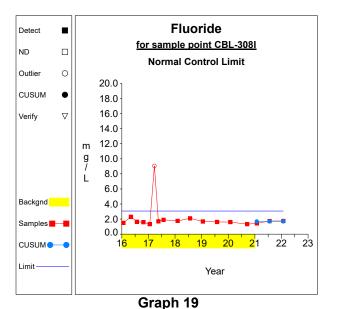


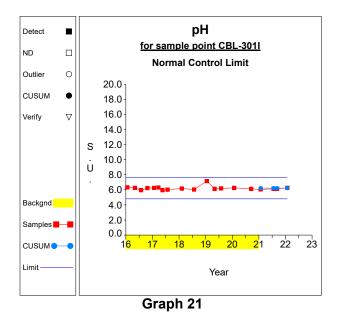

Graph 11

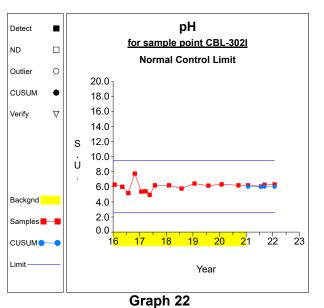


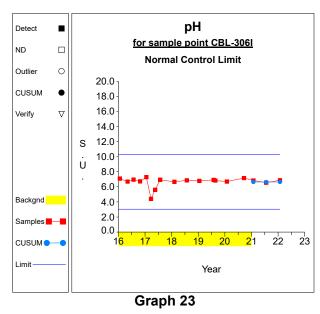
Graph 14

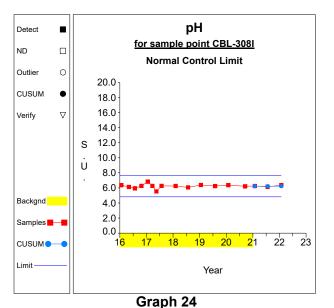
Graph 15

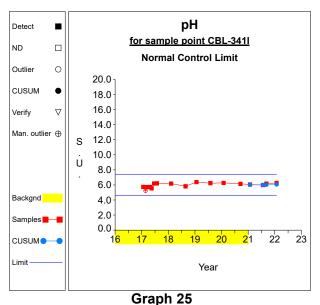


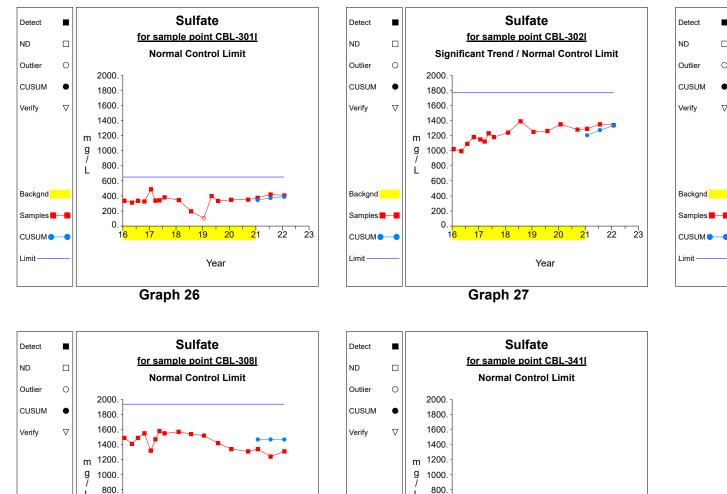

Graph 16


Graph 17






Graph 20



600.

400.

200.

Year

Graph 30

Backgnd

Samples -

CUSUM •

Limit-

600.

400.

200.

17 18

Graph 29

Year

Backgnd

Samples -

CUSUM

Limit

ND

Outlier

CUSUM

Samples --

Limit

Verify

0

 ∇

2000.

1800.

1600.

1400. m 1200.

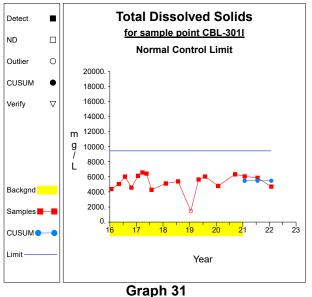
1000

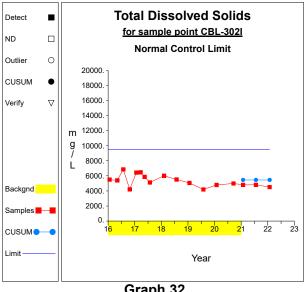
800.

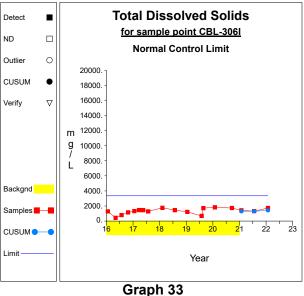
600.

400.

200.

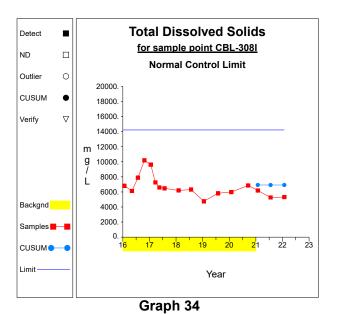

Sulfate

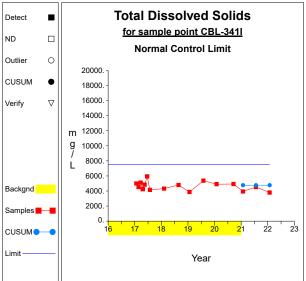

for sample point CBL-306I

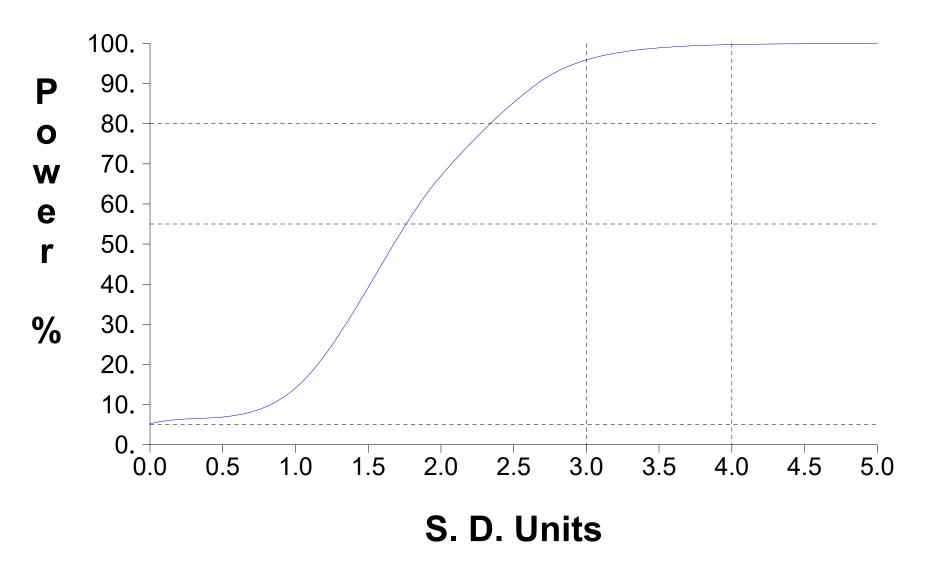

Normal Control Limit

Year

Graph 28







Graph 32

False Positive and False Negative Rates for Current Intra-Well Control Charts Monitoring Program

APPENDIX C

Results of the Groundwater Statistics for the Lower Colorado River Authority Second Semi-Annual Monitoring Event in 2022 Otter Creek Environmental Services, LLC November 2022

Results of the Ground Water Statistics for Lower Colorado River Authority Fayette Power Project

Second Semi-Annual Monitoring Event in 2022

Prepared for:
Lower Colorado River Authority (LCRA)
Fayette Power Project

Fayette Power Projec LaGrange, TX

Prepared by:
Jeffrey A. Holmgren
Otter Creek Environmental Services, L.L.C.
40W565 Foxwick Court
Elgin, IL 60124
(847) 464-1355

November 2022

INTRODUCTION

This report contains the results of the statistical analyses used to evaluate the groundwater data obtained during the second semi-annual monitoring event in 2022 at the Lower Colorado River Authority (LCRA) Fayette Power Project (FPP) Combustion Byproducts Landfill (CBL), the Coal Combustion Residuals (CCR) unit addressed in this report. The groundwater at the FPP is monitored by wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, CBL-340I, and CBL-341I.

Statistical comparisons and evaluation for statistically significant increases (SSIs) are conducted on all wells with the exception of former background (side-gradient) monitoring well CBL-340I. Based on the Alternative Source Determination (ASD) study conducted in 2018, the identification of natural aquifer heterogeneity resulted in determination that CBL-340I could not be used to reliably characterize the background geochemistry of the groundwater flowing beneath the CCR unit. As such, intrawell analysis of wells potentially affected by CCR operation was selected at that time, and the need for use of CBL-340I geochemical data was negated. A Groundwater Monitoring System Addendum Certification was prepared in 2018, documenting the transition from former interwell analysis to intrawell analysis.

The statistical plan is designed to detect a release from the facility at the earliest indication. An intrawell methodology is described and then applied to the FPP data. The statistical method conforms with the Coal Combustion Residual (CCR) rule (40 CFR Part 257), USEPA Guidance document (*Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Unified Guidance, March 2009*), and the American Society for Testing and Materials (ASTM) standard D6312-98, *Developing Appropriate Statistical Approaches for Ground-Water Detection Monitoring Programs*. The intrawell statistical evaluations were completed within 90 days of receipt of laboratory data.

Ground Water Monitoring Program

The groundwater monitoring network for FPP includes background well CBL-340I and downgradient wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I. Each of the groundwater monitoring wells is to be sampled at least semiannually and analyzed for the detection monitoring parameters listed in Appendix III of 40 CFR Part 257, as follows:

Boron Calcium Chloride Fluoride pH Sulfate Total Dissolved Solids

Statistical analysis is conducted on data from all Groundwater Monitoring Plan (GMP) wells with the exception of CBL-340I, as described above. The groundwater data obtained for statistical evaluation during the second semi-annual monitoring event in 2022 are summarized in Attachment A. Historical Appendix III data is summarized in Attachment B.

STATISTICAL METHODOLOGIES FOR DETECTION MONITORING

The CCR rule for statistical analysis provides several options for evaluating the ground water data [40 CFR 257.93(f)]. As referenced in Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (EPA 530/R-09-007), the preferred methods for comparing ground water data are using either prediction limits or using control charts. The control chart procedure offers an advantage over the prediction limits procedure as more data is generated over time, because the control chart procedure generates a graph of compliance data over time and allows for better identification of long-term trends.

An intrawell control chart method was applied to the FPP 2022 second semiannual data using the DUMPStat® statistical program. DUMPStat® is a program for the statistical analysis of groundwater monitoring data using methods described in "Statistical Methods for Groundwater Monitoring" by Dr. Robert D. Gibbons. Groundwater statistical analysis was conducted on the Appendix III constituents listed above.

Intrawell statistics

Intrawell statistics compare new measurements to the historical data at each groundwater monitoring well independently. The Unified Guidance-recommended technique for intrawell comparisons is the combined Shewhart-CUSUM control chart. This control chart procedure detects changes in analyte concentrations both in terms of constituent concentration and cumulative concentration increases. This method is also extremely sensitive to sudden and gradual releases. A requirement for constructing these control charts is that the parameter is detected at a frequency greater than or equal to 25%, otherwise the data variance is not properly defined (ASTM D 6312-98 Standard Guide for Developing Appropriate Statistical Approaches for Ground-Water Detection Monitoring Programs).

The combined Shewhart-CUSUM control chart assumes that the data are independent and normally distributed with a fixed mean and a constant variance. Independent data is much more critical than the normality assumption. To achieve independence, it is recommended that data are collected no more frequently than quarterly to account for seasonal variation. The combined Shewhart-CUSUM control chart is robust to deviations from normality. Because the control charts do not use a specific multiplier based on a normal distribution, it is more conservative to assume normality.

Some groundwater monitoring parameters are not detected at a frequency great enough to generate the combined Shewhart-CUSUM control charts. For constituents that are detected less than 25% of the time at a particular well, the data are plotted as a time series until a sufficient number of data points are available to provide a 99% confidence nonparametric prediction limit. Thirteen independent measurements (with 1 resample) are necessary to achieve a 99% confidence (1% false positive rate) nonparametric prediction limit. Eight independent measurements (for pass 1 of 2 resamples) are necessary to achieve a 99% confidence nonparametric prediction limit. The nonparametric prediction limit is the largest determination out of the data set collected for that well and parameter. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

In developing the statistical background, the historical data must be thoroughly screened for anomalous data due to sample collection error or laboratory analysis error. An erroneous data point, if not removed prior to the mean and variance computations, would yield a larger control limit thus increasing the false negative rate. The DUMPStat® program screens for outliers using the Dixon test. If the Dixon test indicates an outlier, the value is compared to three times the median value for intrawell analyses. If the value fails both criteria of the two-stage screening, the value is considered a statistical outlier and will not be used in the mean and variance determinations. Anomalous data will still be plotted on the graphs (with a unique symbol) but will not be included in the calculations.

The verification resample plan is an integral function of the statistical plan to reduce the probability that anomalous data obtained after the background has been established is indicative of a landfill release. Should an indication of an SSI be identified, the resampling plan is implemented by the operator to collect a verification sample.

The background data for each well and constituent is tested for existing trends using Sen's nonparametric estimate of trend.

Results of the Intrawell Statistics

The Appendix III parameter data from wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I were evaluated using the combined Shewhart-CUSUM control chart method.

The initial background was established with the ProUCL software using data obtained in 2016 and 2017. Initial exceedances for boron at CBL-301I and boron at CBL-341I were reported following the second semi-annual monitoring in 2020. Since the boron concentrations determined subsequently in January 2021 at CBL-301I (<0.050 mg/L) and CBL-341I (<0.050 mg/L) do not exceed the baseline threshold values (BTV), the previous exceedances are not statistically significant. BTV will be analogous to control limits in this report and future reports.

Monitoring well background data sets must be periodically updated with valid detection monitoring results that are representative of background groundwater quality. Failure to update background data sets will exclude factors such as natural temporal variation, changes in field or laboratory methodologies, and changes in the water table due to meteorological conditions or other influences. Since there were no exceedances attributed to the unit, the background data in this evaluation includes historical data obtained from 2016 through 2020 for wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I.

A summary of the intrawell statistics is included in Attachment C, Table 1 "Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts." The control charts or time series graphs follow the summary table.

For the parameters evaluated, there was a control limit exceedance detected for boron at CBL-301I for the second semi-annual monitoring event for 2022. The initial sample analysis of boron concentration determined at CBL-301I (0.085 mg/L) slightly exceeded the nonparametric prediction limit of 0.0801 mg/L. Monitoring well CBL-301I was resampled on August 30, 2022, and again on October 25, 2022, for boron analysis. The August resample result (0.107 mg/L boron) exceeded the prediction limit, but the October

resample result (0.0645 mg/L boron) did not exceed the prediction limit of 0.0801 mg/L. Since the resamples did not both exceed the prediction limit, the initial exceedance is not statistically significant.

A slight increasing trend was detected in the background data for sulfate at CBL-302I.

A control chart factor was selected to provide a balance of the site-wide false positive and false negative rates. A statistical power curve indicates the expected false assessments for the site as a whole. The site-wide false positive rate is 5% and the test becomes sensitive to 3 standard deviation units over background.

CONCLUSIONS

This document describes a comprehensive statistical plan designated for the FPP. The groundwater monitoring network for FPP consists of wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I. Each of the groundwater monitoring wells is sampled and analyzed for the detection monitoring parameters listed in Appendix III of 40 CFR Part 257. The current ground water data was compared to background using intrawell control charts. Using intrawell comparisons, there were no confirmed control limit exceedances detected.

Attachment A

Ground Water Data obtained during the Second Semi-Annual Monitoring Event in 2022

LCRAFayette2022s2 November 2022

Table 1
Analytical Data Summary for 7/27/2022 to 7/28/2022

Constituents	Units	CBL-301I	CBL-302I	CBL-306I	CBL-308I	CBL-341I
Boron, Total	mg/L	.085	<.050	.110	.079	.115
Calcium, Total	mg/L	1010	750	182	736	704
Chloride	mg/L	1840	1300	261	2470	1690
Fluoride	mg/L	.156	.165	2.260	1.430	.141
pH	S.Ŭ.	6.08	6.21	6.70	6.23	6.16
Sulfate	mg/L	285	1300	348	1190	296
Total Dissolved Solids	mg/L	4590	5120	1540	6840	4910

Table 2

Analytical Data Summary for 8/30/2022

Constituents	Units	CBL-301I
Boron, Total	mg/L	.107
рH	S.Ū.	6.14

Table 3

Analytical Data Summary for 10/25/2022

Constituents	Units	CBL-301I
Boron, Total	mg/L	.0645
pH	S.Ū.	6.21

Attachment B

Historical Appendix III Ground Water Data

LCRAFayette2022s2 November 2022

Table 1

Analytical Data Summary for CBL-301I

Constituents	Units	1/21/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/18/2017	7/26/2017	2/8/2018	7/25/2018	1/17/2019	5/2/2019	7/31/2019
Boron, Total	mg/L	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	.0707	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	905	949	925	978	1000	1030	1060	961	873	993	156	762	783
Chloride	mg/L	2300	2160	2290	2250	3200	2390	2420	2500	2480	1330	619	1910	2240
Fluoride	mg/L	<.250	<.500	<.500	<.250	.312	<.500	<.500	<.500	<.500	<.500	.219	.112	.051
pH	S.Ŭ.	6.33	6.26	5.95	6.23	6.26	6.31	5.95	6.02	6.17	6.04	7.16	6.14	6.19
Sulfate	mg/L	336	311	336	326	488	337	342	381	344	196	104	398	332
Total Dissolved Solids	mg/L	4380	5050	6020	4570	6140	6570	6430	4290	5120	5390	1460	5650	6040

Table 1

Analytical Data Summary for CBL-301I

Constituents	1/28/2020	9/17/2020	1/26/2021	7/20/2021	9/7/2021	1/26/2022	7/27/2022	8/30/2022	10/25/2022
Boron, Total	<.0500	.0801	<.0500	.0826	<.0500	<.0500	.0850	.1070	.0645
Calcium, Total	851	1060	1130	1100		999	1010		
Chloride	2360	2270	2420	2590		2440	1840		
Fluoride	.130	<.250	<.500	2.680	<.500	<.050	.156		
pH	6.26	6.13	6.06	6.13	6.14	6.27	6.08	6.14	6.21
Sulfate	349	350	374	419		406	285		
Total Dissolved Solids	4790	6340	6060	5870		4700	4590		

Table 2

Analytical Data Summary for CBL-302I

Constituents	Units	1/22/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/16/2017	7/27/2017	2/8/2018	7/27/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.1560	<.0500	.2970	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	1030	1010	1030	1070	1100	1090	1100	1040	934	995	855	914	838
Chloride	mg/L	2190	2130	2210	2170	2080	2050	2230	2040	2080	1980	1960	1540	1540
Fluoride	mg/L	<.2500	<.5000	<.5000	<.2500	.3320	<.5000	<.5000	<.5000	.1120	<.5000	.0402	.0605	.1930
pH	S.Ŭ.	6.29	6.01	5.17	7.75	5.36	5.40	4.94	6.20	6.21	5.77	6.44	6.15	6.34
Sulfate	mg/L	1020	993	1090	1180	1150	1120	1230	1180	1240	1390	1250	1260	1350
Total Dissolved Solids	mg/L	5500	5390	6850	4210	6430	6460	5860	5120	6010	5510	5060	4190	4790

Table 2

Analytical Data Summary for CBL-302I

Constituents	9/17/2020	1/28/2021	7/21/2021	9/7/2021	1/27/2022	7/28/2022
Boron, Total	<.0500	<.0500	.0743		<.0500	<.0500
Calcium, Total	853	1020	844		754	750
Chloride	1410	1370	1380		1310	1300
Fluoride	<.2500	<.5000	2.2500	<.2500	<.0500	.1650
pH	6.20	6.21	6.06	6.28	6.32	6.21
Sulfate	1280	1290	1350		1340	1300
Total Dissolved Solids	4990	4800	4810		4510	5120

Table 3

Analytical Data Summary for CBL-306I

Constituents	Units	1/21/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/18/2017	7/27/2017	2/8/2018	7/27/2018	1/16/2019	7/31/2019	8/23/2019
Boron, Total	mg/L	<.0500	.0717	.0998	.0556	<.0500	.1240	.0832	.0531	<.0500	<.0500	<.0500	.0824	.0500
Calcium, Total	mg/L	137.0	47.2	105.0	198.0	174.0	204.0	205.0	234.0	230.0	275.0	180.0	106.0	226.0
Chloride	mg/L	155	20	114	330	197	231	289	350	385	283	215	538	318
Fluoride	mg/L	2.50	1.00	1.37	2.38	1.85	12.60	2.20	2.91	2.81	2.95	1.98	9.26	2.66
pH	S.Ū.	7.09	6.69	6.95	6.72	7.29	4.41	5.61	6.94	6.67	6.86	6.78	6.92	6.83
Sulfate	mg/L	266.0	29.5	139.0	432.0	270.0	340.0	412.0	513.0	493.0	406.0	292.0	816.0	387.0
Total Dissolved Solids	mg/L	1280	431	790	1150	1320	1460	1440	1280	1760	1450	1220	676	1710

Table 3

Analytical Data Summary for CBL-306I

Constituents	1/29/2020	9/19/2020	1/28/2021	7/21/2021	1/27/2022	7/28/2022
Boron, Total	<.0500	.0773	<.0500	.0927	.0548	.1100
Calcium, Total	247.0	260.0	257.0	216.0	212.0	182.0
Chloride	445	420	292	255	384	261
Fluoride	2.83	2.72	2.90	2.42	2.99	2.26
pH	6.70	7.16	6.84	6.55	6.87	6.70
Sulfate	561.0	506.0	388.0	336.0	510.0	348.0
Total Dissolved Solids	1830	1730	1420	1320	1730	1540

Table 4

Analytical Data Summary for CBL-308I

Constituents	Units	1/22/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/16/2017	7/26/2017	2/6/2018	7/25/2018	1/18/2019	7/31/2019	1/29/2020
Boron, Total	mg/L	<.0500	.1210	.1860	.2560	<.0500	.5450	.1090	.0799	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	903	870	911	939	919	947	954	878	859	863	760	840	745
Chloride	mg/L	2760	2580	2680	2870	2360	2530	2740	2760	2750	2680	2240	2290	2110
Fluoride	mg/L	1.49	2.30	1.64	1.59	1.33	9.05	1.70	1.90	1.76	2.10	1.68	1.62	1.60
pH	S.Ū.	6.36	6.13	5.95	6.27	6.83	6.27	5.54	6.27	6.26	6.07	6.39	6.25	6.37
Sulfate	mg/L	1490	1410	1490	1550	1320	1470	1580	1550	1570	1540	1520	1420	1340
Total Dissolved Solids	mg/L	6820	6120	7890	10200	9620	7260	6590	6480	6200	6320	4760	5820	5980

Table 4

Analytical Data Summary for CBL-308I

Constituents	9/18/2020	1/28/2021	7/21/2021	1/27/2022	7/27/2022
Boron, Total	.1030	<.0500	.1300	<.0500	.0790
Calcium, Total	838	830	684	974	736
Chloride	2410	2200	1780	2020	2470
Fluoride	1.33	1.44	1.74	1.75	1.43
pH	6.22	6.26	6.16	6.36	6.23
Sulfate	1310	1340	1240	1310	1190
Total Dissolved Solids	6860	6190	5270	5320	6840

Table 5

Analytical Data Summary for CBL-340I

Constituents	Units	1/21/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/16/2017	7/27/2017	2/8/2018	7/27/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	.0832	.0810	.1580	<.0500	.1740	.1040	.0816	.0638	<.0500	<.0500	.1240	.0562
Calcium, Total	mg/L	564	560	575	607	627	581	584	571	555	544	518	518	539
Chloride	mg/L	2370	2260	2350	2380	2070	2280	2520	2380	2730	2450	2250	2280	2240
Fluoride	mg/L	1.090	1.920	1.060	1.260	.840	8.440	1.010	.850	1.000	1.300	.830	.880	.870
pH	S.Ŭ.	6.52	6.13	6.95	6.19	5.46	6.49	5.77	6.42	6.41	6.25	6.59	6.45	6.49
Sulfate	mg/L	652	616	668	675	571	635	715	685	752	711	639	684	637
Total Dissolved Solids	mg/L	4990	5230	6250	5670	6230	5480	5470	4880	5290	5100	4720	5560	5080

Table 5

Analytical Data Summary for CBL-340I

Constituents	9/18/2020	1/28/2021	7/22/2021	1/28/2022	7/28/2022
Boron, Total	.1460	<.0500	.3840	.1600	.2850
Calcium, Total	547	607	532	597	538
Chloride	2130	2260	2200	2200	2160
Fluoride	.725	.835	.865	1.060	.865
pH	6.32	6.32	6.24	6.42	6.35
Sulfate	608	634	618	619	614
Total Dissolved Solids	5430	5520	4990	4870	5490

Table 6
Analytical Data Summary for CBL-341I

Constituents	Units	1/23/2017	2/23/2017	3/22/2017	4/20/2017	5/16/2017	6/20/2017	7/27/2017	2/8/2018	8/24/2018	1/22/2019	7/31/2019	1/30/2020	9/17/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.0587	.0896	.0668	.0507	<.0500	<.0500	<.0500	<.0500	<.0500	.1020
Calcium, Total	mg/L	854	870	906	898	860	950	829	810	824	782	714	767	814
Chloride	mg/L	1600	2000	1780	1770	1900	1820	1970	2110	1910	1790	1650	1780	1700
Fluoride	mg/L	.5300	<.5000	<.5000	<.5000	<.5000	.3350	.0550	.1060	.1140	.0546	.1000	.1530	<.2500
pH	S.Ŭ.	5.74	5.23	5.72	5.73	5.54	6.19	6.21	6.18	5.82	6.38	6.23	6.27	6.14
Sulfate	mg/L	307	404	346	336	369	363	419	383	376	358	329	351	336
Total Dissolved Solids	mg/L	5000	4520	5110	4240	4840	5940	4150	4320	4800	3870	5370	4900	4930

Table 6

Analytical Data Summary for CBL-341I

Constituents	1/27/2021	7/22/2021	9/7/2021	1/27/2022	7/28/2022
Boron, Total	<.0500	.1110		<.0500	.1150
Calcium, Total	874	852		1040	704
Chloride	1800	1750		1810	1690
Fluoride	<.5000	1.1600	<.2500	<.0500	.1410
pH	6.06	5.98	6.18	6.26	6.16
Sulfate	324	316		320	296
Total Dissolved Solids	3940	4520		3800	4910

Attachment C

Summary Tables and Graphs for the Intrawell Comparisons

LCRAFayette2022s2 November 2022

Table 1
Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Type	Conf	
Boron, Total	mg/L	CBL-301I	15	7	22			0.1070	0.0645			0.0801	nonpar	.99	**
Boron, Total	mg/L	CBL-302I	14	4	18			0.0500	0.0500				nonpar	.99	**
Boron, Total	mg/L	CBL-306I	15	4	19	0.0665	0.0228	0.0548	0.1100	0.0665	0.0929	0.1806	normal		
Boron, Total	mg/L	CBL-308I	14	4	18	0.1250	0.1357	0.0500	0.0790	0.1250	0.1250	0.8036	normal		
Boron, Total	mg/L	CBL-341I	13	4	17	0.0591	0.0172	0.0500	0.1150	0.0591	0.1021	0.1452	normal		
Calcium, Total	mg/L	CBL-301I	14	4	19	937.8571	94.2189	999.0000	1010.0000	1141.2931	1142.7717	1408.9518	normal		
Calcium, Total	mg/L	CBL-302I	14	4	18	989.9286	94.3541	754.0000	750.0000	989.9286	989.9286	1461.6988	normal		
Calcium, Total	mg/L	CBL-306I	13	4	19	205.8462	47.9997	212.0000	182.0000	205.8462	205.8462	445.8448	normal		
Calcium, Total	mg/L	CBL-308I	14	4	18	873.2857	63.6389	974.0000	736.0000	926.2708	873.2857	1191.4803	normal		
Calcium, Total	mg/L	CBL-341I	13	4	17	836.7692	63.0491	1040.0000	704.0000	992.7132	836.7692	1152.0149	normal		
Chloride	mg/L	CBL-301I	14	4	19	2292.8571	394.9183	2440.0000	1840.0000	2292.8571	2292.8571	4267.4485	normal		
Chloride	mg/L	CBL-302I	14	4	18	1972.1429	271.4967	1310.0000	1300.0000	1972.1429	1972.1429	3329.6262	normal		
Chloride	mg/L	CBL-306I	13	4	19	319.6923	108.7837	384.0000	261.0000	319.6923	319.6923	863.6109	normal		
Chloride	mg/L	CBL-308I	14	4	18	2554.2857	234.4458	2020.0000	2470.0000	2554.2857	2554.2857	3726.5147	normal		
Chloride	mg/L	CBL-341I	13	4	17	1829.2308	144.5373	1810.0000	1690.0000	1829.2308	1829.2308	2551.9172	normal		
Fluoride	mg/L	CBL-301I	15	5	20	0.3883	0.1724	0.0500	0.1560	0.3883	0.3883	1.2502	normal		Т
Fluoride	mg/L	CBL-302I	14	5	19	0.3741	0.1872	0.0500	0.1650	0.3741	0.3741	1.3103	normal		
Fluoride	mg/L	CBL-306I	13	4	19	2.3200	0.6159	2.9900	2.2600	2.5280	2.3200	5.3997	normal		
Fluoride	mg/L	CBL-308I	13	4	18	1.6954	0.2759	1.7500	1.4300	1.6954	1.6954	3.0751	normal		
Fluoride	mg/L	CBL-341I	13	5	18	0.3037	0.2058	0.0500	0.1410	0.3037	0.3037	1.3325	normal		
pН	S.U.	CBL-301I	15	7	22	6.2267	0.2859	6.1400	6.2100	6.2267	6.2267	4.80 - 7.66	normal		Т
рН	S.U.	CBL-302I	14	5	19	6.0164	0.6925	6.3200	6.2100	6.0164	6.0164		normal		
pH	S.U.	CBL-306I	15	4	19	6.6413	0.7227	6.8700	6.7000	6.6413	6.6413	3.03 - 10.25			
pH	S.U.	CBL-308I	14	4	18	6.2271	0.2799	6.3600	6.2300	6.2271	6.2271	4.83 - 7.63			
pH	S.U.	CBL-341I	12	5	18	6.0125	0.2802	6.2600	6.1600	6.0499	6.0125	4.61 - 7.41	normal		
Sulfate	mg/L	CBL-301I	14	4	19	344.7143	61.2164	406.0000	285.0000	388.4611	344.7143	650.7964	normal		
Sulfate	mg/L	CBL-302I	14	4	18	1195.2143	114.4648	1340.0000	1300.0000	1332.0257	1350.9629	1767.5381	normal		
Sulfate	mg/L	CBL-306I	14	4	19	416.6429	163.4642	510.0000	348.0000	416.6429	416.6429	1233.9640	normal		
Sulfate	mg/L	CBL-308I	14	4	18	1468.5714	93.7146	1310.0000	1190.0000	1468.5714	1468.5714	1937.1442	normal		
Sulfate	mg/L	CBL-341I	13	4	17	359.7692	30.9493	320.0000	296.0000	359.7692	359.7692	514.5157	normal		
Total Dissolved Solids	mg/L	CBL-301I	14	4	19	5484.2857	791.9083	4700.0000	4590.0000	5484.2857	5484.2857	9443.8270	normal		
Total Dissolved Solids	mg/L	CBL-302I	14	4	18	5455.0000	806.9387	4510.0000	5120.0000	5455.0000	5455.0000	9489.6933	normal		
Total Dissolved Solids	mg/L	CBL-306I	15	4	19	1301.8000	409.5196	1730.0000	1540.0000	1422.8603	1353.9206	3349.3981	normal		
Total Dissolved Solids	mg/L	CBL-308I	14	4	18	6922.8571	1459.6756	5320.0000	6840.0000	6922.8571	6922.8571	14221.2350	normal		
Total Dissolved Solids	mg/L	CBL-341I	13	4	17	4768.4615	554.2239	3800.0000	4910.0000	4768.4615	4768.4615	7539.5809	normal		

N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods.

N(tot) = All independent measurements for that constituent and well.

For transformed data, mean and SD in transformed units and control limit in original units.

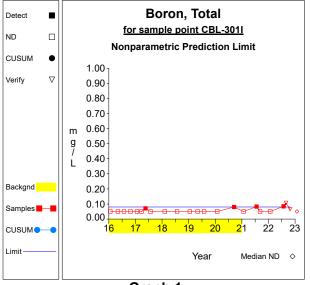
Conf = confidence level for passing initial test or one verification resample (nonparametric test only).

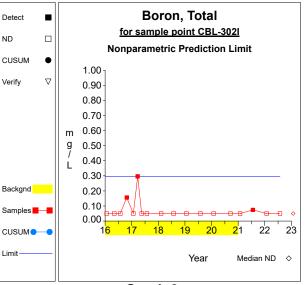
^{* -} Insufficient Data.

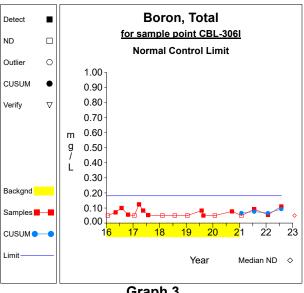
^{** -} Detection Frequency < 25%.

^{*** -} Zero Variance.

Table 4

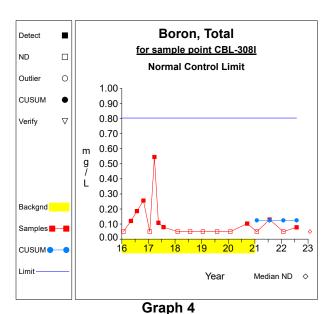

Dixon's Test Outliers 1% Significance Level

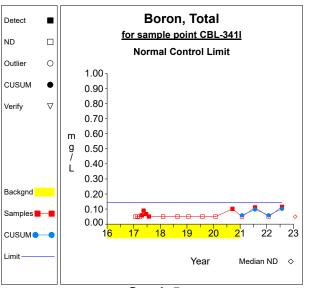

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value
Calcium, Total	mg/L	CBL-301I	01/17/2019	156.0000		01/21/2016-09/17/2020	15	0.6177
Chloride	mg/L	CBL-301I	01/17/2019	619.0000		01/21/2016-09/17/2020	15	0.6177
Chloride	mg/L	CBL-306I	05/04/2016	20.0000		01/21/2016-09/19/2020	14	0.6403
Fluoride	mg/L	CBL-306I	03/22/2017	12.6000		01/21/2016-09/19/2020	15	0.6403
Fluoride	mg/L	CBL-306I	07/31/2019	9.2600		01/21/2016-09/19/2020	15	0.6403
Fluoride	mg/L	CBL-308I	03/22/2017	9.0500		01/22/2016-09/18/2020	14	0.6403
Sulfate	mg/L	CBL-301I	01/17/2019	104.0000		01/21/2016-09/17/2020	15	0.6177
Sulfate	mg/L	CBL-306I	05/04/2016	29.5000		01/21/2016-09/19/2020	15	0.6177
Total Dissolved Solids	mg/L	CBL-301I	01/17/2019	1460.0000		01/21/2016-09/17/2020	15	0.6177


N = Total number of independent measurements in background at each well.

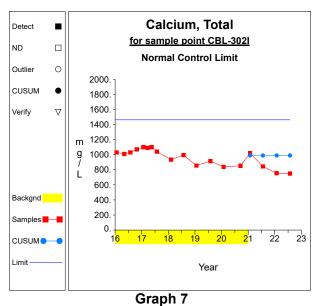
Date Range = Dates of the first and last measurements included in background at each well.

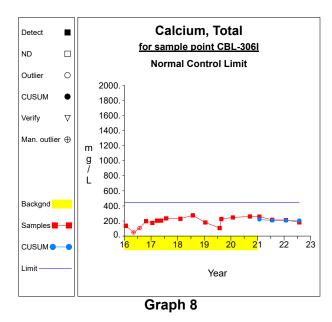
Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

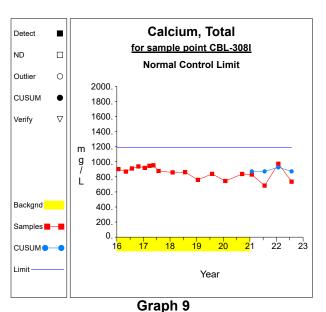


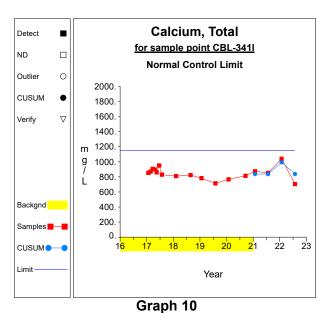


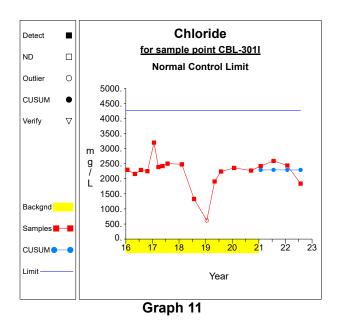
Graph 1

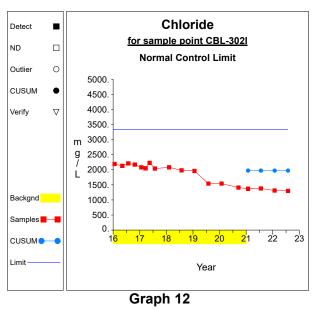

Graph 2

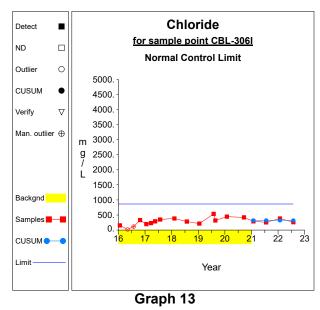

Graph 3

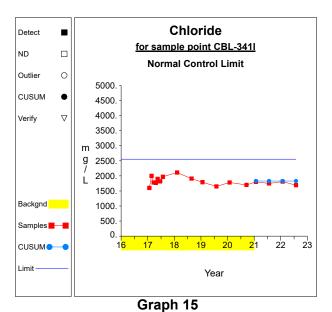


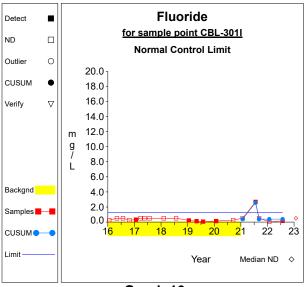


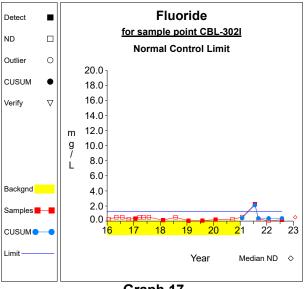


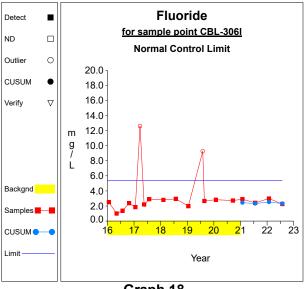




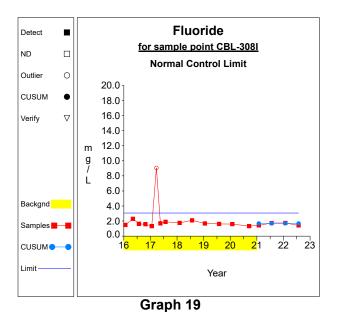


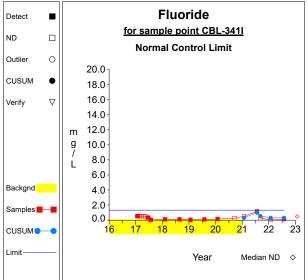




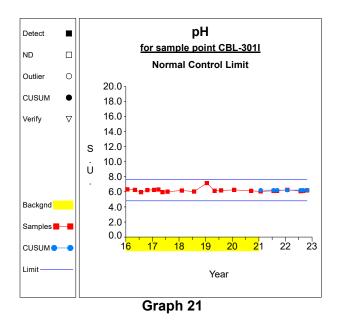

Chloride Detect for sample point CBL-3081 ND **Normal Control Limit** Outlier 5000. CUSUM 4500. 4000. Verify 3500. 3000 2500. 2000. 1500. Backgnd 1000. 500. Samples -17 18 CUSUM Limit Year

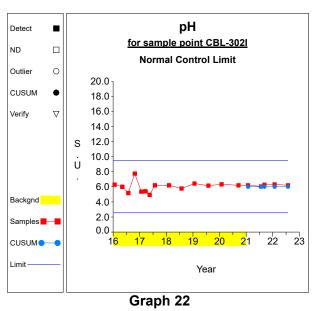
Graph 14

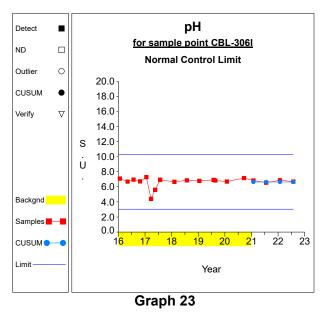


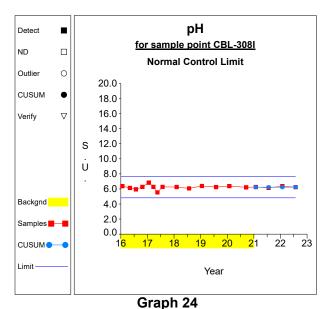


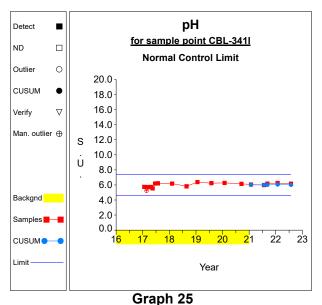
Graph 16

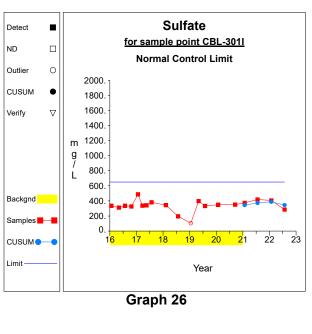

Graph 17

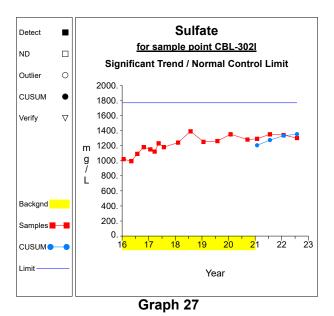

Graph 18

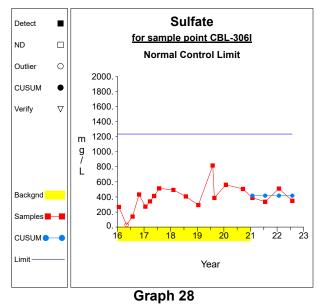


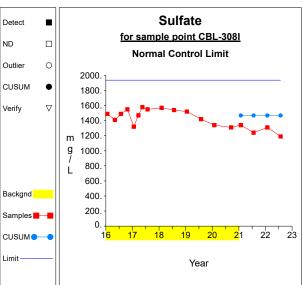


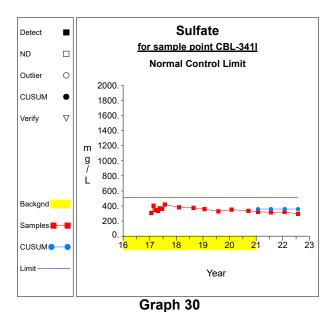

Graph 20

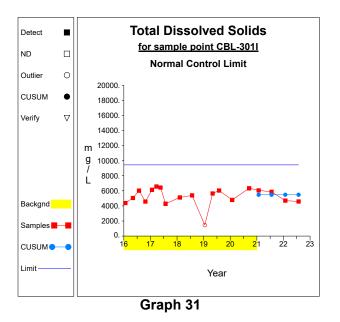


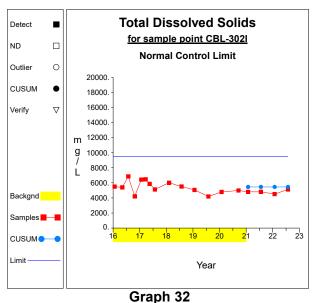


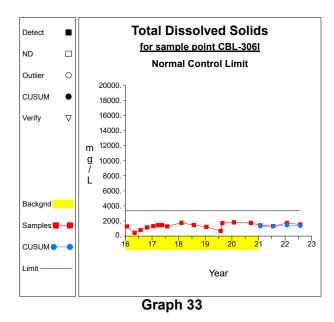


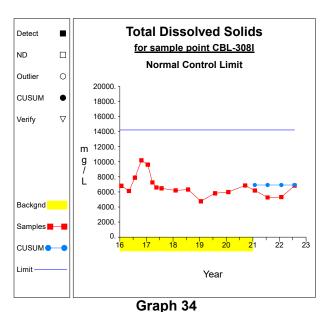


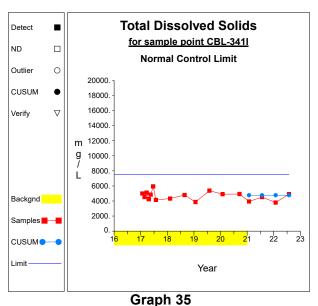


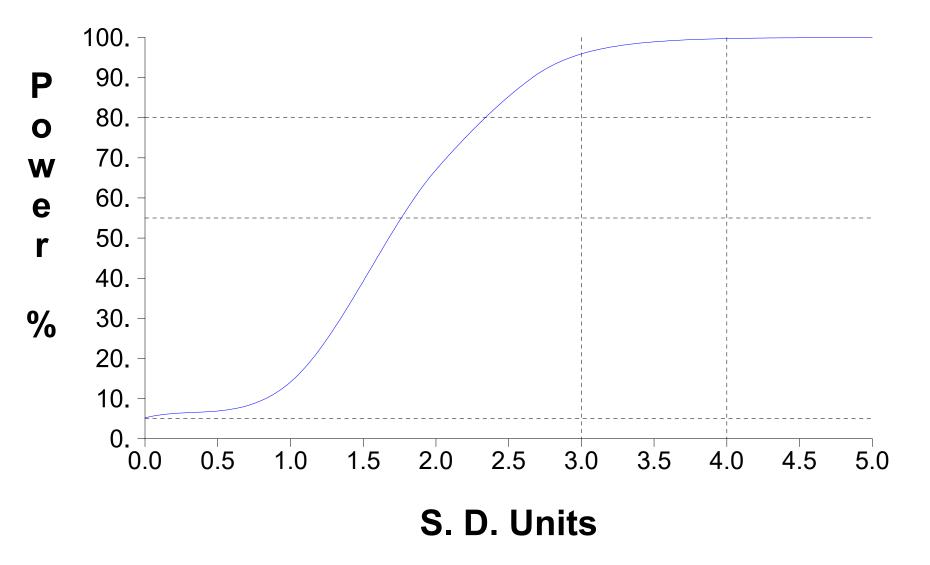







Graph 29





False Positive and False Negative Rates for Current Intra-Well Control Charts Monitoring Program

APPENDIX D

Analytical Data for Calendar Year 2022

DATA USABILITY SUMMARY – LCRA Analytical Report Q2202957

Bullock, Bennett & Associates, LLC has reviewed the analytical data package to be included in Appendix D of the Coal Combustion Residual Landfill 2022 Annual Groundwater Monitoring Report (Annual Groundwater Report) that was produced by LCRA Environmental Laboratory Services (ELS) for the analysis of groundwater samples collected in January 2022 at the Fayette Power Project (FPP) site. The Data were reviewed for conformance to the groundwater sampling and analysis requirements of 40 CFR § 257.93/30 TAC 352.931 and adherence to project objectives.

Objectives of the Data: To provide current data on concentrations of COCs in groundwater at the site for purposes of comparing Combustion Byproducts Landfill (CBL) compliance sample data to Appendix III Control Limits. To accomplish the stated data objectives, all field and laboratory procedures were performed in accordance with industry-established protocol, and the FPP Sampling and Analysis Plan. Appropriate quality assurance/quality control (QA/QC) measures were utilized. As described within the body of the Annual Groundwater Report, field QA/QC protocols integrated into this project followed industry standards and involved, among other factors:

- Use of sampling equipment decontamination protocol;
- Proper sample handling, preservation, and shipping procedures; and
- Maintenance of the sample chain of custody.

Also, as presented in the individual laboratory data package, laboratory QA/QC procedures integrated into this project followed industry standards and involved, among others:

- Maintenance of sample custody;
- Application of laboratory cross references to field sample identifications and to specific QC samples;
- Use of laboratory control samples (LCSs);
- Use of matrix spike/matrix duplicate spikes (MS/MSDs);
- Use of appropriate method and method reporting limit (MRL):
- Reporting of non-detect results as less than the value of the MRL:
- Use of surrogate recoveries;
- Calculation of relative percent differences (RPDs);
- Use of method and preparation blanks; and
- The application of data qualifiers.

Data Reviewed: The data reviewed consisted of laboratory submittals and field data as follows:

- Project Objectives (i.e., recoveries and relative percent differences);
- Analytical Results, including, as applicable, data qualifiers;
- Documentation of preservation and holding times;
- Field and laboratory equipment calibrations;
- Laboratory blanks;
- Internal Laboratory Control Standards and Surrogate Recoveries;
- Laboratory Control Samples;
- Matrix Spike/Matrix Spike Duplicates;
- Field Precision as determined by duplicate samples collected in the field; and

Field Procedures.

The results of the supporting quality control analyses for each of these QC factors were summarized in Quality Control narratives provided by the laboratory, and field/laboratory-completed chain of custody forms, the field forms, and the LCRA standard operational field procedures and the Groundwater Sampling Procedures. A review of each of these was included in this Data Usability Review.

Based on the Data Usability Review, the groundwater data are usable for their intended purpose. All samples were collected in the field using industry-standard operating procedures (SOPs), including decontamination protocol, sample preservation, and chain of custody.

Also, as presented in detail in the attached laboratory data packages, all appropriate QA/QC protocol were accomplished by the analytical laboratory. Where applicable, data have been appropriately qualified in the laboratory reports and the data, therefore, have been used accordingly.

It is noted that the January 2022 sampling event's Matrix Spike (MS) (1712186) recovery and associated Matrix Spike Duplicate (MSD) (1712187) recovery from the original sample (Lab ID: Q2202957001) for calcium analysis had high recoveries, outside of the established Control Limit ranges, and these results are appropriately flagged. Given that the Spike concentration (10 milligrams per liter) in these samples were approximately 100 times lower than the sample aliquot which was spiked, the high recoveries are not unexpected. Laboratory Control Sample Spike and Laboratory Control Sample Spike Duplicates were within acceptable recovery limits. Based on this information, the data are considered usable.

All exceptions were documented and described in the Quality Control narratives and no conditions with regard to laboratory control samples, matrix spike/matrix spike duplicates, sample preservation and holding times, or equipment calibrations were identified that would cause any of the data not to be useable.

March 02, 2022

BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD MAIL STOP FPP La Grange, TX 78945 BECKIE.LOEVE@LCRA.ORG

RE: Final Analytical Report Q2202957

Attn: BECKIE LOEVE

Enclosed are the analytical results for sample(s) received by LCRA Environmental Laboratory Services. Results reported herein conform to the most current NELAP standards, where applicable, unless otherwise narrated in the body of the report. This final report provides results related only to the sample(s) as received for the above referenced work order.

Thank you for selecting ELS for your analytical needs. If you have any questions regarding this report, please contact us at (512) 730-6022 or environmental.lab@lcra.org. We look forward to assisting you again.

Authorized for release by:

Jason Woods

Jason Woods Account Manager jason.woods@lcra.org

Enclosures:

Workorder: Q2202957
Workorder Description: FPPCCR

Client: LCRA Report To: BECKIE LOEVE

Profile: FPP GWMP CCR FAYETTE POWER PLANT 6549 POWER PLANT RD

Sampled By: COLT PETRI ELLE TERRELL MAIL STOP FPP
La Grange, TX 78945

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported
Q2202957001	CBL - 301I	AQ	E300.0, Anions	01/26/2022 09:54	01/28/2022 13:11	3
Q2202957001	CBL - 301I	AQ	Field pH SM4500H+B TCEQ VOL 1	01/26/2022 09:54	01/28/2022 13:11	1
Q2202957001	CBL - 301I	AQ	SM2540C, TDS	01/26/2022 09:54	01/28/2022 13:11	1
Q2202957001	CBL - 301I	AQ	SW6010B ICP-AES	01/26/2022 09:54	01/28/2022 13:11	2
Q2202957002	CBL - 302I	AQ	E300.0, Anions	01/27/2022 10:44	01/28/2022 13:11	3
Q2202957002	CBL - 302I	AQ	Field pH SM4500H+B TCEQ VOL 1	01/27/2022 10:44	01/28/2022 13:11	1
Q2202957002	CBL - 302I	AQ	SM2540C, TDS	01/27/2022 10:44	01/28/2022 13:11	1
Q2202957002	CBL - 302I	AQ	SW6010B ICP-AES	01/27/2022 10:44	01/28/2022 13:11	2
Q2202957003	CBL - 306I	AQ	E300.0, Anions	01/27/2022 13:11	01/28/2022 13:11	3
Q2202957003	CBL - 306I	AQ	Field pH SM4500H+B TCEQ VOL 1	01/27/2022 13:11	01/28/2022 13:11	1
Q2202957003	CBL - 306I	AQ	SM2540C, TDS	01/27/2022 13:11	01/28/2022 13:11	1
Q2202957003	CBL - 306I	AQ	SW6010B ICP-AES	01/27/2022 13:11	01/28/2022 13:11	2
Q2202957004	CBL - 308I	AQ	E300.0, Anions	01/27/2022 14:11	01/28/2022 13:11	3
Q2202957004	CBL - 308I	AQ	Field pH SM4500H+B TCEQ VOL 1	01/27/2022 14:11	01/28/2022 13:11	1
Q2202957004	CBL - 308I	AQ	SM2540C, TDS	01/27/2022 14:11	01/28/2022 13:11	1
Q2202957004	CBL - 308I	AQ	SW6010B ICP-AES	01/27/2022 14:11	01/28/2022 13:11	2
Q2202957005	CBL - 340I	AQ	E300.0, Anions	01/28/2022 10:47	01/28/2022 13:11	3
Q2202957005	CBL - 340I	AQ	Field pH SM4500H+B TCEQ VOL 1	01/28/2022 10:47	01/28/2022 13:11	1
Q2202957005	CBL - 340I	AQ	SM2540C, TDS	01/28/2022 10:47	01/28/2022 13:11	1
Q2202957005	CBL - 340I	AQ	SW6010B ICP-AES	01/28/2022 10:47	01/28/2022 13:11	2
Q2202957006	CBL - 341I	AQ	E300.0, Anions	01/27/2022 12:05	01/28/2022 13:11	3
Q2202957006	CBL - 341I	AQ	Field pH SM4500H+B TCEQ VOL 1	01/27/2022 12:05	01/28/2022 13:11	1
Q2202957006	CBL - 341I	AQ	SM2540C, TDS	01/27/2022 12:05	01/28/2022 13:11	1
Q2202957006	CBL - 341I	AQ	SW6010B ICP-AES	01/27/2022 12:05	01/28/2022 13:11	2
Q2202957007	CBL - 641I	AQ	E300.0, Anions	01/27/2022 12:05	01/28/2022 13:11	3
Q2202957007	CBL - 641I	AQ	Field pH SM4500H+B TCEQ VOL 1	01/27/2022 12:05	01/28/2022 13:11	1
Q2202957007	CBL - 641I	AQ	SM2540C, TDS	01/27/2022 12:05	01/28/2022 13:11	1
Q2202957007	CBL - 641I	AQ	SW6010B ICP-AES	01/27/2022 12:05	01/28/2022 13:11	2
Q2202957008	EQB	AQ	E300.0, Anions	01/28/2022 09:57	01/28/2022 13:11	3
Q2202957008	EQB	AQ	SM2540C, TDS	01/28/2022 09:57	01/28/2022 13:11	1

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported
Q2202957008	EQB	AQ	SW6010B ICP-AES	01/28/2022 09:57	01/28/2022 13:11	2
Q2202957009	FB	AQ	E300.0, Anions	01/28/2022 10:00	01/28/2022 13:11	3
Q2202957009	FB	AQ	SM2540C, TDS	01/28/2022 10:00	01/28/2022 13:11	1
Q2202957009	FB	AQ	SW6010B ICP-AES	01/28/2022 10:00	01/28/2022 13:11	2

Report Definitions

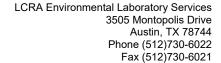
MRL - Minimum Reporting Limit

LOD - Limit of Detection

ML - Maximum Limit - Client Specified MCL - Maximum Contaminant Level

LOQ - Limit of Quantitation - Client Specified

DF - Dilution Factor


(S) - Surrogate Spike

MDL - Method Detection Limit

RPD - Relative Percent Difference

Qualifier Definitions

- J Analyte detected below quantitation limit
- R RPD outside duplicate precision limit
- S Spike recovery outside limit
- B- Analyte detected in method blank
- N Not Accredited
- M Analyte Detected Above Maximum Contaminant Level
- SL Spike Recovery Low
- SH Spike Recovery High
- H Analyzed Past Hold Time
- **CR Confirmed Result**
- CH Result confirmed by historical data

Workorder Summary

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 01/26/2022 09:54
 Matrix:
 Aqueous

 Lab ID:
 Q2202957001
 Date Received:
 01/28/2022 13:11
 Sample Type:
 SAMPLE

 Sample ID:
 CBL - 3011
 Location:

 Project ID:
 FPP GWMP CCR
 Facility:

 Sample Point:

			-		•						
Field Parameters (Field	pH SM4500	H+B TCE	Q VOL 1)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
рН	6.27	рН				1	01/26/2022 09:54	CCP	01/26/2022 09:54	CCP	N
INORGANICS (E300.0, A	nions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	2440	mg/L	50.0	20.0		50	02/02/2022 01:09	FO	02/02/2022 01:09	FO	
Sulfate	406	mg/L	50.0	20.0		50	02/02/2022 01:09	FO	02/02/2022 01:09	FO	
INORGANICS (E300.0, A	nions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Fluoride	<0.0500	mg/L	0.0500	0.0200		5	02/07/2022 20:52	FO	02/07/2022 20:52	FO	
INORGANICS (SW3010A	N, Metals Pr	ep/SW601	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500	mg/L	0.0500	0.0200		1	02/08/2022 10:08	ME	02/09/2022 18:12	FM	
INORGANICS (SW3010A	A, Metals Pr	ep/SW601	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Calcium Total	999	mg/L	2.00	0.700		10	02/08/2022 10:08	ME	02/10/2022 21:19	FM	
TOTAL DISSOLVED SOL	LIDS (SM25	40C, TDS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Total Dissolved Solids(TDS)	4700	mg/L	250	250	•	100	02/01/2022 13:19	ERR	02/01/2022 13:19	ERR	

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 01/27/2022 10:44
 Matrix:
 Aqueous

 Lab ID:
 Q2202957002
 Date Received:
 01/28/2022 13:11
 Sample Type:
 SAMPLE

 Sample ID:
 CBL - 302I
 Location:

 Project ID:
 FPP GWMP CCR
 Facility:

 Sample Point:

4510 mg/L

250

250

				-						
PH SM4500	н+в тсе	Q VOL 1)								
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
6.32	рН				1	01/27/2022 10:44	CCP	01/27/2022 10:44	CCP	N
Anions)										
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
1310	mg/L	50.0	20.0		50	02/02/2022 01:25	FO	02/02/2022 01:25	FO	
1340	mg/L	50.0	20.0		50	02/02/2022 01:25	FO	02/02/2022 01:25	FO	
Anions)										
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
<0.0500	mg/L	0.0500	0.0200		5	02/07/2022 21:09	FO	02/07/2022 21:09	FO	
A, Metals Pr	ep/SW601	OB ICP-A	ES)							
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
<0.0500	mg/L	0.0500	0.0200		1	02/08/2022 10:08	ME	02/09/2022 18:18	FM	
A, Metals Pr	ep/SW601	OB ICP-A	ES)							
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
754	mg/L	2.00	0.700		10	02/08/2022 10:08	ME	02/10/2022 21:24	FM	
OLIDS (SM25	40C, TDS)								
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
	Results 6.32 Anions) Results 1310 1340 Anions) Results <0.0500 A, Metals Process <0.0500 A, Metals Process Colors (SM25) OLIDS (SM25)	Results	Results	Results	Results	Results	Results Units MRL LOD ML DF Prepared	Results Units MRL LOD ML DF Prepared By	Results	Results

100

02/01/2022 14:12

ERR

02/01/2022 14:12

ERR

Total Dissolved Solids(TDS)

Analytical Results

Total Dissolved Solids(TDS)

 Client ID:
 LCRA
 Date Collected:
 01/27/2022 13:11
 Matrix:
 Aqueous

 Lab ID:
 Q2202957003
 Date Received:
 01/28/2022 13:11
 Sample Type:
 SAMPLE

 Sample ID:
 CBL - 306I
 Location:

 Project ID:
 FPP GWMP CCR
 Facility:

 Sample Point:

1730 mg/L

250

250

			Oui	iipie i oiiit	•						
Field Parameters (Field pH SM4500	H+B TCE	Q VOL 1)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
рН	6.87	рН				1	01/27/2022 13:11	CCP	01/27/2022 13:11	CCP	N
INORGANICS (E30	0.0, Anions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	384	mg/L	10.0	4.00		10	02/02/2022 00:53	FO	02/02/2022 00:53	FO	
Fluoride	2.99	mg/L	0.100	0.0400		10	02/02/2022 00:53	FO	02/02/2022 00:53	FO	
Sulfate	510	mg/L	10.0	4.00		10	02/02/2022 00:53	FO	02/02/2022 00:53	FO	
INORGANICS (SW	3010A, Metals Pre	ep/SW601	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	0.0548	mg/L	0.0500	0.0200		1	02/08/2022 10:08	ME	02/09/2022 18:23	FM	
Calcium Total	212	mg/L	0.200	0.0700		1	02/08/2022 10:08	ME	02/09/2022 18:23	FM	
TOTAL DISSOLVE	D SOLIDS (SM254	40C, TDS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier

100

02/01/2022 14:12

ERR

02/01/2022 14:12

ERR

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 01/27/2022 14:11
 Matrix:
 Aqueous

 Lab ID:
 Q2202957004
 Date Received:
 01/28/2022 13:11
 Sample Type:
 SAMPLE

Sample ID:CBL - 308ILocation:Project ID:FPP GWMP CCRFacility:Sample Point:

5320 mg/L

250

250

			Sai	iipie Poilit	•						
Field Parameters (Fi	ield pH SM4500	H+B TCE	Q VOL 1)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
рН	6.36	pН				1	01/27/2022 14:11	CCP	01/27/2022 14:11	CCP	N
INORGANICS (E300	.0, Anions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	2020	mg/L	50.0	20.0		50	02/02/2022 01:41	FO	02/02/2022 01:41	FO	
Fluoride	1.75	mg/L	0.500	0.200		50	02/02/2022 01:41	FO	02/02/2022 01:41	FO	
Sulfate	1310	mg/L	50.0	20.0		50	02/02/2022 01:41	FO	02/02/2022 01:41	FO	
INORGANICS (SW3	010A, Metals Pr	ep/SW601	0B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Calcium Total	974	mg/L	2.00	0.700		10	02/08/2022 10:08	ME	02/10/2022 21:28	FM	
INORGANICS (SW30	010A, Metals Pr	ep/SW601	0B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500	mg/L	0.0500	0.0200		1	02/08/2022 10:08	ME	02/09/2022 18:28	FM	
TOTAL DISSOLVED	SOLIDS (SM25	40C, TDS									
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier

100

02/01/2022 14:12

ERR

02/01/2022 14:12

ERR

Total Dissolved Solids(TDS)

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 01/28/2022 10:47
 Matrix:
 Aqueous

 Lab ID:
 Q2202957005
 Date Received:
 01/28/2022 13:11
 Sample Type:
 SAMPLE

Sample ID:CBL - 340ILocation:Project ID:FPP GWMP CCRFacility:Sample Point:

4870 mg/L

250

250

			Sai	iipie Poilit	•						
Field Parameters (Fig.	eld pH SM4500	H+B TCE	Q VOL 1)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
рН	6.42	pН				1	01/28/2022 10:47	CCP	01/28/2022 10:47	CCP	N
INORGANICS (E300.	0, Anions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	2200	mg/L	50.0	20.0		50	02/02/2022 02:14	FO	02/02/2022 02:14	FO	
Fluoride	1.06	mg/L	0.500	0.200		50	02/02/2022 02:14	FO	02/02/2022 02:14	FO	
Sulfate	619	mg/L	50.0	20.0		50	02/02/2022 02:14	FO	02/02/2022 02:14	FO	
INORGANICS (SW30	10A, Metals Pr	ep/SW601	OB ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	0.160	mg/L	0.0500	0.0200		1	02/08/2022 10:08	ME	02/09/2022 18:33	FM	
INORGANICS (SW30	10A, Metals Pr	ep/SW601	OB ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Calcium Total	597	mg/L	2.00	0.700		10	02/08/2022 10:08	ME	02/10/2022 21:33	FM	
TOTAL DISSOLVED	SOLIDS (SM25	40C, TDS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier

100

02/02/2022 13:47

ERR

02/02/2022 13:47

ERR

Total Dissolved Solids(TDS)

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 01/27/2022 12:05
 Matrix:
 Aqueous

 Lab ID:
 Q2202957006
 Date Received:
 01/28/2022 13:11
 Sample Type:
 SAMPLE

Sample ID:CBL - 3411Location:Project ID:FPP GWMP CCRFacility:Sample Point:

			ou.		•						
Field Parameters (Field	pH SM4500	н+в тсе	Q VOL 1)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
pH	6.26	рН				1	01/27/2022 12:05	CCP	01/27/2022 12:05	CCP	N
INORGANICS (E300.0, A	nions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	1810	mg/L	50.0	20.0		50	02/02/2022 01:58	FO	02/02/2022 01:58	FO	
Sulfate	320	mg/L	50.0	20.0		50	02/02/2022 01:58	FO	02/02/2022 01:58	FO	
INORGANICS (E300.0, A	nions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Fluoride	<0.0500	mg/L	0.0500	0.0200		5	02/07/2022 21:26	FO	02/07/2022 21:26	FO	
INORGANICS (SW3010A	A, Metals Pre	ep/SW601	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Calcium Total	1040	mg/L	2.00	0.700		10	02/08/2022 10:08	ME	02/10/2022 21:37	FM	
INORGANICS (SW3010A	A, Metals Pre	ep/SW601	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500	mg/L	0.0500	0.0200		1	02/08/2022 10:08	ME	02/09/2022 18:38	FM	
TOTAL DISSOLVED SOL	LIDS (SM25	40C, TDS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Total Dissolved Solids(TDS)	3800	mg/L	250	250		100	02/01/2022 14:12	ERR	02/01/2022 14:12	ERR	

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 01/27/2022 12:05
 Matrix:
 Aqueous

 Lab ID:
 Q2202957007
 Date Received:
 01/28/2022 13:11
 Sample Type:
 SAMPLE

Sample ID:CBL - 6411Location:Project ID:FPP GWMP CCRFacility:Sample Point:

3620 mg/L

250

250

epared By Analyzed By Qualifier 2022 12:05 CCP 01/27/2022 12:05 CCP N
2022 12:05 CCP 01/27/2022 12:05 CCP N
epared By Analyzed By _{Qualifier}
2022 21:43 FO 02/07/2022 21:43 FO
epared By Analyzed By _{Qualifier}
2022 02:30 FO 02/02/2022 02:30 FO
2022 02:30 FO 02/02/2022 02:30 FO
epared By Analyzed By _{Qualifier}
2022 10:08 ME 02/09/2022 18:43 FM
epared By Analyzed By _{Qualifier}
2022 10:08 ME 02/10/2022 21:42 FM
2

100

02/01/2022 14:12

ERR

02/01/2022 14:12

ERR

Total Dissolved Solids(TDS)

Analytical Results

Client ID: LCRA Date Collected: 01/28/2022 09:57 Matrix: Aqueous Lab ID: Q2202957008 **Date Received:** 01/28/2022 13:11 Sample Type: SAMPLE

Sample ID: EQB

Location: Facility: Project ID: FPP GWMP CCR

			San	nple Point:	:						
INORGANICS (E300.0, A	Inions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	<1.00	mg/L	1.00	0.400		1	02/02/2022 04:38	FO	02/02/2022 04:38	FO	
Fluoride	<0.0100	mg/L	0.0100	0.00400		1	02/02/2022 04:38	FO	02/02/2022 04:38	FO	
Sulfate	<1.00	mg/L	1.00	0.400		1	02/02/2022 04:38	FO	02/02/2022 04:38	FO	
INORGANICS (SW3010A	A, Metals Pre	ep/SW601	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500	mg/L	0.0500	0.0200		1	02/08/2022 10:08	ME	02/09/2022 18:48	FM	
Calcium Total	<0.200	mg/L	0.200	0.0700		1	02/08/2022 10:08	ME	02/09/2022 18:48	FM	
TOTAL DISSOLVED SOL	LIDS (SM25	40C, TDS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Total Dissolved Solids(TDS)	<25.0	mg/L	25.0	25.0		10	02/02/2022 13:47	ERR	02/02/2022 13:47	ERR	

Analytical Results

Client ID: LCRA Date Collected: 01/28/2022 10:00 Matrix: Aqueous Sample Type: Lab ID: Q2202957009 Date Received: 01/28/2022 13:11 SAMPLE

Sample ID: FB

Location: Project ID: FPP GWMP CCR Facility: Sample Point:

INORGANICS	(E300.0.	Anions)

•	<u> </u>							
Parameter	Results Units	MRL LOD	ML DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	<1.00 mg/L	1.00 0.400	1	02/02/2022 10:02	FO	02/02/2022 10:02	FO	
Fluoride	<0.0100 mg/L	0.0100 0.00400	1	02/02/2022 10:02	FO	02/02/2022 10:02	FO	
Sulfate	<1.00 mg/l	1.00 0.400	1	02/02/2022 10:02	FΟ	02/02/2022 10:02	FΩ	

INORGANICS (SW3010A, Metals Prep/SW6010B ICP-AES)

Parameter	Results Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500 mg/L	0.0500	0.0200		1	02/08/2022 10:08	ME	02/09/2022 18:52	FM	
Calcium Total	<0.200 mg/L	0.200	0.0700		1	02/08/2022 10:08	ME	02/09/2022 18:52	FM	

TOTAL DISSOLVED SOLIDS (SM2540C, TDS)

Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Total Dissolved Solids(TDS)	<25.0	ma/L	25.0	25.0		10	02/02/2022 13:47	ERR	02/02/2022 13:47	ERR	

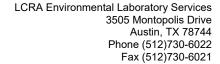
QC Batch: MET/8986 Analysis Method: SW6010B ICP-AES

Preparation Method: SW3010A, Metals Prep

Associated Lab IDs: Q2202957001, Q2202957002, Q2202957003, Q2202957004, Q2202957005, Q2202957006, Q2202957007,

Q2202957008, Q2202957009

Matrix Spike (1712186); Matrix Spike Duplicate (1712187); Original: Q2202957001


Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Boron Total	mg/L	1.0	0.967	96.7	75 - 125	0.957	95.7	1.04	20	
Calcium Total	mg/L	10.0	1100.0	1050.0	75 - 125	1100.0	1000.0	0.0	20	SH

Method Blank(1712185)

Parameter	Units	Results	MRL	LOD	Qualifier
Boron Total	mg/L	<0.0500	0.05	0.02	
Calcium Total	mg/L	<0.200	0.2	0.07	

Lab Control Sample (1712183); Lab Control Sample Duplicate (1712184)

Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Boron Total	mg/L	1.0	0.994	99.4	80 - 120	1.0	100.0	0.60 2	20	_
Calcium Total	mg/L	10.0	10.6	106.0	80 - 120	10.6	106.0	0.0	20	

QC Batch: WET/25746

Preparation Method: SM2540C, TDS **Associated Lab IDs:** Q2202957001

Analysis Method: SM2540C, TDS

Parameter	Units	Spiked Amount	Spike	Result	•	ike very%	Control Limits %	Qualifier
Total Dissolved Solids(TDS)	mg/L	400.0	•	92.0		5.0	70 - 130	Quantor
Method Blank(1710670)								
Parameter		Units		Results		MRL	LOD	Qualifier
Total Dissolved Solids(TDS)		mg/L		<25.0		25.0	25.0	
Duplicate (1710672); Original Q2202716007								
Parameter		Units	Original	Dupl	licate	RPD	RPD Limit	Qualifier
Total Dissolved Solids(TDS)		mg/L	152.0	15	1.0	0.66	20	
Lab Control Sample (1710671)								
Parameter	Units	Spiked Amount	Spike	Result	•	ike very%	Control Limits %	Qualifier
-								

QC Batch: WET/25747 Analysis Method: SM2540C, TDS

Preparation Method: SM2540C, TDS

Associated Lab IDs: Q2202957002, Q2202957003, Q2202957004, Q2202957006, Q2202957007

Duplicate (1710682); Original Q2202897020								
Parameter	Un	its	Original	Dupl	icate	RPD	RPD Limit	Qualifier
Total Dissolved Solids(TDS)	mg	/L	512.0	51	0.0	0.391	20	
Method Blank(1710680)								
Parameter		Units		Results		MRL	LOD	Qualifier
Total Dissolved Solids(TDS)		mg/L		<25.0		25.0	25.0	
Lab Control Sample (1710681)								
Parameter	Units	Spiked Amount	Spike	Result	Spike t Recovery%		Control Limits %	Qualifier
Total Dissolved Solids(TDS)	mg/L	400.0	3	63.0	90.	.8	80 - 120	
Matrix Spike (1710683); Original: Q2202897020								
Parameter	Units	Spiked Amount	Spike	Result	Spi Recov		Control Limits %	Qualifier
Total Dissolved Solids(TDS)	mg/L	400.0	9	08.0	99.	.0	70 - 130	

QC Batch: WET/25753 Analysis Method: E300.0, Anions

Preparation Method: E300.0, Anions

Associated Lab IDs: Q2202957001, Q2202957002, Q2202957003, Q2202957004, Q2202957005, Q2202957006, Q2202957007

Laboratory Fortified Matrix		

Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Chloride	mg/L	20.0	58.5	90.4	80 - 120	58.6	90.6	0.17 1	20	
Fluoride	mg/L	1.0	1.4	96.5	80 - 120	1.4	96.5	0.0	20	
Sulfate	mg/L	20.0	44.1	103.0	80 - 120	44.1	103.0	0.0	20	

Laboratory Reagent Blank(1711253)

Parameter	Units	Results	MRL	LOD	Qualifier
Chloride	mg/L	<1.00	1.0	0.4	
Fluoride	mg/L	<0.0100	0.01	0.004	
Sulfate	mg/L	<1.00	1.0	0.4	

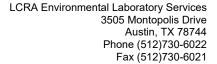
Laboratory Fortified Blank (1711254)

		Spiked		Spike		
Parameter	Units	Amount	Spike Result	Recovery%	Control Limits %	Qualifier
Chloride	mg/L	30.0	30.5	102.0	90 - 110	
Fluoride	mg/L	1.0	1.01	101.0	90 - 110	
Sulfate	mg/L	30.0	30.2	101.0	90 - 110	

QC Batch: WET/25753 Analysis Method: E300.0, Anions

Preparation Method: E300.0, Anions

Associated Lab IDs: Q2202957001, Q2202957002, Q2202957003, Q2202957004, Q2202957005, Q2202957006, Q2202957007,

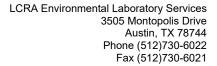

Q2202957008, Q2202957009

Limit of Quantitation Check (1711248)

		Spiked		Spike		
Parameter	Units	Amount	Spike Result	Recovery%	Control Limits %	Qualifier
Chloride	mg/L	5.0	4.15	83.0	70 - 130	
Fluoride	mg/L	0.02	0.0194	97.0	70 - 130	
Sulfate	mg/L	5.0	4.2	84.1	70 - 130	

Method Reporting Limit Check (1711246)

	_	Spiked		Spike		<u> </u>
Parameter	Units	Amount	Spike Result	Recovery%	Control Limits %	Qualifier
Chloride	mg/L	1.0	0.734	73.4	50 - 150	
Fluoride	mg/L	0.01	0.0123	123.0	50 - 150	
Sulfate	mg/L	1.0	0.82	82.0	50 - 150	



QC Batch: WET/25753 Analysis Method: E300.0, Anions

Preparation Method: E300.0, Anions Associated Lab IDs: Q2202957008

Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Chloride	mg/L	20.0	20.0	99.8	80 - 120	19.9	99.7	0.50 1	20	
Fluoride	mg/L	1.0	1.02	102.0	80 - 120	1.02	102.0	0.0	20	
Sulfate	mg/L	20.0	19.5	97.3	80 - 120	19.5	97.3	0.0	20	
Laboratory Reagent I	Blank(1711256)									
Parameter				Units		Results	MRL		LOD	Qualifier
Chloride				mg/L		<1.00	1.0		0.4	
Fluoride				mg/L		<0.0100	0.01		0.004	
Sulfate				mg/L		<1.00	1.0		0.4	
Laboratory Fortified	Blank (1711257)									
Parameter			Units	Spiked Amount	Spike	Result	Spike Recovery%	Cont	trol Limits %	Qualifier
Chloride			mg/L	30.0	30	0.6	102.0		90 - 110	
				4.0	4	0.4	404.0		00 440	
Fluoride			mg/L	1.0	1.	01	101.0		90 - 110	

QC Batch: WET/25753

Preparation Method: E300.0, Anions **Associated Lab IDs:** Q2202957009

Analysis Method: E300.0, Anions

Laboratory Fortified Blank (1711260)

		Spiked		Spike		
Parameter	Units	Amount	Spike Result	Recovery%	Control Limits %	Qualifier
Chloride	mg/L	30.0	30.5	102.0	90 - 110	
Fluoride	mg/L	1.0	1.02	102.0	90 - 110	
Sulfate	mg/L	30.0	30.1	100.0	90 - 110	

Laboratory Reagent Blank(1711259)

Parameter	Units	Results	MRL	LOD	Qualifier
Chloride	mg/L	<1.00	1.0	0.4	
Fluoride	mg/L	<0.0100	0.01	0.004	
Sulfate	mg/L	<1.00	1.0	0.4	

Laboratory Fortified Matrix (1711276); Lab Fortified Matrix Duplicate (1711277); Original: Q2202957009

Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Chloride	mg/L	20.0	19.8	99.2	80 - 120	19.8	99.2	0.0	20	
Fluoride	mg/L	1.0	1.01	101.0	80 - 120	1.01	101.0	0.0	20	
Sulfate	mg/L	20.0	19.4	96.8	80 - 120	19.3	96.7	0.51 7	20	

Quality Control Results

QC Batch: WET/25754 Analysis Method: SM2540C, TDS

Preparation Method: SM2540C, TDS

Associated Lab IDs: Q2202957005, Q2202957008, Q2202957009

Method Blank(1711478)						
Parameter		Units	Results	MRL	LOD	Qualifier
Total Dissolved Solids(TDS)		mg/L	<25.0	25.0	25.0	
Matrix Spike (1711481); Original: Q2202957008						
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery%	Control Limits %	Qualifier
Total Dissolved Solids(TDS)	mg/L	400.0	350.0	87.5	70 - 130	
Lab Control Sample (1711479)						
Parameter	Units	Spiked Amount	Spike Result	Spike Recovery%	Control Limits %	Qualifier

QC Batch: WET/25770 Analysis Method: E300.0, Anions

Preparation Method: E300.0, Anions

Associated Lab IDs: Q2202957001, Q2202957002, Q2202957006, Q2202957007

Laboratory Fortified	Blank (1712094)									
Parameter			Units	Spiked Amount	Spike	Result	Spike Recovery%	Con	trol Limits %	Qualifier
Fluoride			mg/L	1.0	1.0	01	101.0		90 - 110	
Laboratory Reagent I	Blank(1712093)									
Parameter				Units		Results	MRL		LOD	Qualifier
Fluoride				mg/L	<0.0100		0.01		0.004	
Method Reporting Lin	mit Check (1712	090)								
Parameter			Units	Spiked Amount	Spike	Result	Spike Recovery%	Con	trol Limits %	Qualifier
Fluoride			mg/L	0.01	0.0	084	84.0		50 - 150	
Laboratory Fortified	Matrix (1712102)	; Lab Fortifi	ed Matrix D	uplicate (1712	?103); Origiı	nal: Q22038	338011			
Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Fluoride	mg/L	1.0	1.19	99.8	80 - 120	1.19	100.0	0.0	20	
Limit of Quantitation	Check (171209)	2)								
Parameter			Units	Spiked Amount	Spike Result		Spike Recovery%	Conf	trol Limits %	Qualifier
Fluoride			mg/L	0.02	0.0176		88.0	70 - 130		

QC Cross Refere	nce		
Lab ID	Sample ID	Prep Batch	Prep Method
MET/8986 - SW6010B ICP	-AES		
Q2202957001	CBL - 301I	MEP/11762	SW3010A, Metals Prep
Q2202957002	CBL - 302I	MEP/11762	SW3010A, Metals Prep
Q2202957003	CBL - 306I	MEP/11762	SW3010A, Metals Prep
Q2202957004	CBL - 308I	MEP/11762	SW3010A, Metals Prep
Q2202957005	CBL - 340I	MEP/11762	SW3010A, Metals Prep
Q2202957006	CBL - 341I	MEP/11762	SW3010A, Metals Prep
Q2202957007	CBL - 641I	MEP/11762	SW3010A, Metals Prep
Q2202957008	EQB	MEP/11762	SW3010A, Metals Prep
Q2202957009	FB	MEP/11762	SW3010A, Metals Prep
MET/8994 - SW6010B ICP	-AES		
Q2202957001	CBL - 301I	MEP/11762	SW3010A, Metals Prep
Q2202957002	CBL - 302I	MEP/11762	SW3010A, Metals Prep
Q2202957004	CBL - 308I	MEP/11762	SW3010A, Metals Prep
Q2202957005	CBL - 340I	MEP/11762	SW3010A, Metals Prep
Q2202957006	CBL - 341I	MEP/11762	SW3010A, Metals Prep
Q2202957007	CBL - 641I	MEP/11762	SW3010A, Metals Prep
WET/25746 - SM2540C, TL	os		
Q2202957001	CBL - 301I		
WET/25747 - SM2540C, TI	os		
Q2202957002	CBL - 302I		
Q2202957003	CBL - 306I		
Q2202957004	CBL - 308I		
Q2202957006	CBL - 341I		
Q2202957007	CBL - 641I		
WET/25753 - E300.0, Anio	ns		
Q2202957001	CBL - 301I		
Q2202957002	CBL - 302I		
Q2202957003	CBL - 306I		
Q2202957004	CBL - 308I		
Q2202957005	CBL - 340I		
Q2202957006	CBL - 341I		
Q2202957007	CBL - 641I		
Q2202957008	EQB		
Q2202957009	FB		

QC Cross Reference)		
Lab ID	Sample ID	Prep Batch	Prep Method
WET/25754 - SM2540C, TDS			
Q2202957005	CBL - 340I		
Q2202957008	EQB		
Q2202957009	FB		
WET/25770 - E300.0, Anions			
Q2202957001	CBL - 301I		
Q2202957002	CBL - 302I		
Q2202957006	CBL - 341I		
Q2202957007	CBL - 641I		

End of Report

LCRA Environmental Laboratory Services Request for Analysis Chain-of-Custody Record

LCRA - Environmental Lab

Phone: (512) 730-6022 or 1-800-776-5272

Client:

Contact:

Phone:

LCRA

Jason Woods

(512)730-5339

3505 Montopolis Dr

Project:

Event#:

Collector:

Fax: (512) 730-6021

Austin, TX 78744 https://els.lcra.org

FPP - CCR - Groundwater

ab 10#: Q2202957

Client PO:

Report to: BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD MAIL STOP FPP La Grange, TX 78945 BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD

MAIL STOP FPP La Grange, TX 78945

			Colle	cted						С	ontai	ners					R	eques	ted An	alysis	*		
		Sample ID *	Date*	Time HH:MM*	Matrix* AQ = Aqueous DW = Drinking Water S = Solid T = Tissue	COMPOSITE Y/N	FILTERED Y/N	250PHNO3	500PU					2540-AMTDS	300.0AM-28	6010-AM	F-pH						
	1	CBL - 301I	1/26/27	954	AQ	N	N	1	1					×	х	X	×						
	2	CBL - 302I	1/27/22	1044	AQ	1	1	1	1	1			1/3	X	X	X	×					-17	
	3	CBL - 306I	1/27/22	1311	AQ			1	1					×	х	Х	×						
	4	CBL - 308I	רבורבון	1411	AQ	19		1	1					X	X	X	x						
	5	CBL - 340I	1/26/27	1047	AQ			1	1					×	х	X	×						
	6	CBL - 341I	1/27/17	1205	AQ			1	1					×	X	X	x						
	7	CBL - 641I	1/27/22	1205	AQ			1	1					×	x	х	x						
	9	EQB	1/28/22	957	AQ			1	1					×	X	X			1				
-	10	FB	1/24/27	1000	AQ	-	1	1	1					×	×	X							

Transfers	Relinquished By	ed By Date/Time		Received By Date/Time				Coole	er Temp	:	Client Special Instructions:	
1	Caltlet	1/28/22	1312	Makashid	01/28/2002-1	13:11	T#	Obs	CF	Corr.		
2				· ·			1129	1.1.0	to.1.c	1.2.c		
3											Lab Use Only:	

Note: Relinquishing sample(s) and signing the COC, client agrees to accept and is bound by the ELS Standard Terms and Conditions. All fields with an asterisk (*) are required to be completed.

Sample Date:

1/26/22

Sample Time:

954

Sample ID:

CBL3017

	Р	URGING INFORMATI	ON	
2 2 0 1 2 6 PURGE DATE (YY MM DD)	START PURGE (2400 Hr, Clock)	V= 3 WATER VOL IN CASING (Gallons)	3 X WELL VOL. IN	ACTUAL VOLUME PURGED (Gallons)
Purging Equipment	PURGING Dedicated IYII	G AND SAMPLING EC Samp		edicated IYII∭
Purging Device Sampling Device	A-Submersible Pump B-Perisataltic Pump C-Bladder Pump	D-Gas Litf Pump E-Venturi Pump F-Dipper/Bottle	G-Bailer H-Scoop/Shovel I-Piston Pump	X- Purging Other (Specify) X- Sampling Other (Specify)
Purging Material Sampling Material	A-Teflon B-Stainless Steel	C-Polypropylene D-PVC	E-Polyethylene	X- Purging Other (Specify)
Tubing-Purging Tubing-Sampling	A-Teflon B-Tygon C-Rope X-	D-Polypropylene E-Polyethylene	F-Silicon G-Combination teflon/Polypropylene	X - Sampling Other (Specify) X - Purging Other (Specify) X - Sampling Other (Specify)
Well Elevation	LIIII F	IELD MEASUREMEN (ft/msl) Land Si	TS urface Elevation	(ft/msl)
Depth to water From top of well casing	=Dw 35,65	Depth to From la	o water nd surface	(ft)
Groundwater Elevation		Ground	water Elevation	(ft/msi)
Well Depth = D	1 5 4.10	(ft) Pump F	Placement	11149 _(ft)
[627] (S	STD) [80] Specific Condi		mple Temp. 23,53	(°C)
Bottle		Analysis	3	Field Filt.Y/N
Type Size Preserv	vative	1 11101) 211		11010 1110 1711
P 2x 250mL HNC)3 Metals			1
P 250ml ICE				N
P 500mL ICE				N
Sample Appearance: Weather Conditions: Cl Other: Purge water	Clear Odor: _ loudy North wind & is Clear with no	none o 5-10-pl 43°	olor: <u>Clear</u> Turbid	ity: 4, 95
WELL VOL	UME CALCULATION	Well Appe	arance Normal: Yes	No
/=(D-D _w) (A) (7.48 galtft³) wher /= volume of standing water in		If No, Exp		
P = depth to bottom of well belo		Procedure	ELS Ground Water	SOP 5-7P
ow=depth to water below meas			1/26/22	
= cross sectional area		Date: Sampler:	FTICP	
" dia. A= 0.0218 4" dia. A =	0.0872	Employer:	LCRA	

2" dia. A= 0.0218)+" dia. A = 0.0872

1/27/22 Sample Date:

Sample Time:

1044 |C|B|L|3|0|2|I Sample ID:

PURGING INFORMATION

22012 PURGE DATE (YY MM DD)	7	0 9 5 3 START PURGE (2400 Hr. Clock)	V= WATER VOL II		3 x WELL VOL. IN (Gallons)		ACTUAL VOLUME PURGED (Gallons)
Purging Equipme	ent Dec	PURGING A	AND SAMPL			edicat	ed I ⊘ HNI
Purging Device Sampling Device	: 🗀 В. В-	Submersible Pump Perisataltic Pump Bladder Pump	D-Gas Litf E-Venturi F F-Dipper/E	- ⊃ump	G-Bailer H-Scoop/Shovel I-Piston Pump	X X	Purging Other (Specify)
Purging Material Sampling Materia		Teflon Stainless Steel	C-Polyprop D-PVC	pylene	E-Polyethylene	X X	Sampling Other (Specify) Purging Other (Specify)
Tubing-Purging Tubing-Sampling							Sampling Other (Specify) Purging Other (Specify) Sampling Other (Specify)
			ecify)				
Well Elevation			(ft/msl)		S face Elevation		(ft/msl)
Depth to water From top of well	casing =Dw	10,70		Depth to From lan	water d surface		(ft)
Groundwater Ele	vation			Groundw	ater Elevation		(ft/msl)
Well Depth = D		2 7 1 1	(ft)	Pump Pla	ecoment	1 1	1 23 _(ft)
6,3	2 (STD)		uS/cm	•	ple Temp. [2]1,[6]8	(°C)	111101(11)
Bot	tle		A	nalysis			Field Filt.Y/N
	Preservative						
P 2592	HNOS	Metals				_	1
P 500mc	ICE	Anion				-	N
Sample Appeara Weather Condition Other:	ons: Clear,				lor: <u>Cleas</u> Turbid	ity:	2.19
V=(D-D _w) (A) (7.48 ga V= volume of standing	•	ALCULATION		Well Appear If No, Expla	rance Normal: Yes X	No	
D= depth to bottom		uring point	F	Procedure:	ELS Ground wat	ec	SOP 5-70
D _w =depth to water be A= cross sectional ar		pint	ı	Date:	1/27/22		

Sampler: ET/CF

Employer: LCRA

Sample Date:

1/27/22

Sample Time:

Sample ID:

1205

CBL341I

PURGING INFORMATION

PURGE DATE (YY MM DD)	START PURGE (2400 Hr. Clock)	WATER VOL IN CASING (Gallons)	3 X WELL VOL. IN (Gallons)		ACTUAL VOLUME PURG (Gallons)
Purging Equipment[PURGING Dedicated (N I	AND SAMPLING EQ Samp	-	edicat	ed 🕅 IINI
Purging Device B Sampling Device B	A-Submersible Pump B-Perisataltic Pump C-Bladder Pump	D-Gas Litf Pump E-Venturi Pump F-Dipper/Bottle	G-Bailer H-Scoop/Shovel I-Piston Pump	X X	Purging Other (Specify) Sampling Other (Specify)
Purging Material F Sampling Material F	A-Teflon B-Stainless Steel	C-Polypropylene D-PVC	E-Polyethylene	X _ X	Purging Other (Specify)
Tubing-Purging Tubing-Sampling	A-Teflon B-Tygon C-Rope X	D-Polypropylene E-Polyethylene	F-Silicon G-Combination teflon/Polypropylene	X X	Sampling Other (Specify) Purging Other (Specify) Sampling Other (Specify)
Well Elevation	FIE	(ft/msl) Land Su	rs ırface Elevation	11	(ft/ms
Depth to water From top of well casing =D _v	. 116.48	Depth to	o water nd surface	Ц	(ft)
Groundwater Elevation		Ground	vater Elevation		(ft/ms
Well Depth = D	146.43	(ft) Pump P	lacement		38 (ft)
[6,26] (STD	Specific Conduc		nple Temp. <u>2 1, 8</u> 7	(°C)	
Bottle		Analysis			Field Filt.Y/N
Type Size Preservati	metals				N
P 500~ ICE	Anions				V
Sample Appearance: Clear Weather Conditions: Clear	eat Odor: v	10nc C	olor: <u>Clea</u> Turbic	dity:	0.75

WELL VOLUME CALCULATION

 $V{=}(D{-}D_w) \text{ (A) } (7.48 \text{ galtft}^3) \text{ where} \\ V{=} \text{ volume of standing water in well} \\ D{=} \text{ depth to bottom of well below measuring point} \\ D_w{=}\text{depth to water below measuring point} \\$

A= cross sectional area

2" dia. A= 0.0218) 4" dia. A = 0.0872

Well Appearance Normal: Yes X No If No, Explain

Procedure: ELS Ground water SOP 5-7D

Date: 1/27/27
Sampler: ET/CP
Employer: LCRA

Sample Date:

Sample Time:

CBL 340 Sample ID:

PURGING INFORMATION 0 9 5 9 220128 PURGE DATE START PURGE WATER VOL IN CASING ACTUAL VOLUME PURGED (YY MM DD) (Gallons) (Gallons) PURGING AND SAMPLING EQUIPMENT Purging Equipment Dedicated (V) INI Sampling Equipment Dedicated (Y) INI D-Gas Litf Pump G-Bailer **Puraina Device** A-Submersible Pump X-H-Scoop/Shovel E-Venturi Pump Purging Other (Specify) Sampling Device **B-Perisataltic Pump** F-Dipper/Bottle I-Piston Pump C-Bladder Pump Sampling Other (Specify) A-Teflon E-Polyethylene **Purging Material** X-Purging Other (Specify) D-PVC Sampling Material **B-Stainless Steel** X-Sampling Other (Specify) A-Teflon **Tubing-Purging** F-Silicon **D-Polypropylene** X-**Tubing-Sampling** B-Tygon E-Polyethylene G-Combination Purging Other (Spectfy) teflon/Polypropylene X-Sampling Other (Specify) C-Rope X-(Specify) FIELD MEASUREMENTS Well Flevation (ft/msl) Land Surface Elevation Depth to water Depth to water From top of well casing =Dw From land surface **Groundwater Elevation Groundwater Elevation** (ft/msl) 40.19 (11) 3 4 (11) Well Depth = p Pump Placement 1614121 1211.136 cc) 7723 uS/cm (STD) Sample Temp. Specific Conductivity Bottle Analysis Field Filt.Y/N Type Size | Preservative Metals 259ml H102 1 ICE Anions N HNOZ N 2x259 and N 2×500 Field Blank and Fa Blank Color. Clear Sample Appearance: Odor: Turbidity: none Weather Conditions: Partly Cloudy is Clear with Other: WELL VOLUME CALCULATION Well Appearance Normal: Yes If No, Explain V=(D-D_w) (A) (7.48 galtft³) where V= volume of standing water in well Procedure: FLS Ground water SOP 5-7D D= depth to bottom of well below measuring point Dw=depth to water below measuring point A= cross sectional area Sampler: 2" dia. A= 0.0218 4 dia. A = 0.0872

Employer: _

Sample Date:

1/27/22

Sample Time:

1311

Sample ID:

C18161301617

	PUR	GING INF	ORMATIO	N		
2 2 0 1 2 7 PURGE DATE (YY MM DD)	// 2/3/8 START PURGE (2400 Hr. Clock)		L IN CASING	3 X WELL VOL. IN (Gallons)		ACTUAL VOLUME PURGED (Gallons)
	PURGING A	ND SAMF				
Purging Equipment Dec	dicated WIINI		Sampli	ng Equipment D	edica	ted (Y) INI
Sampling Device 📙 ይ B-	Submersible Pump Perisataltic Pump Bladder Pump	D-Gas Li E-Ventur F-Dipper	i Pump	G-Bailer H-Scoop/Shovel I-Piston Pump	X- X-	Purging Other (Specify) Sampling Other (Specify)
0 0	Teflon Stainless Steel	C-Polypr D-PVC	opylene	E-Polyethylene	X	Purging Other (Specify)
	-Teflon -Tygon	D-Polypr E-Polyet		F-Silicon G-Combination teflon/Polypropylene	X X X-	Sampling Other (Specify) Purging Other (Specify)
(C-Rope X	(f _V)				Sampling Other (Specify)
	(-F		IDENELIT.			
Well Elevation		(ft/msl)	JREMENT: Land Sur	s face Elevation	Ц	(ft/msl)
Depth to water From top of well casing =Dw	1 8.71	(ft)	Depth to			(ft)
Groundwater Elevation			Groundwa	ater Elevation		(ft/msl)
Well Depth = D	114.80	ft)	Pump Pla	acement		2 _(ft)
687 (STD)		2 uS/cm		ole Temp. 2 . 5 3	(°C)	(II)
Bottle			Analysis			Field Filt.Y/N
Type Size Preservative						
P 2x2502 HVO3	Metals					1
P 250ml ICE	Anions					N
13 500 mL TCF	Anions	A 71				N
P 250ml HNO3	Metals Field	Bank	3			N
Sample Appearance: Class (Weather Conditions: Class (Other: Purge water is	3/m 56°			or: <i>Cleac</i> Turbid	iity:	10,5
WELL VOLUME C	ALCULATION	-	Well Appear	ance Normal: Yes	No	1
/=(D-D _w) (A) (7.48 galtft³) where /= volume of standing water in well D= depth to bottom of well below meas			If No, Explain			
O _w =depth to water below measuring po n= cross sectional area	oint		Date: 1/2			
" dia. A= 0.0218 4" dia. A = 0.0872				ET/CP		

Sam	ple	Date:

Sample Time:

Sample ID:

1/27/22 16 1411 CBL308

		PU	RGING INF	ORMATIC	ON		
PURGE DATE (YY MM DD)	/ 3 START PI (2400 Hr.	JRGE		1, 8 DL IN CASING Gallons)	3 x well vol. IN (Gallons)	1	ACTUAL VOLUME PURGED (Gallons)
Purging Equipment	Dedicate	PURGING ed I I N I	AND SAMI			edica	ted 🕅 INI
Purging Device Sampling Device	B_ B-Perisa	ersible Pump ataltic Pump er Pump	D-Gas L E-Ventu F-Dippe	ri Pump	G-Bailer H-Scoop/Shovel I-Piston Pump	X- X-	Purging Other (Specify) Sampling Other (Specify)
Purging Material Sampling Material	A-Teflor B-Stainl	ess Steel	C-Polypi D-PVC	ropylene	E-Polyethylene	X- X-	Purging Other (Specify)
Tubing-Purging Tubing-Sampling	A-Teffor B-Tygor	1	D-Polypi E-Polye		F-Silicon G-Combination teflon/Polypropylene	X X	Sampling Other (Specify) Purging Other (Specify)
	C-Rop		ecify)				Sampling Other (Specify)
Well Elevation Depth to water From top of well cas Groundwater Elevation Well Depth = D	ĭ	FIE 2438 135.38	(ft/msl) (ft) (ft)	Land Sul Depth to From lan	rface Elevation		(ft/msl) (ft/msl) (ft/msl)
636 PH	(STD)	83/	uS/cm	Sam	ple Temp. 2 2 0 5	(°C)	
Bottle				Analysis			Field Filt.Y/N
P 2x250m HA P 250mL I	CE A	itals nions nions					N N
Sample Appearance: Weather Conditions: Other: Purge w	Partly Clour	Odor: 1 Dy Calm Par with	58°		olor: <u>Clear</u> Turbid	lity:	3.93
V=(D-D _w) (A) (7.48 galtft³) V= volume of standing wat D= depth to bottom of we D _w =depth to water below	er in well I below measuring po			If No, Expla		, ter	
A= cross sectional area 2" dia. A= 0.0218 dia.				Date: Sampler: Employer:	ET/CP LCRA		

DATA USABILITY SUMMARY – LCRA Analytical Reports Q2221595, Q2225751, and Q2232067

Bullock, Bennett & Associates, LLC has reviewed the analytical data packages to be included in Appendix D of the Coal Combustion Residual Landfill 2022 Annual Groundwater Monitoring Report (Annual Groundwater Report) that was produced by LCRA Environmental Laboratory Services (ELS) for the analysis of groundwater samples collected in June 2022 at the Fayette Power Project (FPP) site. The Data were reviewed for conformance to the groundwater sampling and analysis requirements of 40 CFR § 257.93/30 TAC 352.931 and adherence to project objectives.

Objectives of the Data: To provide current data on concentrations of COCs in groundwater at the site for purposes of comparing Combustion Byproducts Landfill (CBL) compliance sample data to Appendix III Control Limits. To accomplish the stated data objectives, all field and laboratory procedures were performed in accordance with industry-established protocol, and the FPP Sampling and Analysis Plan. Appropriate quality assurance/quality control (QA/QC) measures were utilized. As described within the body of the Annual Groundwater Report, field QA/QC protocols integrated into this project followed industry standards and involved, among other factors:

- Use of sampling equipment decontamination protocol;
- Proper sample handling, preservation, and shipping procedures; and
- Maintenance of the sample chain of custody.

Also, as presented in the individual laboratory data packages, laboratory QA/QC procedures integrated into this project followed industry standards and involved, among others:

- Maintenance of sample custody;
- Application of laboratory cross references to field sample identifications and to specific QC samples;
- Use of laboratory control samples (LCSs);
- Use of matrix spike/matrix duplicate spikes (MS/MSDs);
- Use of appropriate method and method reporting limit (MRL);
- Reporting of non-detect results as less than the value of the MRL;
- Use of surrogate recoveries;
- Calculation of relative percent differences (RPDs);
- Use of method and preparation blanks; and
- The application of data qualifiers.

Data Reviewed: The data reviewed consisted of laboratory submittals and field data as follows:

- Project Objectives (i.e., recoveries and relative percent differences);
- Analytical Results, including, as applicable, data qualifiers;
- Documentation of preservation and holding times;
- Field and laboratory equipment calibrations;
- Laboratory blanks;
- Internal Laboratory Control Standards and Surrogate Recoveries;
- Laboratory Control Samples;
- Matrix Spike/Matrix Spike Duplicates;

- Field Precision as determined by duplicate samples collected in the field; and
- Field Procedures.

The results of the supporting quality control analyses for each of these QC factors were summarized in Quality Control narratives provided by the laboratory, and field/laboratory-completed chain of custody forms, the field forms, and the LCRA standard operational field procedures and the Groundwater Sampling Procedures. A review of each of these was included in this Data Usability Review.

Based on the Data Usability Review, the groundwater data are usable for their intended purpose. All samples were collected in the field using industry-standard operating procedures (SOPs), including decontamination protocol, sample preservation, and chain of custody.

Also, as presented in detail in the attached laboratory data packages, all appropriate QA/QC protocol were accomplished by the analytical laboratory. Where applicable, data have been appropriately qualified in the laboratory reports and the data, therefore, have been used accordingly.

It is noted that the July 2022 sampling event's Matrix Spike (MS) (1782140) recovery and associated Matrix Spike Duplicate (MSD) (1782141) recovery from the original sample (Lab ID: Q2221595004) for calcium analysis had high recoveries, outside of the established Control Limit ranges, and these results are appropriately flagged. Given that the Spike concentration (10 milligrams per liter) in these samples were approximately 74 times lower than the sample aliquot which was spiked, the high recoveries are not unexpected. Laboratory Control Sample Spike and Laboratory Control Sample Spike Duplicates were within acceptable recovery limits. Based on this information, the data are considered usable.

All exceptions were documented and described in the Quality Control narratives and no conditions with regard to laboratory control samples, matrix spike/matrix spike duplicates, sample preservation and holding times, or equipment calibrations were identified that would cause any of the data not to be useable.

August 19, 2022

BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD MAIL STOP FPP La Grange, TX 78945 BECKIE.LOEVE@LCRA.ORG

RE: Final Analytical Report Q2221595

Attn: BECKIE LOEVE

Enclosed are the analytical results for sample(s) received by LCRA Environmental Laboratory Services. Results reported herein conform to the most current NELAP standards, where applicable, unless otherwise narrated in the body of the report. This final report provides results related only to the sample(s) as received for the above referenced work order.

Thank you for selecting ELS for your analytical needs. If you have any questions regarding this report, please contact us at (512) 730-6022 or environmental.lab@lcra.org. We look forward to assisting you again.

Authorized for release by:

Jason Woods

Jason Woods Account Manager jason.woods@lcra.org

Enclosures:

Workorder: Q2221595
Workorder Description: FPPCCR

Client: LCRA Report To: BECKIE LOEVE

Profile: FPP GWMP CCR FAYETTE POWER PLANT 6549 POWER PLANT RD

Sampled By: COLT PETRI/ELLE TERRELL MAIL STOP FPP
La Grange, TX 78945

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported
Q2221595001	CBL - 301I	AQ	E300.0, Anions	07/27/2022 12:42	07/28/2022 15:21	3
Q2221595001	CBL - 301I	AQ	Field pH SM4500H+B TCEQ VOL 1	07/27/2022 12:42	07/28/2022 15:21	1
Q2221595001	CBL - 301I	AQ	SM2540C, TDS	07/27/2022 12:42	07/28/2022 15:21	1
Q2221595001	CBL - 301I	AQ	SW6010B ICP-AES	07/27/2022 12:42	07/28/2022 15:21	2
Q2221595002	CBL - 302I	AQ	E300.0, Anions	07/28/2022 11:26	07/28/2022 15:21	3
Q2221595002	CBL - 302I	AQ	Field pH SM4500H+B TCEQ VOL 1	07/28/2022 11:26	07/28/2022 15:21	1
Q2221595002	CBL - 302I	AQ	SM2540C, TDS	07/28/2022 11:26	07/28/2022 15:21	1
Q2221595002	CBL - 302I	AQ	SW6010B ICP-AES	07/28/2022 11:26	07/28/2022 15:21	2
Q2221595003	CBL - 306I	AQ	E300.0, Anions	07/28/2022 09:57	07/28/2022 15:21	3
Q2221595003	CBL - 306I	AQ	Field pH SM4500H+B TCEQ VOL 1	07/28/2022 09:57	07/28/2022 15:21	1
Q2221595003	CBL - 306I	AQ	SM2540C, TDS	07/28/2022 09:57	07/28/2022 15:21	1
Q2221595003	CBL - 306I	AQ	SW6010B ICP-AES	07/28/2022 09:57	07/28/2022 15:21	2
Q2221595004	CBL - 308I	AQ	E300.0, Anions	07/27/2022 11:37	07/28/2022 15:21	3
Q2221595004	CBL - 308I	AQ	Field pH SM4500H+B TCEQ VOL 1	07/27/2022 11:37	07/28/2022 15:21	1
Q2221595004	CBL - 308I	AQ	SM2540C, TDS	07/27/2022 11:37	07/28/2022 15:21	1
Q2221595004	CBL - 308I	AQ	SW6010B ICP-AES	07/27/2022 11:37	07/28/2022 15:21	2
Q2221595005	CBL - 340I	AQ	E300.0, Anions	07/28/2022 09:35	07/28/2022 15:21	3
Q2221595005	CBL - 340I	AQ	Field pH SM4500H+B TCEQ VOL 1	07/28/2022 09:35	07/28/2022 15:21	1
Q2221595005	CBL - 340I	AQ	SM2540C, TDS	07/28/2022 09:35	07/28/2022 15:21	1
Q2221595005	CBL - 340I	AQ	SW6010B ICP-AES	07/28/2022 09:35	07/28/2022 15:21	2
Q2221595006	CBL - 341I	AQ	E300.0, Anions	07/28/2022 12:33	07/28/2022 15:21	3
Q2221595006	CBL - 341I	AQ	Field pH SM4500H+B TCEQ VOL 1	07/28/2022 12:33	07/28/2022 15:21	1
Q2221595006	CBL - 341I	AQ	SM2540C, TDS	07/28/2022 12:33	07/28/2022 15:21	1
Q2221595006	CBL - 341I	AQ	SW6010B ICP-AES	07/28/2022 12:33	07/28/2022 15:21	2
Q2221595007	CBL - 640I	AQ	E300.0, Anions	07/28/2022 09:35	07/28/2022 15:21	3
Q2221595007	CBL - 640I	AQ	Field pH SM4500H+B TCEQ VOL 1	07/28/2022 09:35	07/28/2022 15:21	1
Q2221595007	CBL - 640I	AQ	SM2540C, TDS	07/28/2022 09:35	07/28/2022 15:21	1
Q2221595007	CBL - 640I	AQ	SW6010B ICP-AES	07/28/2022 09:35	07/28/2022 15:21	2
Q2221595008	EQB	AQ	E300.0, Anions	07/28/2022 11:30	07/28/2022 15:21	3
Q2221595008	EQB	AQ	SM2540C, TDS	07/28/2022 11:30	07/28/2022 15:21	1

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported
Q2221595008	EQB	AQ	SW6010B ICP-AES	07/28/2022 11:30	07/28/2022 15:21	2
Q2221595009	FB	AQ	E300.0, Anions	07/28/2022 11:30	07/28/2022 15:21	3
Q2221595009	FB	AQ	SM2540C, TDS	07/28/2022 11:30	07/28/2022 15:21	1
Q2221595009	FB	AQ	SW6010B ICP-AES	07/28/2022 11:30	07/28/2022 15:21	2

Report Definitions

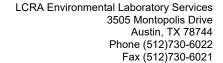
MRL - Minimum Reporting Limit

LOD - Limit of Detection

ML - Maximum Limit - Client Specified MCL - Maximum Contaminant Level

LOQ - Limit of Quantitation - Client Specified

DF - Dilution Factor


(S) - Surrogate Spike

MDL - Method Detection Limit

RPD - Relative Percent Difference

Qualifier Definitions

- J Analyte detected below quantitation limit
- R RPD outside duplicate precision limit
- S Spike recovery outside limit
- B- Analyte detected in method blank
- N Not Accredited
- M Analyte Detected Above Maximum Contaminant Level
- SL Spike Recovery Low
- SH Spike Recovery High
- H Analyzed Past Hold Time
- **CR Confirmed Result**
- CH Result confirmed by historical data

Workorder Summary

Analytical Results

Client ID: **LCRA** Date Collected: 07/27/2022 12:42 Matrix: Aqueous SAMPLE Lab ID: Q2221595001 Date Received: 07/28/2022 15:21 Sample Type:

Sample ID: CBL - 301I Location: Project ID: FPP GWMP CCR Facility: Sample Point:

			ou.		•						
Field Parameters (Field	pH SM4500	H+B TCE	Q VOL 1)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
pH	6.08	pН				1	07/27/2022 12:42	CCP	07/27/2022 12:42	CCP	N
INORGANICS (E300.0, A	lnions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	1840	mg/L	50.0	20.0		50	07/29/2022 16:16	ВС	07/29/2022 16:16	ВС	
Sulfate	285	mg/L	50.0	20.0		50	07/29/2022 16:16	ВС	07/29/2022 16:16	ВС	
INORGANICS (E300.0, A	Inions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Fluoride	0.156	mg/L	0.100	0.0400		10	08/01/2022 23:06	ВС	08/01/2022 23:06	ВС	
INORGANICS (SW3010A	A, Metals Pr	ep/SW601	OB ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Calcium Total	1010	mg/L	1.00	0.350		5	08/04/2022 15:39	FM	08/17/2022 14:37	FM	
INORGANICS (SW3010A	A, Metals Pr	ep/SW601	OB ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	0.0850	mg/L	0.0500	0.0200		1	08/04/2022 15:39	FM	08/08/2022 19:50	FM	
TOTAL DISSOLVED SO	LIDS (SM25	40C, TDS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Total Dissolved Solids(TDS)	4590	mg/L	250	250		100	08/02/2022 09:49	ML	08/02/2022 09:49	ML	_

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 07/28/2022 11:26
 Matrix:
 Aqueous

 Lab ID:
 Q2221595002
 Date Received:
 07/28/2022 15:21
 Sample Type:
 SAMPLE

Sample ID:CBL - 302ILocation:Project ID:FPP GWMP CCRFacility:Sample Point:

5120 mg/L

250

250

d pH SM4500	H+B TCE	Q VOL 1)								
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
6.21	pН				1	07/28/2022 11:26	ССР	07/28/2022 11:26	ССР	N
Anions)										
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
1300	mg/L	50.0	20.0		50	07/29/2022 16:37	ВС	07/29/2022 16:37	ВС	
1300	mg/L	50.0	20.0		50	07/29/2022 16:37	ВС	07/29/2022 16:37	ВС	
Anions)										
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
0.165	mg/L	0.0100	0.00400		1	08/01/2022 23:28	ВС	08/01/2022 23:28	ВС	
0A, Metals Pr	ep/SW601	OB ICP-A	ES)							
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
750	mg/L	1.00	0.350		5	08/04/2022 15:39	FM	08/17/2022 14:42	FM	
0A, Metals Pr	ep/SW601	OB ICP-A	ES)							
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
<0.0500	mg/L	0.0500	0.0200		1	08/04/2022 15:39	FM	08/08/2022 19:55	FM	
OLIDS (SM25	40C, TDS)								
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
	Results 6.21 Anions) Results 1300 1300 Anions) Results 0.165 0A, Metals Proceedings Results 750 OA, Metals Proceedings Results <0.0500 OLIDS (SM25)	Results Units	Results	Results	Results	Results	Results Units MRL LOD ML DF Prepared	Results Units MRL LOD ML DF Prepared By	Results Units MRL LOD ML DF Prepared By Analyzed	Results Units MRL LOD ML DF Prepared By Analyzed By

100

08/02/2022 09:49

ML

08/02/2022 09:49

ML

Analytical Results

Total Dissolved Solids(TDS)

 Client ID:
 LCRA
 Date Collected:
 07/28/2022 09:57
 Matrix:
 Aqueous

 Lab ID:
 Q2221595003
 Date Received:
 07/28/2022 15:21
 Sample Type:
 SAMPLE

 Sample ID:
 CBL - 306I
 Location:

 Project ID:
 FPP GWMP CCR
 Facility:

 Sample Point:

1540 mg/L

125

125

Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
pН	6.70	рН				1	07/28/2022 09:57	CCP	07/28/2022 09:57	CCP	N
INORGANICS (E30	0.0, Anions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	261	mg/L	25.0	10.0		25	07/29/2022 16:58	ВС	07/29/2022 16:58	ВС	
Fluoride	2.26	mg/L	0.250	0.100		25	07/29/2022 16:58	ВС	07/29/2022 16:58	ВС	
Sulfate	348	mg/L	25.0	10.0		25	07/29/2022 16:58	ВС	07/29/2022 16:58	ВС	
INORGANICS (SW	3010A, Metals Pre	ep/SW601	0B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	0.110	mg/L	0.0500	0.0200		1	08/04/2022 15:39	FM	08/08/2022 20:00	FM	
Calcium Total	182	mg/L	0.200	0.0700		1	08/04/2022 15:39	FM	08/08/2022 20:00	FM	
TOTAL DISSOLVE	D SOLIDS (SM254	40C, TDS									
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier

50

08/02/2022 09:49

ML

08/02/2022 09:49

ML

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 07/27/2022 11:37
 Matrix:
 Aqueous

 Lab ID:
 Q2221595004
 Date Received:
 07/28/2022 15:21
 Sample Type:
 SAMPLE

 Sample ID:
 CBL - 308I
 Location:

 Project ID:
 FPP GWMP CCR
 Facility:

 Sample Point:

6840 mg/L

500

500

				•								
Field Parameters (Field	pH SM4500	H+B TCE	Q VOL 1)									
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier	
pH	6.23	pН				1	07/27/2022 11:37	CCP	07/27/2022 11:37	CCP	N	
INORGANICS (E300.0, Anions)												
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier	
Chloride	2470	mg/L	50.0	20.0		50	07/29/2022 17:19	ВС	07/29/2022 17:19	ВС		
Fluoride	1.43	mg/L	0.500	0.200		50	07/29/2022 17:19	ВС	07/29/2022 17:19	ВС		
Sulfate	1190	mg/L	50.0	20.0		50	07/29/2022 17:19	ВС	07/29/2022 17:19	ВС		
INORGANICS (SW3010)	A, Metals Pr	ep/SW601	10B ICP-A	ES)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier	
Boron Total	0.0790	mg/L	0.0500	0.0200		1	08/04/2022 15:39	FM	08/08/2022 20:05	FM		
INORGANICS (SW3010)	A, Metals Pr	ep/SW601	10B ICP-A	ES)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier	
Calcium Total	736	mg/L	1.00	0.350		5	08/04/2022 15:39	FM	08/17/2022 14:47	FM		
TOTAL DISSOLVED SO	LIDS (SM25	40C, TDS)									
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier	

200

08/02/2022 09:49

ML

08/02/2022 09:49

ML

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 07/28/2022 09:35
 Matrix:
 Aqueous

 Lab ID:
 Q2221595005
 Date Received:
 07/28/2022 15:21
 Sample Type:
 SAMPLE

Sample ID: CBL - 340I Location:
Project ID: FPP GWMP CCR Facility:
Sample Point:

5490 mg/L

250

250

			Jai	iipie i oiiit							
Field Parameters (Fi	ield pH SM4500	н+в тсе	Q VOL 1)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
рН	6.35	рН				1	07/28/2022 09:35	CCP	07/28/2022 09:35	CCP	N
INORGANICS (E300.	.0, Anions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	2160	mg/L	50.0	20.0		50	07/29/2022 17:39	ВС	07/29/2022 17:39	ВС	
Fluoride	0.865	mg/L	0.500	0.200		50	07/29/2022 17:39	ВС	07/29/2022 17:39	ВС	
Sulfate	614	mg/L	50.0	20.0		50	07/29/2022 17:39	ВС	07/29/2022 17:39	ВС	
INORGANICS (SW30	010A, Metals Pro	ep/SW601	OB ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Calcium Total	538	mg/L	0.400	0.140		2	08/04/2022 15:39	FM	08/17/2022 14:51	FM	
INORGANICS (SW30	010A, Metals Pro	ep/SW601	OB ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	0.285	mg/L	0.0500	0.0200		1	08/04/2022 15:39	FM	08/08/2022 20:09	FM	
TOTAL DISSOLVED	SOLIDS (SM25	40C, TDS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier

100

08/02/2022 09:49

ML

08/02/2022 09:49

ML

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 07/28/2022 12:33
 Matrix:
 Aqueous

 Lab ID:
 Q2221595006
 Date Received:
 07/28/2022 15:21
 Sample Type:
 SAMPLE

Sample ID:CBL - 3411Location:Project ID:FPP GWMP CCRFacility:Sample Point:

4910 mg/L

250

250

pH SM45001	н+в тсе	Q VOL 1)								
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
6.16	рН				1	07/28/2022 12:33	ССР	07/28/2022 12:33	ССР	N
Anions)										
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
0.141	mg/L	0.100	0.0400		10	08/01/2022 23:51	ВС	08/01/2022 23:51	ВС	
Anions)										
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
1690	mg/L	50.0	20.0		50	07/29/2022 18:00	ВС	07/29/2022 18:00	ВС	
296	mg/L	50.0	20.0		50	07/29/2022 18:00	ВС	07/29/2022 18:00	ВС	
A, Metals Pre	ep/SW601	0B ICP-A	ES)							
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
704	mg/L	1.00	0.350		5	08/04/2022 15:39	FM	08/17/2022 14:56	FM	
A, Metals Pre	ep/SW601	0B ICP-A	ES)							
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
0.115	mg/L	0.0500	0.0200		1	08/04/2022 15:39	FM	08/08/2022 20:14	FM	
LIDS (SM25	40C, TDS)									
Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
	Results 6.16 Anions) Results 0.141 Anions) Results 1690 296 A, Metals Pro Results 704 A, Metals Pro Results 0.115	Results	6.16 pH Anions) Results Units MRL 0.141 mg/L 0.100 Anions) Results Units MRL 1690 mg/L 50.0 296 mg/L 50.0 A, Metals Prep/SW6010B ICP-A Results Units MRL 704 mg/L 1.00 A, Metals Prep/SW6010B ICP-A Results Units MRL 0.115 mg/L 0.0500 OLIDS (SM2540C, TDS)	Results Units MRL LOD	Results Units MRL LOD ML	Results Units MRL LOD ML DF 6.16 pH 1 Anions) Results Units MRL LOD ML DF 0.141 mg/L 0.100 0.0400 10 Anions) Results Units MRL LOD ML DF 1690 mg/L 50.0 20.0 50 296 mg/L 50.0 20.0 50 A, Metals Prep/SW6010B ICP-AES) Results Units MRL LOD ML DF 0.115 mg/L 0.0500 0.0200 1 DF 0LIDS (SM2540C, TDS) 0.0500 0.0200 1	Results Units MRL LOD ML DF Prepared	Results Units MRL LOD ML DF Prepared By	Results Units MRL LOD ML DF Prepared By Analyzed	Results Units MRL LOD ML DF Prepared By Analyzed By

100

08/02/2022 09:49

ML

08/02/2022 09:49

ML

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 07/28/2022 09:35
 Matrix:
 Aqueous

 Lab ID:
 Q2221595007
 Date Received:
 07/28/2022 15:21
 Sample Type:
 SAMPLE

Sample ID:CBL - 640ILocation:Project ID:FPP GWMP CCRFacility:Sample Point:

5300 mg/L

250

250

			Sar	npie Point	:						
Field Parameters (Field	pH SM4500	н+в тсе	EQ VOL 1)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
pH	6.35	рН				1	07/28/2022 09:35	CCP	07/28/2022 09:35	CCP	N
INORGANICS (E300.0, A	Anions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	2160	mg/L	50.0	20.0		50	07/29/2022 18:21	ВС	07/29/2022 18:21	ВС	
Fluoride	0.775	mg/L	0.500	0.200		50	07/29/2022 18:21	ВС	07/29/2022 18:21	ВС	
Sulfate	614	mg/L	50.0	20.0		50	07/29/2022 18:21	ВС	07/29/2022 18:21	ВС	
INORGANICS (SW3010)	A, Metals Pro	ep/SW60	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	0.270	mg/L	0.0500	0.0200		1	08/04/2022 15:39	FM	08/08/2022 20:18	FM	
INORGANICS (SW3010)	A, Metals Pro	ep/SW60	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Calcium Total	495	mg/L	0.400	0.140		2	08/04/2022 15:39	FM	08/17/2022 15:01	FM	
TOTAL DISSOLVED SO	LIDS (SM25	40C, TDS	5)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier

100

08/02/2022 09:49

ML

08/02/2022 09:49

ML

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 07/28/2022 11:30
 Matrix:
 Aqueous

 Lab ID:
 Q2221595008
 Date Received:
 07/28/2022 15:21
 Sample Type:
 SAMPLE

Sample ID: EQB Location:

Project ID: FPP GWMP CCR Facility:
Sample Point:

			San	npie Point	:						
INORGANICS (E300.0, A	nions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	<1.00	mg/L	1.00	0.400		1	07/29/2022 15:55	ВС	07/29/2022 15:55	ВС	
Fluoride	<0.0100	mg/L	0.0100	0.00400		1	07/29/2022 15:55	ВС	07/29/2022 15:55	ВС	
Sulfate	<1.00	mg/L	1.00	0.400		1	07/29/2022 15:55	ВС	07/29/2022 15:55	ВС	
INORGANICS (SW3010A	N, Metals Pre	ep/SW60	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500	mg/L	0.0500	0.0200		1	08/04/2022 15:39	FM	08/08/2022 20:23	FM	
Calcium Total	<0.200	mg/L	0.200	0.0700		1	08/04/2022 15:39	FM	08/08/2022 20:23	FM	
TOTAL DISSOLVED SO	LIDS (SM254	40C, TDS	;)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Total Dissolved Solids(TDS)	<25.0	mg/L	25.0	25.0		10	08/03/2022 08:08	ML	08/03/2022 08:08	ML	

Analytical Results

Client ID: LCRA Date Collected: 07/28/2022 11:30 Matrix: Aqueous Lab ID: Q2221595009 **Date Received:** 07/28/2022 15:21 Sample Type: SAMPLE

Sample ID: FB

Total Dissolved Solids(TDS)

Location: Project ID: FPP GWMP CCR Facility:

<25.0 mg/L

25.0

25.0

			San	nple Point	:						
INORGANICS (E300	0.0, Anions)										
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Chloride	<1.00	mg/L	1.00	0.400		1	07/29/2022 21:09	ВС	07/29/2022 21:09	ВС	
Fluoride	<0.0100	mg/L	0.0100	0.00400		1	07/29/2022 21:09	ВС	07/29/2022 21:09	ВС	
Sulfate	<1.00	mg/L	1.00	0.400		1	07/29/2022 21:09	ВС	07/29/2022 21:09	ВС	
INORGANICS (SW3	010A, Metals Pro	ep/SW601	10B ICP-A	ES)							
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500	mg/L	0.0500	0.0200		1	08/04/2022 15:39	FM	08/08/2022 20:27	FM	
Calcium Total	<0.200	mg/L	0.200	0.0700		1	08/04/2022 15:39	FM	08/08/2022 20:27	FM	
TOTAL DISSOLVED	SOLIDS (SM25	40C, TDS)								
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier

10

08/03/2022 08:08

ML

08/03/2022 08:08

ML

QC Batch: MET/9335 Analysis Method: SW6010B ICP-AES

Preparation Method: SW3010A, Metals Prep

Associated Lab IDs: Q2221595001, Q2221595002, Q2221595003, Q2221595004, Q2221595005, Q2221595006, Q2221595007,

Q2221595008, Q2221595009

	Matrix Spike	(1782140); Matrix S	spike Duplicate (*	1782141); Orio	ginal: Q2221595004
--	--------------	---------------------	--------------------	----------------	--------------------

Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Boron Total	mg/L	1.0	1.08	99.8	75 - 125	1.07	99.3	0.93	20	
Calcium Total	mg/L	10.0	762.0	257.0	75 - 125	759.0	231.0	0.39 4	20	SH

Lab Control Sample (1782137); Lab Control Sample Duplicate (1782138)

Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Boron Total	mg/L	1.0	1.01	101.0	80 - 120	0.987	98.7	2.3	20	
Calcium Total	mg/L	10.0	9.25	92.5	80 - 120	9.23	92.3	0.21 6	20	

Method Blank(1782136)

Parameter	Units	Results	MRL	LOD	Qualifier
Boron Total	mg/L	<0.0500	0.05	0.02	
Calcium Total	mg/L	<0.200	0.2	0.07	

QC Batch: WET/26859 Analysis Method: E300.0, Anions

Preparation Method: E300.0, Anions

Associated Lab IDs: Q2221595001, Q2221595002, Q2221595003, Q2221595004, Q2221595005, Q2221595006, Q2221595007,

Q2221595008

Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Chloride	mg/L	20.0	18.9	94.7	80 - 120	18.9	94.6	0.0	20	
Fluoride	mg/L	1.0	0.98	98.0	80 - 120	0.965	96.5	1.54	20	
Sulfate	mg/L	20.0	19.0	94.8	80 - 120	19.0	94.8	0.0	20	

Laboratory Fortified Blank (1779900)

		Spiked		Spike		
Parameter	Units	Amount	Spike Result	Recovery%	Control Limits %	Qualifier
Chloride	mg/L	30.0	29.1	96.9	90 - 110	
Fluoride	mg/L	1.0	0.966	96.6	90 - 110	
Sulfate	mg/L	30.0	29.6	98.8	90 - 110	

Laboratory Reagent Blank(1779897)

Parameter	Units	Results	MRL	LOD	Qualifier
Chloride	mg/L	<1.00	1.0	0.4	_
Fluoride	mg/L	<0.0100	0.01	0.004	
Sulfate	mg/L	<1.00	1.0	0.4	

QC Batch: WET/26859 Analysis Method: E300.0, Anions

Preparation Method: E300.0, Anions

Associated Lab IDs: Q2221595001, Q2221595002, Q2221595003, Q2221595004, Q2221595005, Q2221595006, Q2221595007,

Q2221595008, Q2221595009

Limit of Quantitation Check (1779901)

		Spiked		Spike		
Parameter	Units	Amount	Spike Result	Recovery%	Control Limits %	Qualifier
Chloride	mg/L	5.0	3.91	78.3	70 - 130	
Fluoride	mg/L	0.02	0.0206	103.0	70 - 130	
Sulfate	mg/L	5.0	4.1	82.0	70 - 130	

Method Reporting Limit Check (1779899)

		Spiked		Spike		
Parameter	Units	Amount	Spike Result	Recovery%	Control Limits %	Qualifier
Chloride	mg/L	1.0	0.697	69.7	50 - 150	
Fluoride	mg/L	0.01	0.011	110.0	50 - 150	
Sulfate	mg/L	1.0	0.774	77.4	50 - 150	

QC Batch: WET/26859

Preparation Method: E300.0, Anions **Associated Lab IDs:** Q2221595009

Analysis Method: E300.0, Anions

Laboratory Fortified Blank (1779906)

		Spiked		Spike		
Parameter	Units	Amount	Spike Result	Recovery%	Control Limits %	Qualifier
Chloride	mg/L	30.0	29.0	96.8	90 - 110	
Fluoride	mg/L	1.0	0.983	98.3	90 - 110	
Sulfate	mg/L	30.0	29.5	98.2	90 - 110	

Laboratory Reagent Blank(1779905)

Parameter	Units	Results	MRL	LOD	Qualifier
Chloride	mg/L	<1.00	1.0	0.4	
Fluoride	mg/L	<0.0100	0.01	0.004	
Sulfate	mg/L	<1.00	1.0	0.4	

Laboratory Fortified Matrix (1779907); Lab Fortified Matrix Duplicate (1779908); Original: Q2221595009

Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Chloride	mg/L	20.0	18.6	93.0	80 - 120	18.5	92.5	0.53 9	20	_
Fluoride	mg/L	1.0	0.953	95.3	80 - 120	0.956	95.6	0.31 4	20	
Sulfate	mg/L	20.0	18.7	93.5	80 - 120	18.7	93.4	0.0	20	

QC Batch: WET/26866 Analysis Method: E300.0, Anions

Preparation Method: E300.0, Anions

Associated Lab IDs: Q2221595001, Q2221595002, Q2221595006

Method Reporting Lim	nit Check (1780	142)								
Parameter			Units	Spiked Amount	Spike	Result	Spike Recovery%		Control Limits %	Qualifier
Fluoride			mg/L	0.01	0.0)11	110.0		50 - 150	
Limit of Quantitation (Check (1780144	4)								
Parameter			Units	Spiked Amount	Spike	Result	Spike Recovery	%	Control Limits %	Qualifier
Fluoride			mg/L	0.02	0.0	195	97.5		70 - 130	
Duplicate (1780158); C	Original Q22216	78005								
Parameter				Units	Original	Dup	licate F	RPD	RPD Limit	Qualifier
Fluoride				mg/L	2.44	2	.26 7	.66		
Laboratory Fortified B	Blank (1780149)									
Parameter			Units	Spiked Amount	Spike	Result	Spike Recovery	%	Control Limits %	Qualifier
Fluoride			mg/L	1.0	1.	02	102.0		90 - 110	
Laboratory Reagent B	lank(1780148)									
Parameter				Units		Results	M	RL	LOD	Qualifier
Fluoride				mg/L		<0.0100	0.	01	0.004	
Laboratory Fortified Matrix (1780150); Lab Fortified Matrix Duplicate (1780151); Original: Q2221715002										
Parameter	Units	Spiked Amount	Spike Result		Control Limits %	Duplica Result			RPD RPD Limit	Qualifier
Fluoride	mg/L	10.0	11.1	92.7	80 - 120	11.8	100.0) (5.11 20	

Quality Control Results

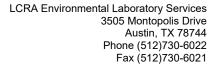
QC Batch: WET/26873 Analysis Method: SM2540C, TDS

Preparation Method: SM2540C, TDS

Associated Lab IDs: Q2221595001, Q2221595002, Q2221595003, Q2221595004, Q2221595005, Q2221595006, Q2221595007

Duplicate (1780722); Original Q2221505004								
Parameter	Uı	nits	Original	Dupl	icate	RPD	RPD Limit	Qualifier
Total Dissolved Solids(TDS)	mg/L		1210.0	122	20.0	0.823	20	
Matrix Spike (1780723); Original: Q2221505004								
Parameter	Units	Spiked Amount	Spike F	Result	•	ike very%	Control Limits %	Qualifier
Total Dissolved Solids(TDS)	mg/L	400.0	1580.0		92.5		70 - 130	
Method Blank(1780720)								
Parameter		Units	ı	Results		MRL	LOD	Qualifier
Total Dissolved Solids(TDS)		mg/L		<25.0		25.0	25.0	
Lab Control Sample (1780721)								
Parameter	Units	Spiked Amount	Spike F	Result	•	ike very%	Control Limits %	Qualifier
Total Dissolved Solids(TDS)	mg/L	400.0	355	5.0	88	3.8	80 - 120	

Quality Control Results


QC Batch: WET/26883

Preparation Method: SM2540C, TDS

Associated Lab IDs: Q2221595008, Q2221595009

Analysis Method: SM2540C, TDS

Duplicate (1781343); Original Q2221595008								
Parameter	ι	Jnits	Original	Dupli	cate	RPD	RPD Limit	Qualifier
Total Dissolved Solids(TDS)	r	ng/L	-3.0	-13	.0	-125.0	20	
Lab Control Sample (1781342)								
Parameter	Units	Spiked Amount	Spike Re	sult	Spik Recove		Control Limits %	Qualifier
Total Dissolved Solids(TDS)	mg/L	400.0	381.0)	95.2	2	80 - 120	
Matrix Spike (1781344); Original: Q2221595008								
Parameter	Units	Spiked Amount	Spike Re	sult	Spik Recove		Control Limits %	Qualifier
Total Dissolved Solids(TDS)	mg/L	400.0	350.0)	87.5	5	70 - 130	
Method Blank(1781341)								
Parameter		Units	Re	sults		MRL	LOD	Qualifier
Total Dissolved Solids(TDS)		mg/L	<	25.0		25.0	25.0	

QC Cross Reference			
Lab ID	Sample ID	Prep Batch	Prep Method
MET/9335 - SW6010B ICP-AES			
Q2221595001	CBL - 301I	MEP/12162	SW3010A, Metals Prep
Q2221595002	CBL - 302I	MEP/12162	SW3010A, Metals Prep
Q2221595003	CBL - 306I	MEP/12162	SW3010A, Metals Prep
Q2221595004	CBL - 308I	MEP/12162	SW3010A, Metals Prep
Q2221595005	CBL - 340I	MEP/12162	SW3010A, Metals Prep
Q2221595006	CBL - 341I	MEP/12162	SW3010A, Metals Prep
Q2221595007	CBL - 640I	MEP/12162	SW3010A, Metals Prep
Q2221595008	EQB	MEP/12162	SW3010A, Metals Prep
Q2221595009	FB	MEP/12162	SW3010A, Metals Prep
MET/9350 - SW6010B ICP-AES			
Q2221595001	CBL - 301I	MEP/12162	SW3010A, Metals Prep
Q2221595002	CBL - 302I	MEP/12162	SW3010A, Metals Prep
Q2221595004	CBL - 308I	MEP/12162	SW3010A, Metals Prep
Q2221595005	CBL - 340I	MEP/12162	SW3010A, Metals Prep
Q2221595006	CBL - 341I	MEP/12162	SW3010A, Metals Prep
Q2221595007	CBL - 640I	MEP/12162	SW3010A, Metals Prep
WET/26859 - E300.0, Anions			
Q2221595001	CBL - 301I		
Q2221595002	CBL - 302I		
Q2221595003	CBL - 306I		
Q2221595004	CBL - 308I		
Q2221595005	CBL - 340I		
Q2221595006	CBL - 341I		
Q2221595007	CBL - 640I		
Q2221595008	EQB		
Q2221595009	FB		
WET/26866 - E300.0, Anions			
Q2221595001	CBL - 301I		
Q2221595002	CBL - 302I		
Q2221595006	CBL - 341I		

QC Cross Reference			
Lab ID	Sample ID	Prep Batch	Prep Method
WET/26873 - SM2540C, TDS			
Q2221595001	CBL - 301I		
Q2221595002	CBL - 302I		
Q2221595003	CBL - 306I		
Q2221595004	CBL - 308I		
Q2221595005	CBL - 340I		
Q2221595006	CBL - 341I		
Q2221595007	CBL - 640I		
WET/26883 - SM2540C, TDS			
Q2221595008	EQB		
Q2221595009	FB		

LCRA Environmental L	aboratory	Services
----------------------	-----------	----------

Request for Analysis Chain-of-Custody Record Phone: (512) 730-6022 or 1-800-776-5272 LCRA - Environmental Lab 3505 Montopolis Dr Fax: (512) 730-6021 Lab ID# Austin, TX 78744 https://els.lcra.org Client PO: BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD MAIL STOP FPP La Grange, TX, 78945 BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD MAIL STOP FPP La Grange TX 76945 Project: FPP - CCR - Groundwater Client: LCRA Invoice to Collector Elle Terrell Colt Petri Contact Event#: Phone: COMPOSITE Y/N FILTERED Y/N 2540-AMTDS 300.0AM-28 250PHN03 6010-AM 500PU F-pH Date* Time HH:MM* CBL - 3011 7/27/22 AQ 1 1 X X X 1242 661 **CBL - 3021** 2 1 1 X X X 7/28/20 AQ X 1126 607 CBL - 3061 . 3 7/28/22 1 1 X AQ X X 957 003 CBL - 3081 4 7/27/22 1 1 X X 1137 AQ X 001 CBL - 3401 5 935 AQ 1 X X X 7/28/22 005 CBL - 3411 6 AQ 1 1 X X 7/28/22 1233 1006 CBL - 6401 7/28/22 601 935 AQ 1 1 X X EQB 9 7/28/27 1 1 1130 AQ X X X 604 FB 10 7/28/6 1130 1 1 X AQ X X Client Special Instructions Religquished By Date/Time Received By Date/Time Cooler Temp: Cattlet 1 7/28/22 7/28/22 T# Obs CF Corr 1521 2 1R9 1.3 0.0 1.3 Lab Use Only 3 Note: Relinquishing sample(s) and signing the COC, client agrees to accept and is bound by the ELS Standard Terms and Conditions. All fields with an asterisk (*) are required to be completed.

End of Report

220727

Field Information Form

7/27/20

W

Sample Time:

1242

Sample ID:

CBL 30/17

PURGING INFORMATION		
V=	11 19.13	11110

PURGE DATE WATER VOL IN CASING START PURGE ACTUAL VOLUME PURGED 3 X WELL VOL. IN (Gallons) (YY MM DD) (2400 Hr. Clock) (Gallons) **PURGING AND SAMPLING EQUIPMENT Purging Equipment** Dedicated IYI/N Sampling Equipment Dedicated IY (N) **D-Gas Litf Pump** G-Bailer **Purging Device** A-Submersible Pump X-Purging Other (Specify) E-Venturi Pump H-Scoop/Shovel Sampling Device **B-Perisataltic Pump** F-Dipper/Bottle I-Piston Pump C-Bladder Pump Sampling Other (Specify) **Purging Material** A-Teflon C-Polypropylene E-Polyethylene D-PVC Purging Other (Specify) Sampling Material **B-Stainless Steel** Sampling Other (Specify) **Tubing-Purging** A-Teflon F-Silicon D-Polypropylene B-Tygon G-Combination **Tubing-Sampling** E-Polyethylene Purging Other (Spectfy) teflon/Polypropylene Sampling Other (Specify) C-Rope X-

(Specify) FIELD MEASUREMENTS Well Elevation (ft/msl) Land Surface Elevation Depth to water Depth to water From top of well casing =Dw From land surface Groundwater Elevation Groundwater Elevation 5/1 (ft) Well Depth = p **Pump Placement** 6.08 7644 us/cm 27. 23 (°C) (STD) Sample Temp.

Bottle		ottle	Analysis	Field Filt.Y/N
Туре	Size	Preservative		
P	250nl	HNO3	Metals	n
P	250ml	TCE	Anion	N
P	250mi	HVOR	Fied Blank #3	N

Specific Conductivity

Sample Appearance:				Clear Turbio	lity: 22.5°
Weather Conditions:	Partly Cloudy	South wind	5mph 100°		
Other: Auge wo	ster is milky	, yellow beco	ming clear a	fter 2 gc/6	n5

WELL VOLUME CALCULATION

V=(D-D_w) (A) (7.48 galtft³) where
V= volume of standing water in well
D= depth to bottom of well below measuring point
D_w=depth to water below measuring point
A= cross sectional area
2 dia. A= 0.0218 d' dia. A = 0.0872

Well Appearance Normal: Yes	1	No
If No, Explain		
Procedure: 2/6	0	. 1 1

Procedure: ELS Ground Water Sol 5-71)

Date: 7/27/22

Sampler: ET/CP

Employer: LCRX

Field Information Form

Sample Date: 7/28/22

Sample Time: 1/26

Sample ID:

PURGING INFORMATION

220728 PURGE DATE (YY MM DD)	START PURGE (2400 Hr. Clock)		2, 4 DL IN CASING allons)	3 x WELL VOL. IN (Gallons)	ACTUAL VOLUME PURGED (Gallons)
Purging Equipment	PURGING Dedicated () IN I	AND SAMF		UIPMENT ing Equipment De	dicated 🖄 IIN I
Purging Device Sampling Device	A-Submersible Pump B-Perisataltic Pump C-Bladder Pump	D-Gas L E-Ventur F-Dipper	i Pump	G-Bailer H-Scoop/Shovel I-Piston Pump	X- Purging Other (Speafy) X- Sampling Other (Speafy)
Purging Material F	A-Teflon B-Stainless Steel	C-Polypr D-PVC	opylene	E-Polyethylene	X- Purging Other (Specify) X-
Tubing-Purging Tubing-Sampling	A-Teflon B-Tygon	D-Polypr E-Polyet		F-Silicon G-Combination teflon/Polypropylene	X - Sampling Other (Specify) X - Purging Other (Specify) X - Sampling Other (Specify)
	C-Rope X	ecify)	-		Sampling Other (Specify)
	FIE	LD MEASI	JREMENT	S	NA TANA
Well Elevation		(ft/msl)	Land Su	face Elevation	(ft/msl)
Depth to water From top of well casing =Dw	11234	(ft)	Depth to From lan		(ft)
Groundwater Elevation			Groundw	ater Elevation	(ft/msl)
Well Depth = D	,	(ft) S3 uS/cm	Pump Pla	10101-10	(°C)
Bottle	Specific Conduct		A1		P' 11 P'1 XZ/NT
Type Size Preservative	/e		Analysis		Field Filt.Y/N
P 250ml HVO3	Metels				N
P soone ICE	Airoz	(N
P 250 L HVO3	FB Metal	5			N
13 Sconi ICE	metal EQ G	Black			
Sample Appearance: C. Weather Sonditions: Part Other: Parge water	10 01 111	nonce wind 5	ingh	lor: <u>Clear</u> Turbidity 9.5°	r1.06
$V=(D-D_w)$ (A) (7.48 galtft³) where $V=$ volume of standing water in well	E CALCULATION		If No, Explai	1.0	_ No
D = depth to bottom of well below m			Procedure:	ELS Ground water	5 50 5.70
D _w =depth to water below measuring A= cross sectional area dia. A= 0.0218 4" dia. A = 0.08			Date:	ET/CP LCRA	

Field Information Form

V= volume of standing water in well

" dia. A= 0.0218 4" dia. A = 0.0872

A= cross sectional area

D= depth to bottom of well below measuring point D_w =depth to water below measuring point

Sam	nle	Date:	
Jann	PIC.	Date.	

Sample Time:

Sample ID:

7/28/20 (1) 957 CBK 36 6 I

	PC	RGING INF	ORMATI	UN		
PURGE DATE (YY MM DD)	START PURGE (2400 Hr. Clock)	_	OF G IL IN CASING allons)	3 X WELL VOL. IN (Gallons)	5]	ACTUAL VOLUME PURGED (Gallons)
Purging Equipment	PURGING Dedicated (Y) N I	AND SAME)edica	ated (Y) NI
Purging Device Sampling Device	A-Submersible Pump B-Perisataltic Pump C-Bladder Pump	D-Gas L E-Ventur F-Dipper	ri Pump	G-Bailer H-Scoop/Shovel I-Piston Pump	X	Purging Other (Specify) Sampling Other (Specify)
Purging Material Sampling Material	A-Teflon B-Stainless Steel	C-Polypr D-PVC	opylene	E-Polyethylene	X- X-	Purging Other (Specify)
Tubing-Purging Tubing-Sampling	A-Teflon B-Tygon C-Rope X	D-Polypi E-Polyet		F-Silicon G-Combination teflon/Polypropylene	X X	Sampling Other (Specify) Purging Other (Specify) Sampling Other (Specify)
	FI	ELD MEASI	JREMEN	TS		
Well Elevation		(ft/msl)	Land Su	urface Elevation		(ft/msl)
Depth to water From top of well casing =D	. 1/2.20	(ft)	Depth to From lar	o water nd surface		(ft)
Groundwater Elevation			Ground	vater Elevation		(ft/msl)
Well Depth = D	1141810	(ft)	Pump P	lacement		(ft)
[6]70 (STE)) 2 2 0 Specific Conduc	2 0.		nple Temp. 25,35	(°C)	
Bottle			Analysis			Field Filt.Y/N
Type Size Preservati						
P 250m INO P 250n ICE	Metals Anions					
Weather Conditions: Part Other: Purge water u will sample well w	was to low for pu		Sed Bai	arance Normal: Yes \tag{\tau}	dity:	11.6 water, in well
V=(D-D _w) (A) (7.48 galtft³) where			If No, Expla	ain		

Procedure: ELS Grand water SOP 5-7A

Date: 7/27/22 Sampler: ET/CP

Employer: LCRA

Sample Date: 7/27/22

Sample Time: 1/37

Sample ID: [C|3|43|0|8]T

I was information	I COLLE		Sample ID	[-10] -101010
	PI	URGING INFORMATION	ON	
220727 PURGE DATE (YY MM DD)	START PURGE (2400 Hr. Clock)	V= WATER VOL IN CASING (Gallons)	3 x WELL VOL. IN (Gallons)	ACTUAL VOLUME PURGED (Gallons)
Purging Equipment	PURGING Dedicated VI) N I	AND SAMPLING EC	QUIPMENT ling Equipment Dec	dicated VI N I
Purging Device LB Sampling Device	A-Submersible Pump B-Perisataltic Pump C-Bladder Pump	D-Gas Litf Pump E-Venturi Pump F-Dipper/Bottle	H-Scoop/Shovel	X- Purging Other (Specify) X- Sampling Other (Specify)
Purging Material Sampling Material	A-Teflon B-Stainless Steel	C-Polypropylene D-PVC		X- Purging Other (Specify)
Tubing-Purging Tubing-Sampling	A-Teflon B-Tygon	D-Polypropylene E-Polyethylene	F-Silicon G-Combination	X - Sampling Other (Specify) X - Purging Other (Specify) X-
	C-Rope X	Specify)	Cilcian dispropsiono	Sampling Other (Specify)
	FI	ELD MEASUREMEN ⁻	TS.	
Well Elevation		f f	urface Elevation	(ft/msl)
Depth to water From top of well casing =	=Dw []29,82	Depth to	o water nd surface	(ft)
Groundwater Elevation		Ground	water Elevation	(ft/msl)
Well Depth = D	135.25	(ft) Pump P	lacement	3 3 (ft)
[6 2 3] (S	TD) 8pecific Condu		nple Temp. 24.00	(°C)
Bottle		Analysis		Field Filt.Y/N
Type Size Preserva				
P 250ml HVO	7 .			N
P 250ml ICE P 250ml HVO	Anions ZAB#3 Me	tals Dup		N
P 250 ICC	All on D	Tais sup		
	Clear Odor		plor. <u>Cleac</u> Turbidity	328
WELL VOLU	JME CALCULATION	Well Appea	arance Normal: Yes	No
V=(D-D _w) (A) (7.48 galtft ³) where V= volume of standing water in w	reli	If No, Expla	ain	
D= depth to bottom of well below		Procedure:	ELS Ground water	508 5-10
D _w =depth to water below measu A= cross sectional area	ігіну роіпт	Date: 7	27/22	
dia. A= 0.0218 4" dia. A = 0	1.0872	Sampler: Employer:	LCRA	

Field Information Form

Sample Date:	Sam	ple	Date	:
--------------	-----	-----	------	---

Sample Time:

Sample ID:

1/28/22 935 CBL340T

PURGING INFORMATION

2	2	0	17	2	8
		PURG	E DAT	E	
	-	W MI	M DD	i.	

V= WATER VOL IN CASING

(YY MM DD)		(2400 Hr. Clock)	(0	Gallons)	(Gallons)		(Gallons)
Purging Equipment	Ded	PURGING A	AND SAMI			Dedica	ated 🕅 IN I
Purging Device Sampling Device	LBJ B-F	Submersible Pump Perisataltic Pump Bladder Pump	D-Gas L E-Ventu F-Dippe		G-Bailer H-Scoop/Shovel I-Piston Pump	X- X-	Purging Other (Specify) Sampling Other (Specify)
Purging Material Sampling Material		Feflon Stainless Steel	C-Polypi D-PVC	ropylene	E-Polyethylene	X- X-	Purging Other (Specify)
Tubing-Purging Tubing-Sampling	1 ,	Гeflon Гуgon	D-Polypi E-Polye	ropylene thylene	F-Silicon G-Combination teflon/Polypropylene	_	Sampling Other (Specify) Purging Other (Specify)
	C	S-Rope X(Spe	dfy)	-			Sampling Other (Specify)
Well Elevation		FIE	LD MEAS (ft/msl)	UREMENT Land Su	S rface Elevation	Ш	(ft/msl)
Depth to water From top of well ca	sing =Dw	12141915	(ft)	Depth to From lar	water nd surface	Ш	(ft)
Groundwater Elevati	on l			Groundy	vater Elevation		(ft/msl)
Well Depth = D	l	140114	(ft)	Pump Pl	acement	_	3 7 (ft)
[6.35] PH	(STD)	758	ပြု uS/cm _{rity}	Sam	ple Temp. 24,20	(°C)	
Bottle				Analysis			Field Filt.Y/N
Type Size Pro	eservative						

	Bo	ottle	Analysis	Field Filt.Y/N
Type	Size	Preservative		
P	250rd	HN03	Metals	N
P	500ml	ICE	Anions	N

Sample Appearance: Weather Conditions: Other: Purge Wo	Clear	Odor:	lone	Color: Clear	Turbidity:	1,69	
Weather Conditions:	Partly Cloud	ly South	wind	Simph 850	7		
Other: Purge Wa	der is clea	6 with	no oc	lor			

WELL VOLUME CALCULATION

V=(D-D_w) (A) (7.48 galtft³) where V= volume of standing water in well

D= depth to bottom of well below measuring point

Dw=depth to water below measuring point

A= cross sectional area

2" dia. A= 0.0218 4" dia. A = 0.0872

Well Appearance Normal: Yes	K	No	
If No. Evolain			

Procedure: ELS Ground water SOP 5-78

Sampler: FT Employer:

Field Information Form

Sample Date:

7/28/22 1233 CBL31411E

Sample Time:

Sample ID:

	PUI	RGING INFORMATIO	N	
PURGE DATE (YY MM DD)	1	V=	3 X WELL VOL. IN (Gallons)	ACTUAL VOLUME PURGED (Gallons)
Purging EquipmentDe	PURGING A	AND SAMPLING EQU Sampli		edicated l∰INI
Sampling Device B B	-Submersible Pump -Perisataltic Pump -Bladder Pump	D-Gas Litf Pump E-Venturi Pump F-Dipper/Bottle	G-Bailer H-Scoop/Shovel I-Piston Pump	X- Purging Other (Specify) X- Sampling Other (Specify)
3 3	-Teflon -Stainless Steel	C-Polypropylene D-PVC	E-Polyethylene	X- Purging Other (Specify) X- Sampling Other (Specify)
Tubing-Sampling B	-Teflon -Tygon C-Rope X-	D-Polypropylene E-Polyethylene	F-Silicon G-Combination teflon/Polypropylene	X
	(Spe	cify)		
	FIE	LD MEASUREMENT	S	x x 5 2 4 5 x
Well Elevation		(ft/msl) Land Sur	face Elevation	(ft/msl)
Depth to water From top of well casing =D _w	1/658	(ft) Depth to From land		(ft)
Groundwater Elevation		Groundw	ater Elevation	(ft/msl)
Well Depth = D	1 66,413	(ft) Pump Pla	acement	11 143 (ft)
6,16 (STD)	5 Specific Conductiv	2 uS/cm Sam	1 -1 1016	(°C)
Bottle	4	Analysis		Field Filt.Y/N
Type Size Preservative	0.10			
P 250M HACS	metals			
P Som TCE	Aucons			
Sample Appearance: Cle Weather Conditions: Retly Other: Purge water is	Cloudy Son	. ^	or. <u>Clear</u> Turbidi 98°	ty: 2.06
WELL VOLUME C V=(D-D _w) (A) (7.48 galfft³) where	ALCULATION	Well Appear If No, Explai		No
V= volume of standing water in well	in a tak	Procedure:	E/SC-	water 500 5-71
D= depth to bottom of well below meas Dw=depth to water below measuring p			bala	outer son 2 11
A= cross-sectional area	J	Date: Sampler:	128/22 ET/0	
2" dia. A= 0.0218		Sampler:	LORA	

October 11, 2022

BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD MAIL STOP FPP La Grange, TX 78945 BECKIE.LOEVE@LCRA.ORG

RE: Final Analytical Report Q2225751

Attn: BECKIE LOEVE

Enclosed are the analytical results for sample(s) received by LCRA Environmental Laboratory Services. Results reported herein conform to the most current NELAP standards, where applicable, unless otherwise narrated in the body of the report. This final report provides results related only to the sample(s) as received for the above referenced work order.

Thank you for selecting ELS for your analytical needs. If you have any questions regarding this report, please contact us at (512) 730-6022 or environmental.lab@lcra.org. We look forward to assisting you again.

Authorized for release by:

Jason Woods

Jason Woods Account Manager jason.woods@lcra.org

Enclosures:

Workorder: Q2225751

Workorder Description: FPP_CL301I_08302022

Client: LCRA Report To: BECKIE LOEVE

Profile: FPP GWMP CCR FAYETTE POWER PLANT 6549 POWER PLANT RD

Sampled By: COLT PETRI/ELLE TERRELL MAIL STOP FPP La Grange, TX 78945

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported
Q2225751001	CBL-301I	AQ	SW6010B ICP-AES	08/30/2022 12:10	08/30/2022 14:20	1
Q2225751001	CBL-301I	AQ	TCEQ SOP V1	08/30/2022 12:10	08/30/2022 14:20	3
Q2225751002	Field Blank	AQ	SW6010B ICP-AES	08/30/2022 12:00	08/30/2022 14:20	1
Q2225751003	EQ Blank	AQ	SW6010B ICP-AES	08/30/2022 12:15	08/30/2022 14:20	1

Report Definitions

MRL - Minimum Reporting Limit

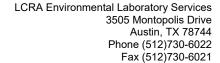
LOD - Limit of Detection

ML - Maximum Limit - Client Specified

MCL - Maximum Contaminant Level

LOQ - Limit of Quantitation - Client Specified

DF - Dilution Factor


(S) - Surrogate Spike

MDL - Method Detection Limit

RPD - Relative Percent Difference

Qualifier Definitions

- J Analyte detected below quantitation limit
- R RPD outside duplicate precision limit
- S Spike recovery outside limit
- B- Analyte detected in method blank
- N Not Accredited
- M Analyte Detected Above Maximum Contaminant Level
- SL Spike Recovery Low
- SH Spike Recovery High
- H Analyzed Past Hold Time
- **CR Confirmed Result**
- CH Result confirmed by historical data

Workorder Summary

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 08/30/2022 12:10
 Matrix:
 Aqueous

 Lab ID:
 Q2225751001
 Date Received:
 08/30/2022 14:20
 Sample Type:
 SAMPLE

Sample ID: CBL-3011 Location:
Project ID: FPP GWMP CCR Facility:
Sample Point:

Field Parameters (TCEQ SOP V1)

Parameter	Results Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Temperature	27.03 C				1	08/30/2022 12:10	CCP	08/30/2022 12:10	CCP	N
pH	6.14 pH				1	08/30/2022 12:10	CCP	08/30/2022 12:10	CCP	N
Specific Conductance	7666 us/cm				1	08/30/2022 12:10	CCP	08/30/2022 12:10	CCP	N

Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	0.107	ma/L	0.0500	0.0200		1	09/08/2022 16:29	FM	10/06/2022 19:46	FM	-

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 08/30/2022 12:00
 Matrix:
 Aqueous

 Lab ID:
 Q2225751002
 Date Received:
 08/30/2022 14:20
 Sample Type:
 SAMPLE

Sample ID: Field Blank Location:

Project ID: FPP GWMP CCR Facility:

Sample Point:

Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500	mg/L	0.0500	0.0200		1	09/08/2022 16:29	FM	10/06/2022 19:58	FM	

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 08/30/2022 12:15
 Matrix:
 Aqueous

 Lab ID:
 Q2225751003
 Date Received:
 08/30/2022 14:20
 Sample Type:
 SAMPLE

Sample ID: EQ Blank Location:
Project ID: FPP GWMP CCR Facility:
Sample Point:

		•									
Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500) ma/l	0.0500	0.0200		1	09/08/2022 16:29	FM	10/06/2022 20:02	FM	

20

Quality Control Results

QC Batch: MET/9429 Analysis Method: SW6010B ICP-AES

Preparation Method: SW3010A, Metals Prep

Associated Lab IDs: Q2225751001, Q2225751002, Q2225751003

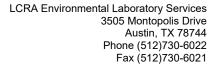
mg/L

1.0

1.06

Method Blank(17993	301)									
Parameter				Units		Results	MRL		LOD	Qualifier
Boron Total				mg/L		<0.0500	0.05		0.02	
Matrix Spike (179930	04); Matrix Spike	Duplicate (1	799305); O	riginal: Q222	5751001					
Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Boron Total	mg/L	1.0	1.16	105.0	75 - 125	1.17	106.0	0.85 8	20	
Lab Control Sample	(1799302); Lab C	Control Samp	ole Duplica	te (1799303)						
Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier
Roron Total	ma/l	1.0	1.06	106.0	80 - 120	1.05	105.0	0.94	20	

106.0


80 - 120

1.05

105.0

8

Boron Total

QC Cross Reference								
Lab ID	Sample ID	Prep Batch	Prep Method					
MET/9429 - SW6010B ICP-AES								
Q2225751001	CBL-301I	MEP/12261	SW3010A, Metals Prep					
Q2225751002	Field Blank	MEP/12261	SW3010A, Metals Prep					
Q2225751003	EQ Blank	MEP/12261	SW3010A, Metals Prep					

LCRA Environmental Laboratory Services Request for Analysis Chain-of-Custody Record

LCR	A - Environmental Lab	Phone: (512) 730-602	22 or 1-800-776-5											Q	122	575	11		
	Montopolis Dr	Fax: (512) 730-6021		- 1				Ш						Lab	ID#:				_
Aust	in, TX 78744	https://els.lcra.org												Clie	nt PO:				
Proj	ect: FPP - CBL 30	11	Client:	LCRA			Report to: BECKIE LOEVE FAYETTE POWER PLANT			Invoice to: BECKIE LOEVE FAYETTE POWER PLANT									
Coll	ector: Elle Tessell	Cottlets:	Contact:	Elle Terrell Co	olt Pe	tri			6549 POWER PLANT RD MAIL STOP FPP		6549 POWER PLANT RD MAIL STOP EPP								
Eve	nt#: 1621295		Phone:								La Grange	TX 78	945				nga. TX		
		Colle	ected					C	ontainer	s		T		Requ	ested /	Analysis	*		
	Sample ID *	Date*	Time HH:MM*	Matrix* AQ = Aqueous DW = Drinking Water S = Solid T = Tissue	COMPOSITE Y/N	FILTERED Y/N	250PHNO3					6010-AM	FId_FP						
1	CBL-301I	8/30/22	1210	AQ	V	1	1					×	х						
2	Field Blank		1200	AQ	1		1					х							
3	EQ Blank	1	12/5	AQ	-	7	t					×							

Payer	11												
	elinquishing sample(s) and isk (*) are required to be co		client agrees t	to accept and is bound	by the E	LS St	andaro	i Terms an	d Conc	fitions.	All field	is with	
3												110000	Lab Use Only:
2			V	21 11 01		L			sa	5.1	0.0	5.1	
1	Caltleto	8/30/22	1420	MIC	8	30	75	1420	T#	Obs	CF	Corr	
Transfers	Relinquished By	Date/Ti	me	Received By		1 1	ate/Ti	me		Cool	er Tem	p:	Client Special Instructions:

End of Report

October 27, 2022

BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD MAIL STOP FPP La Grange, TX 78945 BECKIE.LOEVE@LCRA.ORG

RE: Final Analytical Report Q2232067

Attn: BECKIE LOEVE

Enclosed are the analytical results for sample(s) received by LCRA Environmental Laboratory Services. Results reported herein conform to the most current NELAP standards, where applicable, unless otherwise narrated in the body of the report. This final report provides results related only to the sample(s) as received for the above referenced work order.

Thank you for selecting ELS for your analytical needs. If you have any questions regarding this report, please contact us at (512) 730-6022 or environmental.lab@lcra.org. We look forward to assisting you again.

Authorized for release by:

Jason Woods

Jason Woods Account Manager jason.woods@lcra.org

Enclosures:

Workorder: Q2232067

Workorder Description: FPP_CCR

Client: LCRA Report To: BECKIE LOEVE

Profile: FPP GWMP CCR FAYETTE POWER PLANT 6549 POWER PLANT RD

Sampled By: ELLE TERRELL MAIL STOP FPP
La Grange, TX 78945

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported
Q2232067001	CBL-301I	AQ	SW6010B ICP-AES	10/25/2022 11:06	10/25/2022 13:02	1
Q2232067001	CBL-301I	AQ	TCEQ SOP V1	10/25/2022 11:06	10/25/2022 13:02	1
Q2232067002	Field Blank	AQ	SW6010B ICP-AES	10/20/2022 11:06	10/25/2022 13:02	1
Q2232067003	Equipment Blank	AQ	SW6010B ICP-AES	10/20/2022 11:06	10/25/2022 13:02	1

Report Definitions

MRL - Minimum Reporting Limit

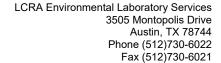
LOD - Limit of Detection

ML - Maximum Limit - Client Specified

MCL - Maximum Contaminant Level

LOQ - Limit of Quantitation - Client Specified

DF - Dilution Factor


(S) - Surrogate Spike

MDL - Method Detection Limit

RPD - Relative Percent Difference

Qualifier Definitions

- J Analyte detected below quantitation limit
- R RPD outside duplicate precision limit
- S Spike recovery outside limit
- B- Analyte detected in method blank
- N Not Accredited
- M Analyte Detected Above Maximum Contaminant Level
- SL Spike Recovery Low
- SH Spike Recovery High
- H Analyzed Past Hold Time
- **CR Confirmed Result**
- CH Result confirmed by historical data

Workorder Summary

Analytical Results

 Client ID:
 LCRA
 Date Collected:
 10/25/2022 11:06
 Matrix:
 Aqueous

 Lab ID:
 Q2232067001
 Date Received:
 10/25/2022 13:02
 Sample Type:
 SAMPLE

Sample ID: CBL-3011 Location:
Project ID: FPP GWMP CCR Facility:
Sample Point:

Field Parameters	(TCEQ SOP V1)
------------------	---------------

Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
pH	6.21	рН				1	10/25/2022 11:10	ENT	10/25/2022 11:10	ENT	N

Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Bv	Analyzed	Bv	0 115
Farameter	Results	Ullits	IVINL	LOD	IVIL	DF	Frepareu	Бу	Allalyzeu	БУ	Qualifier
Boron Total	0.0645	mg/L	0.0500	0.0200		1	10/26/2022 10:03	FM	10/27/2022 10:40	FM	

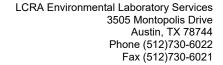
Analytical Results

 Client ID:
 LCRA
 Date Collected:
 10/20/2022 11:06
 Matrix:
 Aqueous

 Lab ID:
 Q2232067002
 Date Received:
 10/25/2022 13:02
 Sample Type:
 SAMPLE

Sample ID: Field Blank Location:
Project ID: FPP GWMP CCR Facility:
Sample Point:

Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500	mg/L	0.0500	0.0200		1	10/26/2022 10:03	FM	10/27/2022 10:44	FM	


Analytical Results

 Client ID:
 LCRA
 Date Collected:
 10/20/2022 11:06
 Matrix:
 Aqueous

 Lab ID:
 Q2232067003
 Date Received:
 10/25/2022 13:02
 Sample Type:
 SAMPLE

Sample ID:Equipment BlankLocation:Project ID:FPP GWMP CCRFacility:Sample Point:

Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	<0.0500	mg/L	0.0500	0.0200		1	10/26/2022 10:03	FM	10/27/2022 10:48	FM	

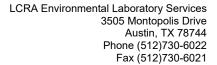
0.02

0.05

< 0.0500

Quality Control Results

QC Batch: MET/9474 Analysis Method: SW6010B ICP-AES


Preparation Method: SW3010A, Metals Prep

Associated Lab IDs: Q2232067001, Q2232067002, Q2232067003

Lab Control Sample (1821313); Lab Control Sample Duplicate (1821314)											
Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier	
Boron Total	mg/L	1.0	0.923	92.3	80 - 120	0.982	98.2	6.19	20		
Matrix Spike (1821315); M	atrix Spike	Duplicate (1	821316); Oi	riginal: Q2232	2067001						
Parameter	Units	Spiked Amount	Spike Result	%Spike Recovery	Control Limits %	Duplicate Result	%Duplicate Recovery	RPD	RPD Limit	Qualifier	
Boron Total	mg/L	1.0	0.984	91.9	75 - 125	1.01	94.9	2.61	20		
Method Blank(1821312)											

mg/L

Boron Total

QC Cross Reference								
Lab ID	Sample ID	Prep Batch	Prep Method					
MET/9474 - SW6010B ICP-AES								
Q2232067001	CBL-301I	MEP/12367	SW3010A, Metals Prep					
Q2232067002	Field Blank	MEP/12367	SW3010A, Metals Prep					
Q2232067003	Equipment Blank	MEP/12367	SW3010A, Metals Prep					

LCRA	Environmental	Laboratory	Services

Request for Analysis Chain-of-Custody Record 02232067 LCRA - Environmental Lab Phone: (512) 730-6022 or 1-800-776-5272 181 (N 181 (N 181 18 N 18 N 18 3505 Montopolis Dr Fax: (512) 730-6021 Lab ID#: Austin, TX 78744 https://els.lcra.org Client PO BECKIE LOEVE FAYETTE POWER PLANT 8549 POWER PLANT RD MAIL STOP FPP La Grange, TX 78945 BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD MAIL STOP FPP La Grange, TX 78945 LCRA FPP CCR Groundwater Report to: Invoice to: Project: Client: Elle Tervell Collector: Contact: Phone: Event#: 1629843 Requested Analysis * COMPOSITE Y/N FILTERED Y/N 250PHN03 6010-AM FIG FP Date* Time HH:MM* 102522 CBL-3011 X N 2 X 150 1 1100 AQ Field Blank X 2 AO 001 **Equipment Blank** 3 AQ

Transfers.	Relinquished By	Date/Time	1	Received By	Date/T	Time		Coole	er Temp	G .	Client Special Instructions:
1	Ella Terrell	102522 1302	A	Well Had	10/25/27	1307	T#	Obs	CF	Corr	
2	0.00			Longe	10/0-100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bear	1,4	100	141	
3				.1							

End of Report

October 31, 2022

BECKIE LOEVE FAYETTE POWER PLANT 6549 POWER PLANT RD MAIL STOP FPP La Grange, TX 78945 BECKIE.LOEVE@LCRA.ORG

RE: Final Analytical Report Q2232068

Attn: BECKIE LOEVE

Enclosed are the analytical results for sample(s) received by LCRA Environmental Laboratory Services. Results reported herein conform to the most current NELAP standards, where applicable, unless otherwise narrated in the body of the report. This final report provides results related only to the sample(s) as received for the above referenced work order.

Thank you for selecting ELS for your analytical needs. If you have any questions regarding this report, please contact us at (512) 730-6022 or environmental.lab@lcra.org. We look forward to assisting you again.

Authorized for release by:

Jason Woods

Jason Woods Account Manager jason.woods@lcra.org

Enclosures:

Workorder: Q2232068

Workorder Description: FPP_SUB_10252022

Client: LCRA

Profile: FPP FGD Sample

Sampled By: ELLE TERRELL

Report To: BECKIE LOEVE

FAYETTE POWER PLANT 6549 POWER PLANT RD

MAIL STOP FPP La Grange, TX 78945

Sample Summary

Lab ID	Sample ID	Matrix	Method	Date Collected	Date Received	Analytes Reported
Q2232068001	CBL-301I	AQ	SW6010B ICP-AES	10/25/2022 11:06	10/25/2022 13:02	1

Report Definitions

MRL - Minimum Reporting Limit

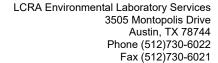
LOD - Limit of Detection

ML - Maximum Limit - Client Specified

MCL - Maximum Contaminant Level

LOQ - Limit of Quantitation - Client Specified

DF - Dilution Factor


(S) - Surrogate Spike

MDL - Method Detection Limit

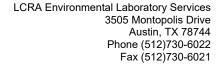
RPD - Relative Percent Difference

Qualifier Definitions

- J Analyte detected below quantitation limit
- R RPD outside duplicate precision limit
- S Spike recovery outside limit
- B- Analyte detected in method blank
- N Not Accredited
- M Analyte Detected Above Maximum Contaminant Level
- SL Spike Recovery Low
- SH Spike Recovery High
- H Analyzed Past Hold Time
- **CR Confirmed Result**
- CH Result confirmed by historical data

Workorder Summary

Analytical Results


 Client ID:
 LCRA
 Date Collected:
 10/25/2022 11:06
 Matrix:
 Aqueous

 Lab ID:
 Q2232068001
 Date Received:
 10/25/2022 13:02
 Sample Type:
 SAMPLE

Sample ID:CBL-3011Location:Project ID:FPP FGD SampleFacility:Sample Point:

INORGANICS (SW6010B ICP-AES)

Parameter	Results	Units	MRL	LOD	ML	DF	Prepared	Ву	Analyzed	Ву	Qualifier
Boron Total	0.0769	mg/L	0.0300	0.0100		1	10/27/2022 11:13	SUB	10/27/2022 11:13	SUB	

October 27, 2022

Ariana Dean LCRA Env. Services Lab 3505 Montopolis EL101 Austin, Texas 78744 TEL: (512) 730-5694

FAX Order No.: 2210221

RE: Q2232068 Dear Ariana Dean:

DHL Analytical, Inc. received 1 sample(s) on 10/26/2022 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

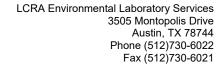
Sincerely.

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-22-28

2300 Double Creek Drive + Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents


Miscellaneous Documents	3
CaseNarrative 2210221	7
WorkOrderSampleSummary 2210221	8
PrepDatesReport 2210221	9
AnalyticalDatesReport 2210221	10
Analytical Report 2210221	11
AnalyticalQCSummaryReport 2210221	12

Report '	To		Subcontract To		_				T	,		Reques	ed An	alveie			$\overline{}$	
CRA E 3505 Mo Austin, T Phone (S ax (512	nvironmental Laboratory Servintopolis Drive IX 78744 S12/30-6022 2)730-6021 vironmental.lab@lcra.org	ices	John Dupont DHL Analytical 2300 Double Cre Round Rock, TX Phone (512)388- Fax (512)388-82:	78664 8222	Pr	reservec	i Cont	ainers	Prep						50%			
em	Lab ID	Collect Date/Time		Matrix	z				SW3010A. Metals F	SW6010B ICP-AES							LAI	3 USE ONLY
	Q2232068001	10/25/2022 11:06		Aqueous	1		Ш	\perp	X	X						Ш	0	21
	Report Standard (Results Only) Standard with Batch QC CLP Other		Stage 2A Stage 2B Stage 3 Other	Deliverables	- 1	THE SUE SUBMITT AUTHOR	TED SA	MPLES.	ANY	DEVIA	THIS C	ROM THI	E ONLY	OCOL F	REQUIR	RES WR	ITTEN	rze THE y scal Mot present
Prese	ervative		Т	ansfers Releas	ed B	1 #	#			Date	/Time	Rece	eived B	y				Date/Time
N = Nor	ne			1 2 3 4 5	LS.	o o	1		10/2	25/2			USC auA.		L		- 1	25 22 24 82 24 82 24 82

3

LCRA Chain of Custody	
Document: 45444352	
Chain of Custody - Required Limits	

Document: 45444352

	Method	Analyte	LOD	RL	MCL	LOQ Check Standard Required?
	SW6010B ICP-AES	Boron Total	.02 mg/L	.05 mg/L		No

Tuesday, October 25, 2022 3:15:17 PM Page 2 of 2

HORIZON

HOR1201

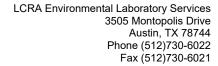
4

LSO

LSO 1-800-800-8984 www.lso.com

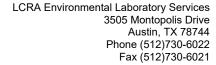
SHIP TO: JOHN DUPONT DHL ANALYTICAL 2300 DOUBLE CREEK DR. ROUND ROCK, TX 78664 5123888222 From: ELS SAMPLE RECEIVING ENVIRONMENTAL LAB SERVICES 3505 MONTOPOLIS, EL-101 AUSTIN, TX 78744 5123565022

LSO PRIORITY NEXT DAY 10:30 IN MOST CITIES LATER IN REMOTE CITIES


PRINT DATE: 10/25/2022 REF 3: QUICKCODE: WEIGHT: 1.0000LBS REF 1: SUB REF 2:

old on above line and place shipping label in pouch on package. Please be sure the barcodes and addresses can be read and scanned hipping Instructions

- 1. Fold this page along the horizontal line above.
- 2. Place this Airbill in the shipping label pouch on the package you are shipping. Please be sure the barcodes and addresses can be read and scanned.
- 3. To locate a drop box near you, click on Find Drop Box from the home page main menu.
- 4. To schedule a pickup, click on Request Pickup


WARNING: Use only the printed original tabel for shipping. Using a photocopy of this tabel for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your Lone lar Overnight account number.

IMIT OF LIABILITY: We are not responsible for claims in excess of \$100 for any reason unless you: 1) declare a greater value (not to exceed \$25,000); 2) pay an additional fee; 3) and document your actual loss 1 a timely manner. We will not pay any claim in excess of the actual loss. We are not liable for any special or consequential damages. Additional limitations of liability are contained in our current Service Guide. If ou ask us to deliver a package without obtaining a delivery signature, you release us of all liability for claims resulting from such service. NO DELIVERY SIGNATURE WILL BE OBTAINED FOR 8:30 AM JELIVERIES OR RESIDENTIAL DELIVERIES.

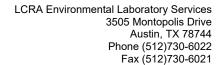
DHL Analytical, Inc.		
	Sample Receipt Che	cklist
Client Name LCRA Env. Services Lab		Date Received: 10/26/2022
Work Order Number 2210221		Received by: KAO
<		
Checklist completed by:	10/26/2022	Reviewed by (D ₂) 10/26/2022
Signature	Date	Initials Date
	Carrier name: LoneStar	
Shipping container/cooler in good condition?	Yes 🗹	No Not Present
Custody seals intact on shipping container/cooler?	Yes	No ☐ Not Present 🗹
Custody seals intact on sample bottles?	Yes	No ☐ Not Present 🗹
Chain of custody present?	Yes 🗹	No 🗆
Chain of custody signed when relinquished and receive	ved? Yes ✓	No 🗆
Chain of custody agrees with sample labels?	Yes 🗹	No 🗆
Samples in proper container/bottle?	Yes 🗹	No 🗆
Sample containers intact?	Yes 🗸	No 🗆
Sufficient sample volume for indicated test?	Yes 🗸	No 🗆
All samples received within holding time?	Yes 🗹	No 🗆
Water - VOA vials have zero headspace?	Yes	No ☐ No VOA vials submitted ☑ NA ☐
Water - pH<2 acceptable upon receipt?	Yes 🗹	No □ NA □ LOT# 13171
	Adjusted?	Checked by
Water - ph>9 (S) or ph>10 (CN) acceptable upon rece	eipt? Yes	No □ NA 🗹 LOT#
	Adjusted?	Checked by
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗆
Cooler# 1		
Temp °C 17.5		
Seal Intact NP	acation below	
Any No response must be detailed in the comments s	E E E E E E E E E E E E E E E E E E E	
Client contacted: Date	contacted:	Person contacted
Contacted by: Rega	arding:	
Comments		
Comments:		
Corrective Action:		
Page 1 of 1		
Page 1 of 1	6	

CASE NARRATIVE

DHL Analytical, Inc.

Date: 27-Oct-22

CLIENT: LCRA Env. Services Lab


Project: Q2232068
Lab Order: 2210221

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis

LOG IN

The sample was received and log-in performed on 10/26/22. A total of 1 sample was received. The sample arrived in good condition and was properly packaged. All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objectives.

DHL Analytical, Inc.

CLIENT:

LCRA Env. Services Lab

Date: 27-Oct-22

Project: Q2232068 Work Order Sample Summary
Lab Order: 2210221

 Lab Smp ID
 Client Sample ID
 Tag Number
 Date Collected
 Date Recved

 2210221-01
 Q2232068001
 10/25/22 11:06 AM
 10/26/2022

Page 1 of 1

DHL Analytical, Inc.

27-Oct-22

Lab Order: 2210221

Project:

Client: LCRA Env.

LCRA Env. Services Lab

Q2232068

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2210221-01A	O2232068001	10/25/22 11:06 AM	Aqueous	SW3005A	Ag Prep Metals : ICP-MS	10/26/22 07:21 AM	107520

Page 1 of 1

DHL Analytical, Inc.

27-Oct-22

Lab Order:

2210221

Client: LCRA Env. Services Lab Project:

Q2232068

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2210221-01A	O2232068001	Aqueous	SW6020B	Trace Metals: ICP-MS - Water	107520	1	10/27/22 11:13 AM	ICP-MS5 221027A

Page 1 of 1

DHL Analytical, Inc.

Date: 27-Oct-22

CLIENT: LCRA Env. Services Lab

Client Sample ID: Q2232068001

Project: Q2232068 Project No: **Lab ID:** 2210221-01 **Collection Date:** 10/25/22 11:06 AM

Lab Order: 2210221 Matrix: AQUEOUS

Analyses Result MDL RL Qual Units DF Date Analyzed

 TRACE METALS: ICP-MS - WATER
 SW6020B
 Analyst: SP

 Boron
 0.0769
 0.0100
 0.0300
 mg/L
 1
 10/27/22 11:13 AM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

DF Dilution Factor

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits

C Sample Result or QC discussed in the Case Narrative

E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAP certified

Page 1 of 1

11

Date: 27-Oct-22 DHL Analytical, Inc. CLIENT: LCRA Env. Services Lab ANALYTICAL QC SUMMARY REPORT Work Order: 2210221 RunID: ICP-MS5 221027A Project: 02232068 The QC data in batch 107520 applies to the following samples: 2210221-01A Sample ID: MB-107520 Batch ID: 107520 TestNo: SW6020B Units: SampType: MBLK Run ID: ICP-MS5 221027A Prep Date: 10/26/2022 Analysis Date: 10/27/2022 10:54:00 A Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Boron <10.0 30.0 Sample ID: LCS-107520 Batch ID: 107520 TestNo: SW6020B Units: μg/L SampType: LCS Run ID: ICP-MS5 221027A Analysis Date: 10/27/2022 10:58:00 A Prep Date: 10/26/2022 LowLimit HighLimit %RPD RPDLimit Qual Result RL SPK value Ref Val %REC Analyte Sample ID: LCSD-107520 Batch ID: 107520 TestNo: SW6020B Units: SampType: LCSD Run ID: ICP-MS5_221027A Analysis Date: 10/27/2022 11:00:00 A Prep Date: 10/26/2022 %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte Boron 195 30.0 200.0 97.5 80 120 2 04 Sample ID: 2210189-01A SD Batch ID: 107520 TestNo: SW6020B Units: μq/L SampType: SD ICP-MS5_221027A Analysis Date: 10/27/2022 11:08:00 A Prep Date: 10/26/2022 Analyte Result RI SPK value Ref Val %RFC LowLimit HighLimit %RPD RPDLimit Qual 156.6 15.7 183 0 Boron TestNo: Sample ID: 2210189-01A PDS SW6020B Units: μg/L SampType: PDS Run ID: ICP-MS5_221027A Analysis Date: 10/27/2022 11:33:00 A Prep Date: 10/26/2022 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Boron 355 30.0 200.0 156.6 99.2 75 125 Sample ID: 2210189-01A MS Batch ID: 107520 TestNo: SW6020B Units: µg/L SampType: MS Run ID: ICP-MS5 221027A Prep Date: 10/26/2022 Analysis Date: 10/27/2022 11:36:00 A SPK value LowLimit HighLimit %RPD RPDLimit Qual Analyte Result RL Ref Val %REC Boron 364 30.0 200.0 156.6 104 75 125 Batch ID: 107520 μg/L SampType: MSD Run ID: ICP-MS5_221027A Analysis Date: 10/27/2022 11:38:00 A Prep Date: 10/26/2022 SPK value %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte Result RL Ref Val 368 30.0 200.0 156.6 106 75 125 0.927 Qualifiers: Analyte detected in the associated Method Blank DF Dilution Factor Analyte detected between MDL and RL MDL Method Detection Limit Page 1 of 2 R RPD outside accepted control limits ND Not Detected at the Method Detection Limit RL Reporting Limit Spike Recovery outside control limits

Analyte detected between SDL and RL

N

12

Parameter not NELAP certified

CLIENT: Work Order:	LCRA Env	. Service:	s Lab		AN	ALYT	ICAL (C SU	MMA	RY F	REPORT
Project:	Q2232068						RunID): I(CP-MS5	_22102	27A
Sample ID: ICV-22	21027	Batch ID:	R123684		TestNo:	swe	6020B		Units:	μg/L	
SampType: ICV		Run ID:	ICP-MS5_2	221027A	Analysis	Date: 10/2	7/2022 10:3	6:00 A	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron			100	30.0	100.0	0	100	90	110		
Sample ID: LCVL-	221027	Batch ID:	R123684		TestNo:	swe	6020B		Units:	μg/L	
SampType: LCVL		Run ID:	ICP-MS5_2	221027A	Analysis	Date: 10/2	7/2022 10:4	7:00 A	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron			21.1	30.0	20.00	0	106	80	120		
Sample ID: CCV1-	221027	Batch ID:	R123684		TestNo:	swe	6020B		Units:	μg/L	
SampType: CCV		Run ID:	ICP-MS5_2	221027A	Analysis	Date: 10/2	7/2022 11:4	5:00 A	Prep Date	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Boron			204	30.0	200.0	0	102	90	110		

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

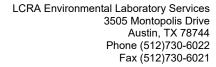
ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

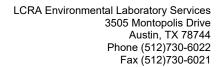
MDL Method Detection Limit

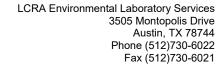

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

13


Page 2 of 2


				LC	RA Enviro	onm	nent	al L	aborat	ory	/ Servic	es							
				Requ	est for An	aly	sis	Cha	n-of-C	us	tody Re	cord							
LCRA - Environmental Lab Phone: (512) 730-6022 or 1-800-776-5272													Q22	326	68				
	Montopo		ax: (512) 730-6021 ttps://eis.icra.org			Ш				•				Lai	b ID#:				
Ausiin,	, IA / D	11	tips i/ers icra org											CII	ent PO:				
Projec	t:	FPP - Metals SUE		Client:	LCRA					F	Report to:	Inv	Invoice to: LCRA - FAYETTE POWER						
Collec	tor:	Elle Ter	rill	Contact:						B549 POWER PLANT RD. MAIL STOP EPP					PLANT 8549 POWER PLANT RD				
Event	H:			Phone:				La Grange, TX 78945							MAIL STOP FPP La Grange, TX 78945				
			Colle	ected					C	Containers				Req	uested /	Analysis	•		
Sample ID *		Date*	Time HH:MM*	Matrix* AQ = Aquepus DW = Drinkling Water S = Solid T = Tissue	COMPOSITE Y/N	FILTERED Y/N	250PHN03					6010-AM							
Date		102522	nove	AQ	N	N	1					x							

ransters	Relinquished By	Date/Time	Received By	, Date/Time	Cooler Temp:				Client Special Instructions:
1	ElleTerrell	102502 1302	MILLINK	10/25/22 1302	T#	Obs	CF	Corr	
2			1 donners	100	1050	14	10.0	1.41	
3									Lab Use Only:
	sk (*) are required to be con		s to accept and is bound by	the ELS Standard Terms and	Cond	nions.	All field	s with	
Month									

	cument: 45444352			Results Requested By:							
Report To LCRA Environmental Laboratory Services 3505 Montopolis Drive Austin, TX 78744 Phone (512)730-6022 Fax (512)730-6021 Email environmental.labi@lcra.org			Subcontract To John Dupont	Subcontract To				v v v	5		
			DHL Analytical 2300 Double Cre Round Rock, TX Phone (512)388- Fax (512)388-82:	78664 8222							
					Preserved Containers		2rep	100			
em	Lab ID Q2232068001	Collect Date/Time		Matrix Aqueous	2		× SW3010A. Metals Prep	× SW6010B ICP-AES			LAB USE ONLY
	Report		lectronic Data I	Deliverables	T				Comments		
Standard with Batch QC S			Stage 2A Stage 2B Stage 3 Other	ge 2B ge 3		SUBMITTED SAMPLES AUTHORIZATION FROM		DEVIATION F	Time Received By		
- 190	me.	*	hu 51	2 3 4 5		SAP			010	. 1	1.1

L	CRA Chain of	Custody					
D	ocument: 45444352						
С	hain of Custo	dy - Required	Limits				
D	ocument: 45444352						
	Method	Analyte	LOD	RL	MCL	LOQ Check Standard Required?	
	SW6010B ICP-AES	Boron Total	.02 mg/L	.05 mg/L		No.	

HORIZON

End of Report