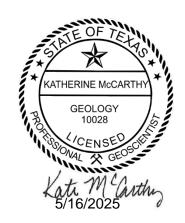


COAL COMBUSTION RESIDUAL LANDFILL ANNUAL GROUNDWATER MONITORING REPORT

Calendar Year 2024



Prepared by:

Kate McCarthy, P.G. # 10028

Lower Colorado River Authority

Fayette Power Plant Project 6549 Power Plant Rd. La Grange, Texas 78945

EXECUTIVE SUMMARY

The LCRA Fayette Power Project (FPP) is a coal-fired power plant located east of La Grange in Fayette County, Texas. Coal Combustion Residuals (CCRs) generated at the facility are disposed of in the Combustion Byproducts Landfill (CBL) which is an existing landfill CCR Unit under the U.S. Environmental Protection Agency's Coal Combustion Residuals (CCR) Rules as codified in Title 40 of the Code of Federal Regulations (CFR), Chapter 257, Subpart D and the Texas Commission of Environmental Quality 30 Texas Administrative Code Chapter 352, Subchapter H.

During the calendar year 2024, the CBL was operating under detection monitoring. All groundwater sampling was conducted in accordance with 40 CFR §257.93/30 TAC Chapter 352, Subchapter H - Groundwater sampling and analysis requirements and 40 CFR §257.94. - Detection Monitoring. The CBL will remain in detection monitoring for 2025.

TABLE OF CONTENTS

Section		Page
EXECUTIVE SUM	MMARY	i
1.0 BACKGROU	ND	1
2.0 PURPOSE		1
3.0 GROUNDWA	TER MONITORING SYSTEM	1
4.0 STATUS OF	THE GROUNDWATER MONITORING PROGRAM	2
5.0 STATISTICAL	L EVALUATIONS AND ALTERNATE SOURCE DETERMIN	ATION.2
	cal Analysis of First Quarter 2024 Data	
5.2 Statistic	cal Analysis Third Quarter 2024 Data	3
6.0 PLANNED A	CTIVITIES	5
	TABLES	
TABLE 1	Groundwater Monitoring Well Details	
TABLE 2	2024 CCR Groundwater Monitoring Events	
TABLE 3	Groundwater Monitoring Results Summary	
	FIGURES	
FIGURE 1	CCR Unit and Monitoring Well Location Map	

APPENDICES

APPENDIX A	CCR Groundwater Detection Monitoring Program Evaluation of First Quarter 2024 Potentiometric Surface Data Collected from the CBL, Bullock, Bennett & Associates, LLC, June 19, 2024
	CCR Groundwater Detection Monitoring Program Evaluation of Third Quarter 2024 Potentiometric Surface Data Collected from the CBL, Bullock, Bennett & Associates, LLC, December 30, 2024
APPENDIX B	Results of the Groundwater Statistics for the Lower Colorado River Authority First Semi-Annual Monitoring Event in 2024, Otter Creek Environmental Services, LLC, April 2024 (<i>Revised September 4</i>)
APPENDIX C	Results of the Groundwater Statistics for the Lower Colorado River Authority Second Semi-Annual Monitoring Event in 2024, Otter Creek Environmental Services, LLC, November 2024
APPENDIX D	Analytical Data for Calendar Year 2024
APPENDIX E	Alternate Source Demonstration – First Semiannual Monitoring Event 2024

2024 Groundwater Monitoring Report

Fayette Power Project La Grange, TX

1.0 BACKGROUND

The LCRA Fayette Power Project (FPP) is a coal-fired power plant located east of La Grange in Fayette County, Texas. Coal Combustion Residuals (CCRs) generated at the facility are disposed of in the Combustion Byproducts Landfill (CBL) located south of the power plant and north of the railroad that borders the FPP site (Figure 1). The existing CBL consists of Cell 1 and Sub-cell 2D. Cell 1 was constructed in 1988 and sub-cell 2D in 2015; therefore, both active cells are considered existing landfill units under the U.S. Environmental Protection Agency's Coal Combustion Residuals (CCR) Rules as codified in Title 40 of the Code of Federal Regulations (CFR), Chapter 257, Subpart D.

2.0 PURPOSE

This report was prepared pursuant to 40 CFR §257.90(e), as amended on Aug. 28, 2020, and 30 Texas Administrative Code Chapter 352, Subchapter H which requires the owner or operator of an existing CCR landfill to prepare an annual groundwater monitoring report for the preceding calendar year.

3.0 GROUNDWATER MONITORING SYSTEM

The groundwater monitoring well network for 2024 consisted of six wells as described below and additionally in Table 1:

- Background CBL-340I
- Down-gradient CBL-301I, CBL-302I, CBL-306I, CBL-308I and CBL-341I

No groundwater monitoring wells were installed or decommissioned in 2024. Monitoring wells CBL301I, CBL-302I and CBL-341I were re-developed in March 2024. The locations of the monitoring wells are shown on Figure 1.

In accordance with 40 CFR §257.93(c) and 30 Tex. Admin. Code §352.931, groundwater elevations were measured in each monitoring well prior to purging and sampling for each semi-annual sampling event. Consistent with prior CBL potentiometric surface elevation

maps, the inferred groundwater flow direction is towards the south-southwest. Groundwater flow rates were estimated along two transects for each groundwater sampling event. The western area transect has an approximate flow rate of 22-26 feet per year and the eastern area transect has an approximate flow rate of 50-61 feet per year. Detailed information is contained in the Technical Memorandum's dated June 19, 2024, and December 30, 2024, prepared by Bullock, Bennett & Associates, LLC (BBA), which are included in Appendix A.

4.0 STATUS OF THE GROUNDWATER MONITORING PROGRAM

At the beginning of calendar year 2024, the CBL was operating under detection monitoring. All groundwater sampling was conducted in accordance with 40 CFR §257.93 – Groundwater sampling and analysis requirements and §257.94. – Detection Monitoring. Table 2 summarizes the sampling events. At the end of calendar year 2024, the CBL was operating under detection monitoring. As discussed in Section 5, the CBL will remain in detection monitoring for 2025. Table 3 contains a summary of the analytical data collected in 2024. In accordance with 30 TAC §352.901, Table 3 also contains a summary of all groundwater monitoring data collected since October 19, 2015.

5.0 STATISTICAL EVALUATIONS AND ALTERNATE SOURCE DETERMINATION

5.1 Statistical Analysis of First Quarter 2024 Data

In April 2024, Otter Creek Environmental Services, LLC (Otter Creek) completed the statistical analysis of the first quarter detection monitoring Appendix III constituent data utilizing the prediction limit intrawell method. Samples were collected on January 29-31, 2024.

Based on the January 2024 sampling data, there was an initial control limit (ICL) exceedance for boron in CBL-302I. Because this was an initial exceedance in a 1 of 2 resampling method, CBL-302I was resampled on April 5, 2024. The resample analytical results confirmed the control limit exceedance and a statistically significant increase (SSI) was indicated. As a result an Alternate Source Demonstration (ASD) was prepared.

As detailed in the ASD, further review of the data by a statistician determined that the CBL-302I data have too few detections to test whether the dataset is normally or lognormally distributed. As a result, the use of the Dixon Test to determine outliers was not in accordance with EPA's *Unified Guidance*¹. Therefore, two previously identified outliers were reinstated in the background dataset resulting in an ICL for boron of 0.2970 mg/L. Both the January and April 2024 analytical results are below the re-established ICL of 0.2970 mg/L. Based on these findings, it was determined that the initially identified SSI was no longer applicable and that there was no evidence of a release from the CBL.

In accordance with 30 TAC § 352.941(d), LCRA submitted the ASD for TCEQ review within 90 days of the initial SSI determination and based on the findings it was determined that continuation of the Detection Monitoring Program was appropriate. In an email dated August 15, 2024, the TCEQ determined that the ASD justification was satisfactory.

Detailed information is contained in the *Alternate Source Demonstration – First Semi-Annual Monitoring Event 2024* dated July 17, 2024 prepared by BBA (included in Appendix E).

In September 2024, Otter Creek updated the statistical analysis of the first quarter detection monitoring Appendix III constituent data utilizing the updated prediction limit intrawell method. Analytical results were generally consistent with historic analytical results. The results indicated that there were no SSIs for any constituents in any well. Detailed information is contained in the *Results for the Groundwater Statistics, First Semi-annual Monitoring Event in 2024* prepared by Otter Creek which is included in Appendix B.

-

¹ Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities - Unified Guidance, March 2009. https://archive.epa.gov/epawaste/hazard/web/pdf/unified-guid.pdf

5.2 Statistical Analysis Third Quarter 2024 Data

Otter Creek completed the statistical analysis of the third quarter detection monitoring Appendix III constituent data utilizing the prediction limit intrawell method. Third quarter samples were collected between July 22-23, 2024.

The July 2024 sampling data indicated that the calculated cumulative sum (CUSUM) datapoint for CBL-341I exceeded its Intrawell Control Limits (ICL). Because this was an initial exceedance in a 1 of 2 resampling method, CBL-341I was resampled on October 1, 2024. The resample analytical results confirmed the CUSUM exceedance, and an SSI was indicated. As a result an ASD was prepared.

It was concluded that the SSI for boron in CBL-341I groundwater does not indicate a release from the CBL based on the following:

- Boron concentrations in CBL-341I remain within the range of groundwater concentrations observed in the other CBL monitoring wells and are consistently lower than those in side-gradient well CBL-340I.
- CBL-340I groundwater conditions are not affected by CBL operations; however, a
 general upward trend in boron concentrations is observed in CBL-340I data,
 suggesting that background conditions with respect to boron are not stable, which
 could lead to the calculated CUSUM exceedance observed in CBL-341I.
- CBL area boron concentrations are within the range of concentrations observed in other Fayette County water wells.
- There are no observed upwards trends in calcium, chloride, fluoride, pH, sulfate, or TDS. Upward trends in these other Appendix III analytes would be expected if there were a release from the CBL. A hypothetical release from the CBL to groundwater is not expected to generate a "boron only" analyte plume in groundwater.

The observed boron data is attributed to natural shifts in dissolved analyte concentrations as aquifer materials undergo both dissolution and evaporation processes. The data

observations reflect a non-static background condition in CBL groundwater, and the new data presents additional background information for future analyses.

Detailed information is contained in the *Alternate Source Demonstration – Second Semi-Annual Monitoring Event 2024* dated December 31, 2024 prepared by BBA and submitted to the TCEQ for review on January 2, 2025.

Analytical results were generally consistent with historic analytical results. Detailed information regarding the statical analysis is contained in the November 2024 Results for the Groundwater Statistics, Second Semi-annual Monitoring Event in 2024 prepared by Otter Creek which is included in Appendix C.

6.0 PLANNED ACTIVITIES

Planned activities for 2025 include continued semi-annual detection monitoring with associated statistical analysis in accordance with the CCR rules.

TABLE 1
MONITOR WELL DETAILS

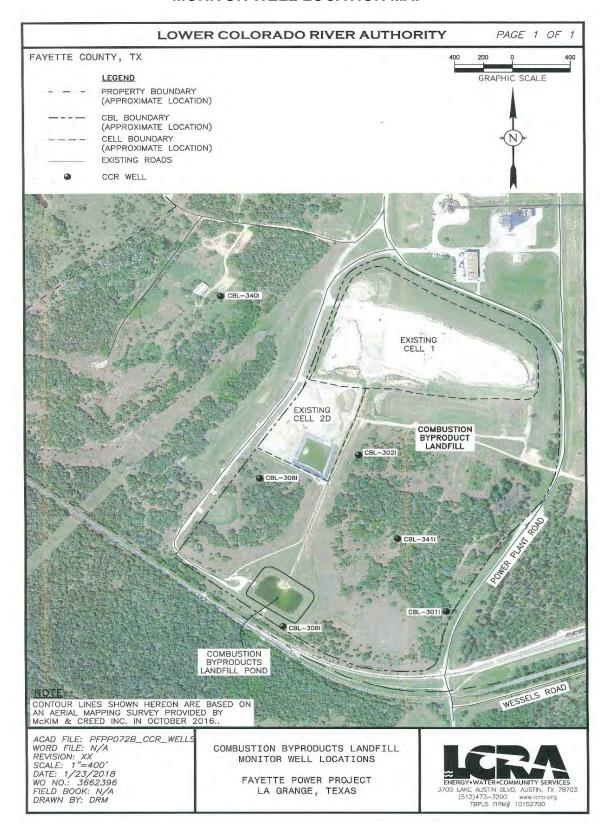

Well ID	CBL-340I (Background Well)	CBL-301I	CBL-302I	CBL-306I	CBL-308I	CBL -341I	
Installation Date	12/17/2015	5/23/2011	5/24/2011	6/3/2011	12/20/2011	11/14/2016	
Hydrogeologic Unit Monitored	Intermediate Sand	Intermediate Sand	Intermediate Sand	Intermediate Sand	Intermediate Sand	Intermediate Sand	
Casing Type	2" PVC	2" PVC	2" PVC	2" PVC	2" PVC	2" PVC	
Total Well Depth (ft bgs)	37	51	24	14	32	43	
Screened Interval (ft bgs)	22-37	41-51	14-24	14-24 9-14		33-43	
Ground Surface Elevation (ft MSL)	374.69	369.75	355.99	337.93	364.93	364.03	
TOC Elevation (ft MSL)	376.98	372.11	358.99	339.96	368.67	366.65	
Northing	9949069.45	9946563.44	9947806.017	9946445.582	9947619.46	9947139.86	
Easting	3428311.38	3429862.181	3429260.844	3428730.533	3428574.38	3429525.31	
Survey Datum	Horizontal Datum: NAD83/2011- EPOCH 2012 Vertical Datum: NAVD88- GEOIDIZA	Horizontal Datum: NAD83/NSRS 2007 Vertical Datum: NAVD88	Horizontal Datum: NAD83/NSRS 2007 Vertical Datum: NAVD88	Horizontal Datum: NAD83/NSRS 2007 Vertical Datum: NAVD88	Horizontal Datum: NAD83/NSRS 2007 Vertical Datum: NAVD88	Horizontal Datum: NAD83/2011- EPOCH 2012 Vertical Datum: NAVD88- GEOIDIZA	

TABLE 2
2024 CCR GROUNDWATER MONITORING EVENTS

Well #	Date of sample collection	# Samples collected for analysis	Monitoring program
CBL 340I	1/31/2024	1	Detection monitoring
CBL 3401	7/24/2024	1	Detection monitoring
CBL 301I	1/29/2024	1	Detection monitoring
CBL 3011	7/23/2024	1	Detection monitoring
	1/29/2024	1	Detection monitoring
CBL 302I	4/5/2024	1	Resample
	7/22/2024	1	Detection monitoring
CBL 306I	1/29/2024	1	Detection monitoring
CBL 3001	7/23/2024	1	Detection monitoring
CDI 2001	1/30/2024	1	Detection monitoring
CBL 308I	7/22/2024	1	Detection monitoring
	1/29/2024	1	Detection monitoring
CBL 341I	7/23/2024	1	Detection monitoring
	10/1/2024	1	Resample

FIGURE 1 MONITOR WELL LOCATION MAP

Appendix A

CCR Groundwater Detection Monitoring Program
Evaluation of First Quarter 2024
Potentiometric Surface Data Collected from the CBL
Bullock, Bennett & Associates, LLC
June 19, 2024

CCR Groundwater Detection Monitoring Program
Evaluation of Third Quarter 2024
Potentiometric Surface Data Collected from the CBL
Bullock, Bennett & Associates, LLC
December 30, 2024

Bullock, Bennett & Associates, LLC

www.bbaengineering.com 165 N. Lampasas St. • Bertram, Texas 78605 • (512) 355-9198

Technical Memorandum

To: Kate McCarthy, P.G. Project No. 23699-1

Corporate Environmental

Lower Colorado River Authority (LCRA)

From: Charlie Macon, P.G.

Date: June 19, 2024

Subject: CCR GROUNDWATER DETECTION MONITORING PROGRAM

EVALUATION OF FIRST QUARTER 2024 POTENTIOMETRIC SURFACE

DATA COLLECTED FROM THE CBL

1.0 INTRODUCTION

This Technical Memorandum (Tech Memo) has been prepared by Bullock, Bennett & Associates, LLC (BBA) on behalf of the Lower Colorado River Authority (LCRA), and documents the evaluation of the Intermediate Sand groundwater bearing unit potentiometric surface data obtained during the First Quarter-2024 Combustion Byproducts Landfill (CBL) Groundwater Monitoring Event. The groundwater monitoring is being performed as part of the CBL Groundwater Monitoring Program (GMP) in accordance with the Coal Combustion Residuals (CCR) regulations as codified in 40 Code of Federal Regulations (CFR) 257.93 and Title 30 of the Texas Administrative Code §352.931 (30 TAC §352.931). The CBL is located at the Lower Colorado River Authority's (LCRA's) Fayette Power Project (FPP) facility near La Grange, Texas. This measurement of the potentiometric surface and determination of groundwater flow direction and flow rate is conducted for each groundwater monitoring event pursuant to the GMP requirements of 40 CFR §257.93(c) and 30 Texas Administrative Code §352.931.

2.0 POTENTIOMETRIC SURFACE DATA COLLECTION, MAPPING, AND GRADIENT DETERMINATION

All groundwater monitoring and sampling activities were performed by a BBA Environmental Scientist. Prior to conducting well purging and collection of groundwater samples for chemical analysis, the Scientist used an electronic well probe to determine depth to the Intermediate Sand groundwater surface below the surveyed top of monitoring well casing elevation. Table 1 presents the summary of groundwater measurements obtained from the CBL Groundwater Monitoring network in the First Quarter–2024 event.

Based on the measured groundwater elevations, a potentiometric surface map was prepared to document the First Quarter-2024 monitoring event (Figure 1). The map shows a groundwater potentiometric surface that is relatively consistent with those presented for all prior CBL GMP monitoring events. As illustrated by the map shown in Figure 1, the groundwater flow direction

Ms. Kate McCarthy, P.G. LCRA June 19, 2024 Page 2

is to the south-southwest. The calculated gradient for the western portion of the CBL is 0.010 ft/ft. For the eastern portion of the CBL, the calculated gradient is 0.023 ft/ft.

3.0 GROUNDWATER FLOW RATE CALCULATION

Groundwater flow rate was calculated along two transects, one along the western area having the lower gradient, and one along the eastern area having the higher gradient. As documented in the CBL Hydrogeology Report (Amec, 2013), a hydraulic conductivity value (K) of 6.3 x 10⁻⁴ centimeters per second (cm/sec) has been estimated for the Intermediate Sand. The hydraulic conductivity value is based on the rising-head slug test data obtained from monitoring well CBL-302I. Consistent with past evaluations of the Intermediate Sand, this hydraulic conductivity value was utilized for the First Quarter-2024 event to calculate the groundwater flow rate. Also consistent with past evaluations, an assumed porosity value of 0.30 was utilized based on the dominant aquifer lithology (clayey sands and silty sands).

Given the constants $K = 6.3 \times 10^{-4} \text{ cm/sec}$ (= 648.9 feet/year) and Porosity = 0.30, the following groundwater flow velocities are calculated:

Eastern Transect (gradient of 0.023 ft/ft): 50 ft/yr (rounded) Western Transect (gradient of 0.010 ft/ft): 22 ft/yr (rounded)

4.0 REFERENCES

Amec Environment & Infrastructure, Inc. (Amec), 2013: *Hydrogeologic Evaluation of Combustion Byproducts Landfill (CBL) Area Report, Fayette Power Project*, December 2013.

TABLE 1

Combustion Byproducts Landfill Groundwater Monitoring Well System January 2024 Potentiometric Surface Data

Fayette Power Project La Grange, Texas


Well ID	СВІ	340I	CBL	301I	CBL-302I CBL-306I CBL-308I		CBL-308I		CBL	CBL-341I		
Well Top of Casing Elevation	37	6.98	37	372.11 358.99 339.96		358.99		339.96		368.67		6.65
Date	DTW (ft btoc)	Elevation (ft NAVD)	DTW (ft btoc)	Elevation (ft NAVD)	DTW (ft btoc)	Elevation (ft NAVD)	DTW (ft btoc)	Elevation (ft NAVD)	DTW (ft btoc)	Elevation (ft NAVD)	DTW (ft btoc)	Elevation (ft NAVD)
1/18/2024	27.08	349.90	37.15	334.96	12.08	346.91	10.51	329.45	25.30	343.37	17.74	348.91

Notes:

NM = Not Measured

ft btoc = feet below top of casing

ft NAVD = feet above North American Vertical Datum (1988)

Bullock, Bennett & Associates, LLC

www.bbaengineering.com 165 N. Lampasas St. • Bertram, Texas 78605 • (512) 355-9198

Technical Memorandum

To: Kate McCarthy, P.G. Project No. 23699-2

Corporate Environmental

Lower Colorado River Authority (LCRA)

From: Charlie Macon, P.G. Date: December 30, 2024

Subject: CCR GROUNDWATER DETECTION MONITORING PROGRAM

EVALUATION OF THIRD QUARTER 2024 POTENTIOMETRIC SURFACE

DATA COLLECTED FROM THE CBL

1.0 INTRODUCTION

This Technical Memorandum (Tech Memo) has been prepared by Bullock, Bennett & Associates, LLC (BBA) on behalf of the Lower Colorado River Authority (LCRA), and documents the evaluation of the Intermediate Sand groundwater bearing unit potentiometric surface data obtained during the Third Quarter-2024 Combustion Byproducts Landfill (CBL) Groundwater Monitoring Event. The groundwater monitoring is being performed as part of the CBL Groundwater Monitoring Program (GMP) in accordance with the Coal Combustion Residuals (CCR) regulations as codified in 40 Code of Federal Regulations (CFR) 257.93 and Title 30 of the Texas Administrative Code §352.931 (30 TAC §352.931). The CBL is located at the Lower Colorado River Authority's (LCRA's) Fayette Power Project (FPP) facility near La Grange, Texas. This measurement of the potentiometric surface and determination of groundwater flow direction and flow rate is conducted for each groundwater monitoring event pursuant to the GMP requirements of 40 CFR §257.93(c) and 30 Texas Administrative Code §352.931.

2.0 POTENTIOMETRIC SURFACE DATA COLLECTION, MAPPING, AND GRADIENT DETERMINATION

All groundwater monitoring and sampling activities were performed by a BBA Environmental Scientist. Prior to conducting well purging and collection of groundwater samples for chemical analysis, the Scientist used an electronic well probe to determine depth to the Intermediate Sand groundwater surface below the surveyed top of monitoring well casing elevation. Table 1 presents the summary of groundwater measurements obtained from the CBL Groundwater Monitoring network in the Third Quarter–2024 event.

Based on the measured groundwater elevations, a potentiometric surface map was prepared to document the Third Quarter-2024 monitoring event (Figure 1). The map shows a groundwater potentiometric surface that is relatively consistent with those presented for all prior CBL GMP monitoring events. As illustrated by the map shown in Figure 1, the groundwater flow direction

Ms. Kate McCarthy, P.G. LCRA December 30, 2024 Page 2

is to the south-southwest. The calculated gradient for the western portion of the CBL is 0.012 ft/ft. For the eastern portion of the CBL, the calculated gradient is 0.028 ft/ft.

3.0 GROUNDWATER FLOW RATE CALCULATION

Groundwater flow rate was calculated along two transects, one along the western area having the lower gradient, and one along the eastern area having the higher gradient. As documented in the CBL Hydrogeology Report (Amec, 2013), a hydraulic conductivity value (K) of 6.3 x 10⁻⁴ centimeters per second (cm/sec) has been estimated for the Intermediate Sand. The hydraulic conductivity value is based on the rising-head slug test data obtained from monitoring well CBL-302I. Consistent with past evaluations of the Intermediate Sand, this hydraulic conductivity value was utilized for the Third Quarter-2024 event to calculate the groundwater flow rate. Also consistent with past evaluations, an assumed porosity value of 0.30 was utilized based on the dominant aquifer lithology (clayey sands and silty sands).

Given the constants $K = 6.3 \times 10^{-4} \text{ cm/sec}$ (= 648.9 feet/year) and Porosity = 0.30, the following groundwater flow velocities are calculated:

Eastern Transect (gradient of 0.028 ft/ft): 61 ft/yr (rounded) Western Transect (gradient of 0.012 ft/ft): 26 ft/yr (rounded)

4.0 REFERENCES

Amec Environment & Infrastructure, Inc. (Amec), 2013: *Hydrogeologic Evaluation of Combustion Byproducts Landfill (CBL) Area Report, Fayette Power Project*, December 2013.

TABLE 1

Combustion Byproducts Landfill Groundwater Monitoring Well System July 2024 Potentiometric Surface Data

Fayette Power Project La Grange, Texas

Well ID	СВІ	CBL-340I		CBL-301I		CBL-302I		CBL-306I		CBL-308I		-3411
Well Top of Casing Elevation	376.98		37	372.11		358.99		339.96		368.67		6.65
Date	DTW (ft btoc)	Elevation (ft NAVD)										
7/22/2024	23.56	353.42	37.03	335.08	10.43	348.56	6.74	333.22	24.11	344.56	16.71	349.94

Notes:

NM = Not Measured

ft btoc = feet below top of casing

ft NAVD = feet above North American Vertical Datum (1988)

APPENDIX B

Results of the Groundwater Statistics for the Lower Colorado River Authority
First Semi-Annual Monitoring Event in 2024
Otter Creek Environmental Services, LLC
April 2024 (Revised September 4)

Results of the Ground Water Statistics for Lower Colorado River Authority Fayette Power Project

First Semi-Annual Monitoring Event in 2024

Prepared for:
Lower Colorado River Authority (LCRA)
Fayette Power Project
LaGrange, TX

Prepared by:
Jeffrey A. Holmgren
Otter Creek Environmental Services, L.L.C.
40W565 Foxwick Court
Elgin, IL 60124
(847) 464-1355

April 2024
Revised September 4, 2024

INTRODUCTION

This report contains the results of the statistical analyses used to evaluate the groundwater data obtained during the first semi-annual monitoring event in 2024 at the Lower Colorado River Authority (LCRA) Fayette Power Project (FPP) Combustion Byproducts Landfill (CBL), the Coal Combustion Residuals (CCR) unit addressed in this report. The statistical analyses were completed within 90 days of receipt of the analytical data. The groundwater at the FPP is monitored by wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, CBL-340I, and CBL-341I.

Statistical comparisons and evaluation for statistically significant increases (SSIs) are conducted on all wells with the exception of former background (side-gradient) monitoring well CBL-340I. Based on the Alternative Source Determination (ASD) study conducted in 2018, the identification of natural aquifer heterogeneity resulted in determination that CBL-340I could not be used to reliably characterize the background geochemistry of the groundwater flowing beneath the CCR unit. As such, intrawell analysis of wells potentially affected by CCR operation was selected at that time, and the need for use of CBL-340I geochemical data was negated. A Groundwater Monitoring System Addendum Certification was prepared in 2018, documenting the transition from former interwell analysis to intrawell analysis.

The statistical plan is designed to detect a release from the facility at the earliest indication. An intrawell methodology is described and then applied to the FPP data. The statistical method conforms with the Coal Combustion Residual (CCR) rule (40 CFR Part 257), USEPA Guidance document (*Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Unified Guidance, March 2009*), and the American Society for Testing and Materials (ASTM) standard D6312-98, *Developing Appropriate Statistical Approaches for Ground-Water Detection Monitoring Programs*. The intrawell statistical evaluations were completed within 90 days of receipt of laboratory data.

Ground Water Monitoring Program

The groundwater monitoring network for FPP includes background well CBL-340I and downgradient wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I. Each of the groundwater monitoring wells is to be sampled at least semiannually and analyzed for the detection monitoring parameters listed in Appendix III of 40 CFR Part 257, as follows:

Boron Calcium Chloride Fluoride pH Sulfate Total Dissolved Solids

Statistical analysis is conducted on data from all Groundwater Monitoring Plan (GMP) wells with the exception of CBL-340I, as described above. The groundwater data obtained for statistical evaluation during the first semi-annual monitoring event in 2024 are summarized in Attachment A. Historical Appendix III data is summarized in Attachment B.

STATISTICAL METHODOLOGIES FOR DETECTION MONITORING

The CCR rule for statistical analysis provides several options for evaluating the ground water data [40 CFR 257.93(f)]. As referenced in Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (EPA 530/R-09-007), the preferred methods for comparing ground water data are using either prediction limits or using control charts. The control chart procedure offers an advantage over the prediction limits procedure as more data is generated over time, because the control chart procedure generates a graph of compliance data over time and allows for better identification of long-term trends.

An intrawell control chart method was applied to the FPP 2024 first semiannual data using the DUMPStat[®] statistical program. DUMPStat[®] is a program for the statistical analysis of groundwater monitoring data using methods described in "Statistical Methods for Groundwater Monitoring" by Dr. Robert D. Gibbons. Groundwater statistical analysis was conducted on the Appendix III constituents listed above.

Intrawell statistics

Intrawell statistics compare new measurements to the historical data at each groundwater monitoring well independently. The Unified Guidance-recommended technique for intrawell comparisons is the combined Shewhart-CUSUM control chart. This control chart procedure detects changes in analyte concentrations both in terms of constituent concentration and cumulative concentration increases. This method is also extremely sensitive to sudden and gradual releases. A requirement for constructing these control charts is that the parameter is detected at a frequency greater than or equal to 25%, otherwise the data variance is not properly defined (ASTM D 6312-98 Standard Guide for Developing Appropriate Statistical Approaches for Ground-Water Detection Monitoring Programs).

The combined Shewhart-CUSUM control chart assumes that the data are independent and normally distributed with a fixed mean and a constant variance. Independent data is much more critical than the normality assumption. To achieve independence, it is recommended that data are collected no more frequently than quarterly to account for seasonal variation. The combined Shewhart-CUSUM control chart is robust to deviations from normality. Because the control charts do not use a specific multiplier based on a normal distribution, it is more conservative to assume normality.

Some groundwater monitoring parameters are not detected at a frequency great enough to generate the combined Shewhart-CUSUM control charts. For constituents that are detected less than 25% of the time at a particular well, the data are plotted as a time series until a sufficient number of data points are available to provide a 99% confidence nonparametric prediction limit. Thirteen independent measurements (with 1 resample) are necessary to achieve a 99% confidence (1% false positive rate) nonparametric prediction limit. Eight independent measurements (for pass 1 of 2 resamples) are necessary to achieve a 99% confidence nonparametric prediction limit. The nonparametric prediction limit is the largest determination out of the data set collected for that well and parameter. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

In developing the statistical background, the historical data must be thoroughly screened for anomalous data due to sample collection error or laboratory analysis error. An erroneous data point, if not removed prior to the mean and variance computations, would yield a larger control limit thus increasing the false negative rate. The DUMPStat® program screens for outliers using the Dixon test. If the Dixon test indicates an outlier, the value is compared to three times the median value for intrawell analyses. If the value fails both criteria of the two-stage screening, the value is considered a statistical outlier and will not be used in the mean and variance determinations. Anomalous data will still be plotted on the graphs (with a unique symbol) but will not be included in the calculations.

The verification resample plan is an integral function of the statistical plan to reduce the probability that anomalous data obtained after the background has been established is indicative of a landfill release. Should an indication of an SSI be identified, the resampling plan is implemented by the operator to collect a verification sample.

The background data for each well and constituent is tested for existing trends using Sen's nonparametric estimate of trend.

Results of the Intrawell Statistics

The Appendix III parameter data from wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I were evaluated using the combined Shewhart-CUSUM control chart method.

The initial background was established with the ProUCL software using data obtained in 2016 and 2017. Initial exceedances for boron at CBL-301I and boron at CBL-341I were reported following the first semi-annual monitoring in 2020. Since the boron concentrations determined subsequently in January 2021 at CBL-301I (<0.050 mg/L) and CBL-341I (<0.050 mg/L) do not exceed the baseline threshold values (BTV), the previous exceedances are not statistically significant. BTV will be analogous to control limits in this report and future reports. Background was later established to include historical data obtained from 2016 through 2020 using DUMPStats.

Monitoring well background data sets must be periodically updated with valid detection monitoring results that are representative of background groundwater quality. Failure to update background data sets will exclude factors such as natural temporal variation, changes in field or laboratory methodologies, and changes in the water table due to meteorological conditions or other influences. Since there were no exceedances attributed to the unit, the background data in this evaluation includes historical data obtained from 2016 through 2022 for wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I.

A summary of the intrawell statistics is included in Attachment C, Table 1 "Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts." The control charts or time series graphs follow the summary table.

For the parameters evaluated, there were no control limit exceedances detected during the first semi-annual monitoring event for 2024.

A slight increasing trend was detected in the background data for sulfate at CBL-302I.

A control chart factor was selected to provide a balance of the site-wide false positive and false negative rates. A statistical power curve indicates the expected false assessments for the site as a whole. The site-wide false positive rate is 3% and the test becomes sensitive to 3 standard deviation units over background.

CONCLUSIONS

This document describes a comprehensive statistical plan designated for the FPP. The groundwater monitoring network for FPP consists of wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I. Each of the groundwater monitoring wells is sampled and analyzed for the detection monitoring parameters listed in Appendix III of 40 CFR Part 257. The current ground water data was compared to background using intrawell control charts. Using intrawell comparisons, there were no control limit exceedances detected.

Attachment A

Ground Water Data obtained during the First Semi-Annual Monitoring Event in 2024

LCRA Fayette Power [GW] September 2024

Table 1

Analytical Data Summary for 1/29/2024 to 1/31/2024

Constituents	Units	CBL-301I	CBL-302I	CBL-306I	CBL-308I	CBL-340I	CBL-341I
Boron, Total	mg/L	.107	.160	.133	.150	.178	.133
Calcium, Total	mg/L	1050	937	186	714	607	875
Chloride	mg/L	2270	1440	153	1790	2210	1700
Fluoride	mg/L	<.100	<.100	1.490	1.260	.605	<.100
pH	S.Ū.	6.35	6.28	6.55	6.57	6.12	6.38
Sulfate	mg/L	475	1330	266	1360	705	346
Total Dissolved Solids	mg/L	4820	4950	1170	5410	5090	3990

^{* -} The displayed value is the arithmetic mean of multiple database matches.

LCRA Fayette Power [GW] September 2024

Table 2

Analytical Data Summary for 4/5/2024

Constituents	Units	CBL-302I
Boron, Total	mg/L	.163

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Attachment B

Historical Appendix III Ground Water Data

LCRA Fayette Power [GW] September 2024

Table 1

Analytical Data Summary for CBL-301I

Constituents	Units	1/21/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/18/2017	7/26/2017	2/8/2018	7/25/2018	1/17/2019	5/2/2019	7/31/2019
Boron, Total	mg/L	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	.0707	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	905	949	925	978	1000	1030	1060	961	873	993	156	762	783
Chloride	mg/L	2300	2160	2290	2250	3200	2390	2420	2500	2480	1330	619	1910	2240
Fluoride	mg/L	<.250	<.500	<.500	<.250	.312	<.500	<.500	<.500	<.500	<.500	.219	.112	.051
pH	S.Ŭ.	6.33	6.26	5.95	6.23	6.26	6.31	5.95	6.02	6.17	6.04	7.16	6.14	6.19
Sulfate	mg/L	336	311	336	326	488	337	342	381	344	196	104	398	332
Total Dissolved Solids	mg/L	4380	5050	6020	4570	6140	6570	6430	4290	5120	5390	1460	5650	6040

^{* -} The displayed value is the arithmetic mean of multiple database matches.

LCRA Fayette Power [GW] September 2024

Table 1

Analytical Data Summary for CBL-301I

Constituents	1/28/2020	9/17/2020	1/26/2021	7/20/2021	9/7/2021	1/26/2022	7/27/2022	8/30/2022	10/25/2022	1/25/2023	3/7/2023	8/2/2023	1/29/2024
Boron, Total	<.0500	.0801	<.0500	.0826	<.0500	<.0500	.0850	.1070	.0645	.1080	.1020	<.0500	.1070
Calcium, Total	851	1060	1130	1100		999	1010			977		1260	1050
Chloride	2360	2270	2420	2590		2440	1840			1960		2220	2270
Fluoride	.130	<.250	<.500	2.680	<.500	<.050	.156			1.720	<.050	.054	<.100
pH	6.26	6.13	6.06	6.13	6.14	6.27	6.08	6.14	6.21	6.34		6.21	6.35
Sulfate	349	350	374	419		406	285			1370	207	383	475
Total Dissolved Solids	4790	6340	6060	5870		4700	4590			5160		5360	4820

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 2

Analytical Data Summary for CBL-302I

Constituents	Units	1/22/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/16/2017	7/27/2017	2/8/2018	7/27/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.1560	<.0500	.2970	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	1030	1010	1030	1070	1100	1090	1100	1040	934	995	855	914	838
Chloride	mg/L	2190	2130	2210	2170	2080	2050	2230	2040	2080	1980	1960	1540	1540
Fluoride	mg/L	<.2500	<.5000	<.5000	<.2500	.3320	<.5000	<.5000	<.5000	.1120	<.5000	.0402	.0605	.1930
pH	S.U.	6.29	6.01	5.17	7.75	5.36	5.40	4.94	6.20	6.21	5.77	6.44	6.15	6.34
Sulfate	mg/L	1020	993	1090	1180	1150	1120	1230	1180	1240	1390	1250	1260	1350
Total Dissolved Solids	mg/L	5500	5390	6850	4210	6430	6460	5860	5120	6010	5510	5060	4190	4790

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 2

Analytical Data Summary for CBL-302I

Constituents	9/17/2020	1/28/2021	7/21/2021	9/7/2021	1/27/2022	7/28/2022	1/26/2023	7/18/2023	1/29/2024
Boron, Total	<.0500	<.0500	.0743		<.0500	<.0500	.1160	<.0500	.1600
Calcium, Total	853	1020	844		754	750	889	981	937
Chloride	1410	1370	1380		1310	1300	1460	1330	1440
Fluoride	<.2500	<.5000	2.2500	<.2500	<.0500	.1650	<.5000	1.7600	<.1000
pH	6.20	6.21	6.06	6.28	6.32	6.21	6.33	6.20	6.28
Sulfate	1280	1290	1350		1340	1300	1390	1230	1330
Total Dissolved Solids	4990	4800	4810		4510	5120	4930	5150	4950

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 3

Analytical Data Summary for CBL-306I

Constituents	Units	1/21/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/18/2017	7/27/2017	2/8/2018	7/27/2018	1/16/2019	7/31/2019	8/23/2019
Boron, Total	mg/L	<.0500	.0717	.0998	.0556	<.0500	.1240	.0832	.0531	<.0500	<.0500	<.0500	.0824	.0500
Calcium, Total	mg/L	137.0	47.2	105.0	198.0	174.0	204.0	205.0	234.0	230.0	275.0	180.0	106.0	226.0
Chloride	mg/L	155	20	114	330	197	231	289	350	385	283	215	538	318
Fluoride	mg/L	2.50	1.00	1.37	2.38	1.85	12.60	2.20	2.91	2.81	2.95	1.98	9.26	2.66
pH	S.Ū.	7.09	6.69	6.95	6.72	7.29	4.41	5.61	6.94	6.67	6.86	6.78	6.92	6.83
Sulfate	mg/L	266.0	29.5	139.0	432.0	270.0	340.0	412.0	513.0	493.0	406.0	292.0	816.0	387.0
Total Dissolved Solids	mg/L	1280	431	790	1150	1320	1460	1440	1280	1760	1450	1220	676	1710

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 3

Analytical Data Summary for CBL-306I

Constituents	1/29/2020	9/19/2020	1/28/2021	7/21/2021	1/27/2022	7/28/2022	1/26/2023	7/18/2023	1/29/2024
Boron, Total	<.0500	.0773	<.0500	.0927	.0548	.1100	.0973	.0659	.1330
Calcium, Total	247.0	260.0	257.0	216.0	212.0	182.0	149.0	260.0	186.0
Chloride	445	420	292	255	384	261	148	336	153
Fluoride	2.83	2.72	2.90	2.42	2.99	2.26	1.92	2.66	1.49
pH	6.70	7.16	6.84	6.55	6.87	6.70	7.30	6.49	6.55
Sulfate	561.0	506.0	388.0	336.0	510.0	348.0	205.0	454.0	266.0
Total Dissolved Solids	1830	1730	1420	1320	1730	1540	1000	1910	1170

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 4

Analytical Data Summary for CBL-308I

Constituents	Units	1/22/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/16/2017	7/26/2017	2/6/2018	7/25/2018	1/18/2019	7/31/2019	1/29/2020
Boron, Total	mg/L	<.0500	.1210	.1860	.2560	<.0500	.5450	.1090	.0799	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	903	870	911	939	919	947	954	878	859	863	760	840	745
Chloride	mg/L	2760	2580	2680	2870	2360	2530	2740	2760	2750	2680	2240	2290	2110
Fluoride	mg/L	1.49	2.30	1.64	1.59	1.33	9.05	1.70	1.90	1.76	2.10	1.68	1.62	1.60
pH	S.Ū.	6.36	6.13	5.95	6.27	6.83	6.27	5.54	6.27	6.26	6.07	6.39	6.25	6.37
Sulfate	mg/L	1490	1410	1490	1550	1320	1470	1580	1550	1570	1540	1520	1420	1340
Total Dissolved Solids	mg/L	6820	6120	7890	10200	9620	7260	6590	6480	6200	6320	4760	5820	5980

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 4

Analytical Data Summary for CBL-308I

Constituents	9/18/2020	1/28/2021	7/21/2021	1/27/2022	7/27/2022	1/26/2023	7/18/2023	1/30/2024
Boron, Total	.1030	<.0500	.1300	<.0500	.0790	.1430	<.0500	.1500
Calcium, Total	838	830	684	974	736	732	642	714
Chloride	2410	2200	1780	2020	2470	2570	1840	1790
Fluoride	1.33	1.44	1.74	1.75	1.43	<.50	1.86	1.26
Ηq	6.22	6.26	6.16	6.36	6.23	6.41	6.26	6.57
Sulfate	1310	1340	1240	1310	1190	445	1290	1360
Total Dissolved Solids	6860	6190	5270	5320	6840	5810	5680	5410

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 5

Analytical Data Summary for CBL-340I

Constituents	Units	1/21/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/16/2017	7/27/2017	2/8/2018	7/27/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	.0832	.0810	.1580	<.0500	.1740	.1040	.0816	.0638	<.0500	<.0500	.1240	.0562
Calcium, Total	mg/L	564	560	575	607	627	581	584	571	555	544	518	518	539
Chloride	mg/L	2370	2260	2350	2380	2070	2280	2520	2380	2730	2450	2250	2280	2240
Fluoride	mg/L	1.090	1.920	1.060	1.260	.840	8.440	1.010	.850	1.000	1.300	.830	.880	.870
pH	S.Ŭ.	6.52	6.13	6.95	6.19	5.46	6.49	5.77	6.42	6.41	6.25	6.59	6.45	6.49
Sulfate	mg/L	652	616	668	675	571	635	715	685	752	711	639	684	637
Total Dissolved Solids	mg/L	4990	5230	6250	5670	6230	5480	5470	4880	5290	5100	4720	5560	5080

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 5

Analytical Data Summary for CBL-340I

Constituents	9/18/2020	1/28/2021	7/22/2021	1/28/2022	7/28/2022	1/30/2023	7/19/2023	1/31/2024
Boron, Total	.1460	<.0500	.3840	.1600	.2850	.1670	.2760	.1780
Calcium, Total	547	607	532	597	538	635	631	607
Chloride	2130	2260	2200	2200	2160	2230	2130	2210
Fluoride	.725	.835	.865	1.060	.865	.850	1.070	.605
pH	6.32	6.32	6.24	6.42	6.35	6.37	6.41	6.12
Sulfate	608	634	618	619	614	643	599	705
Total Dissolved Solids	5430	5520	4990	4870	5490	5010	5290	5090

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 6
Analytical Data Summary for CBL-341I

Constituents	Units	1/23/2017	2/23/2017	3/22/2017	4/20/2017	5/16/2017	6/20/2017	7/27/2017	9/11/2017	2/8/2018	8/24/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.0587	.0896	.0668	.0507	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	854	870	906	898	860	950	829	848	810	824	782	714	767
Chloride	mg/L	1600	2000	1780	1770	1900	1820	1970	1710	2110	1910	1790	1650	1780
Fluoride	mg/L	.5300	<.5000	<.5000	<.5000	<.5000	.3350	.0550	.3670	.1060	.1140	.0546	.1000	.1530
pH	S.Ŭ.	5.74	5.23	5.72	5.73	5.54	6.19	6.21	6.10	6.18	5.82	6.38	6.23	6.27
Sulfate	mg/L	307	404	346	336	369	363	419	354	383	376	358	329	351
Total Dissolved Solids	mg/L	5000	4520	5110	4240	4840	5940	4150	4860	4320	4800	3870	5370	4900

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 6

Analytical Data Summary for CBL-341I

Constituents	9/17/2020	1/27/2021	7/22/2021	9/7/2021	1/27/2022	7/28/2022	1/26/2023	7/19/2023	1/29/2024
Boron, Total	.1020	<.0500	.1110		<.0500	.1150	.1340	.0760	.1330
Calcium, Total	814	874	852		1040	704	797	710	875
Chloride	1700	1800	1750		1810	1690	1660	1530	1700
Fluoride	<.2500	<.5000	1.1600	<.2500	<.0500	.1410	<.2500	1.1200	<.1000
pH	6.14	6.06	5.98	6.18	6.26	6.16	6.28	6.22	6.38
Sulfate	336	324	316		320	296	309	259	346
Total Dissolved Solids	4930	3940	4520		3800	4910	4390	4190	3990

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Attachment C

Summary Tables and Graphs for the Intrawell Comparisons

LCRAFayette2024s1r September 2024

Table 1
Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Туре	Conf	T
Boron, Total	mg/L	CBL-301I	22	4	26	0.0586	0.0161	0.0500	0.1070	0.0586	0.0949	0.1391	normal		
Boron, Total	mg/L	CBL-302I	18	3	21			0.0500	0.1600			0.2970		.99	**
Boron, Total	mg/L	CBL-306I	18	3	22	0.0679	0.0242	0.0659	0.1330	0.0679	0.1148	0.1891	normal		
Boron, Total	mg/L	CBL-308I	18	3	21	0.1144	0.1215	0.0500	0.1500	0.1144	0.1144	0.7217	normal		
Boron, Total	mg/L	CBL-341I	18	3	21	0.0635	0.0234	0.0760	0.1330	0.1114	0.1634	0.1803	normal		
Calcium, Total	mg/L	CBL-301I	18	3	22	964.9444	101.2710	1260.0000	1050.0000	1184.0467	1193.1490	1471.2996	normal		
Calcium, Total	mg/L	CBL-302I	18	3	21	957.0556	116.7478	981.0000	937.0000	957.0556	957.0556	1540.7947	normal		
Calcium, Total	mg/L	CBL-306I	16	3	22	214.8125	36.2569	260.0000	186.0000	232.8073	214.8125	396.0970	normal		
Calcium, Total	mg/L	CBL-308I	18	3	21	858.3333	82.3615	642.0000	714.0000	858.3333	858.3333	1270.1407	normal		
Calcium, Total	mg/L	CBL-341I	18	3	21	844.2222	79.4752	710.0000	875.0000	844.2222	844.2222	1241.5980	normal		
Chloride	mg/L	CBL-301I	18	3	22	2299.4444	372.4241	2220.0000	2270.0000	2299.4444	2299.4444	4161.5647	normal		
Chloride	mg/L	CBL-302I	18	3	21	1831.6667	360.2654	1330.0000	1440.0000	1831.6667	1831.6667	3632.9938	normal		
Chloride	mg/L	CBL-306I	16	3	22	300.6250	82.0828	336.0000	153.0000	300.6250	300.6250	711.0389	normal		
Chloride	mg/L	CBL-308I	18	3	21	2457.2222	303.1755	1840.0000	1790.0000	2457.2222	2457.2222	3973.0995	normal		
Chloride	mg/L	CBL-341I	18	3	21	1807.7778	129.1399	1530.0000	1700.0000	1807.7778	1807.7778	2453.4775	normal		
Fluoride	mg/L	CBL-301I	20	4	24	0.5080	0.5367	0.0540	0.1000	0.5080	0.5080	3.1915	normal		
Fluoride	mg/L	CBL-302I	19	3	22	0.4817	0.4622	1.7600	0.1000	1.4133	0.5849	2.7929	normal		
Fluoride	mg/L	CBL-306I	17	3	22	2.3959	0.5730	2.6600	1.4900	2.3959	2.3959	5.2610	normal		
Fluoride	mg/L	CBL-308I	17	3	21	1.6706	0.2554	1.8600	1.2600	1.6706	1.6706	2.9477	normal		
Fluoride	mg/L	CBL-341I	19	3	22	0.3745	0.2679	1.1200	0.1000	0.9191	0.3745	1.7141	normal		
pH	S.U.	CBL-301I	22	3	25	6.2014	0.2396	6.2100	6.3500	6.2014	6.2014	5.00 - 7.40	normal		\top
pH	S.U.	CBL-302I	19	3	22	6.0689	0.5972	6.2000	6.2800	6.0689	6.0689	3.08 - 9.05	normal		
pH	S.U.	CBL-306I	18	3	22	6.6478	0.6569	6.4900	6.5500	6.6478	6.6478	3.36 - 9.93	normal		
pH	S.U.	CBL-308I	18	3	21	6.2328	0.2475	6.2600	6.5700	6.2328	6.3844	5.00 - 7.47	normal		
pH	S.U.	CBL-341I	18	3	22	6.0494	0.2377	6.2200	6.3800	6.0939	6.2462	4.86 - 7.24	normal		
Sulfate	mg/L	CBL-301I	18	4	23	350.5556	60.2936	383.0000	475.0000	350.5556	429.7798	652.0236	normal		
Sulfate	mg/L	CBL-302I	18	3	21	1222.9444	114.1137	1230.0000	1330.0000	1225.8850	1247.3553	1793.5130	normal		
Sulfate	mg/L	CBL-306I	17	3	22	388.1765	110.3564	454.0000	266.0000	388.1765	388.1765	939.9583	normal		
Sulfate	mg/L	CBL-308I	18	3	21	1424.4444	121.4240	1290.0000	1360.0000	1424.4444	1424.4444	2031.5645	normal		
Sulfate	mg/L	CBL-341I	18	3	21	349.2778	32.8898	259.0000	346.0000	349.2778	349.2778	513.7270	normal		
Total Dissolved Solids	mg/L	CBL-301I	18	3	22	5444.4444	767.6950	5360.0000	4820.0000	5444.4444	5444.4444	9282.9193	normal		
Total Dissolved Solids	mg/L	CBL-302I	18	3	21	5311.6667	764.8702	5150.0000	4950.0000	5311.6667	5311.6667	9136.0178	normal		
Total Dissolved Solids	mg/L	CBL-306I	17	3	22	1437.0588	267.0853	1910.0000	1170.0000	1709.6860	1437.0588	2772.4853	normal		
Total Dissolved Solids	mg/L	CBL-308I	18	3	21	6696.6667	1385.2713	5680.0000	5410.0000	6696.6667	6696.6667	13623.0230	normal		
Total Dissolved Solids	mg/L	CBL-341I	18	3	21	4667.7778	554.0180	4190.0000	3990.0000	4667.7778	4667.7778	7437.8678			

N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods.

N(tot) = All independent measurements for that constituent and well.

For transformed data, mean and SD in transformed units and control limit in original units.

Conf = confidence level for passing initial test or one of two verification resamples (nonparametric test only).

^{* -} Insufficient Data.

^{** -} Detection Frequency < 25%.

^{*** -} Zero Variance.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	_
Boron, Total	mg/L	CBL-301I	01/21/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	05/04/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	07/27/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	10/24/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	01/23/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	03/22/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	05/18/2017	yes	0.0707					
Boron, Total	mg/L	CBL-301I	07/26/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	02/08/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	07/25/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	01/17/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	05/02/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	07/31/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	01/28/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	09/17/2020	yes	0.0801					
Boron, Total	mg/L	CBL-301I	01/26/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	07/20/2021	yes	0.0826					
Boron, Total	mg/L	CBL-301I	09/07/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	01/26/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	07/27/2022	yes	0.0850	.,_				
Boron, Total	mg/L	CBL-301I	08/30/2022	yes	0.1070					
Boron, Total	mg/L	CBL-301I	10/25/2022	yes	0.0645					
Boron, Total	mg/L	CBL-301I	01/25/2023	,,,,	0.1080			0.0959		
Boron, Total	mg/L	CBL-301I	03/07/2023		0.1020			0.1272		
Boron, Total	mg/L	CBL-3011	08/02/2023		0.0500	ND		0.0586		
Boron, Total	mg/L	CBL-3011	01/29/2024		0.1070	110		0.0949		
Boron, Total	mg/L	CBL-302I	01/22/2016	yes	0.0500	ND		0.0040		
Boron, Total	mg/L	CBL-302I	05/04/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/27/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	10/24/2016	yes	0.1560	110				
Boron, Total	mg/L	CBL-302I	01/23/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	03/22/2017	yes	0.2970	110				
Boron, Total	mg/L	CBL-302I	05/16/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/27/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	02/08/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/27/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	01/22/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/31/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	01/30/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3021	09/17/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3021	01/28/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3021	07/21/2021	yes	0.0743	IND				
Boron, Total	mg/L	CBL-3021	01/27/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3021	07/28/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3021	01/26/2023	, , ,	0.1160	110				
Boron, Total	mg/L	CBL-3021	07/18/2023		0.0500	ND				
Boron, Total	mg/L	CBL-302I	01/29/2024		0.1600	IND				
Boron, Total	mg/L	CBL-306I	01/29/2024	yes	0.0500	ND				
Boron, Total		CBL-306I	05/04/2016		0.0300	IND				
Boron, Total	mg/L mg/L	CBL-306I	07/26/2016	yes ves	0.0717					
Dolon, Iotal	IIIg/L	ODE-2001	01/20/2010	усэ	0.0990					_

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Boron, Total	mg/L	CBL-306I	10/24/2016	yes	0.0556				•	
Boron, Total	mg/L	CBL-306I	01/19/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	03/22/2017	yes	0.1240	.,,				
Boron, Total	mg/L	CBL-306I	05/18/2017	yes	0.0832					
Boron, Total	mg/L	CBL-306I	07/27/2017	yes	0.0531					
Boron, Total	mg/L	CBL-306I	02/08/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	07/27/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	01/16/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	07/31/2019	yes	0.0824	IND	yes			*
Boron, Total	mg/L	CBL-306I	08/23/2019	yes	0.0500		,03			
Boron, Total	mg/L	CBL-306I	01/29/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	09/19/2020	yes	0.0773	IND				
Boron, Total	mg/L	CBL-306I	01/28/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	07/21/2021	yes	0.0927	IND				
Boron, Total		CBL-306I	01/21/2021		0.0548					
Boron, Total	mg/L	CBL-306I	07/28/2022	yes	0.0348					
	mg/L	CBL-306I	01/26/2023	yes	0.1100			0.0791		
Boron, Total Boron, Total	mg/L	CBL-306I	07/18/2023		0.0659			0.0679		
	mg/L									
Boron, Total	mg/L	CBL-306I	01/29/2024	1/00	0.1330	ND		0.1148		
Boron, Total	mg/L	CBL-308I	01/22/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	05/04/2016	yes	0.1210					
Boron, Total	mg/L	CBL-308I	07/26/2016	yes	0.1860					
Boron, Total	mg/L	CBL-308I	10/24/2016	yes	0.2560					
Boron, Total	mg/L	CBL-308I	01/19/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	03/22/2017	yes	0.5450					
Boron, Total	mg/L	CBL-308I	05/16/2017	yes	0.1090					
Boron, Total	mg/L	CBL-308I	07/26/2017	yes	0.0799					
Boron, Total	mg/L	CBL-308I	02/06/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	07/25/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	01/18/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	07/31/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	01/29/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	09/18/2020	yes	0.1030					
Boron, Total	mg/L	CBL-308I	01/28/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	07/21/2021	yes	0.1300					
Boron, Total	mg/L	CBL-308I	01/27/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	07/27/2022	yes	0.0790					
Boron, Total	mg/L	CBL-308I	01/26/2023		0.1430			0.1144		
Boron, Total	mg/L	CBL-308I	07/18/2023		0.0500	ND		0.1144		
Boron, Total	mg/L	CBL-308I	01/30/2024		0.1500			0.1144		
Boron, Total	mg/L	CBL-341I	01/23/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	02/23/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	03/22/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	04/20/2017	yes	0.0587					
Boron, Total	mg/L	CBL-341I	05/16/2017	yes	0.0896					
Boron, Total	mg/L	CBL-341I	06/20/2017	yes	0.0668					
Boron, Total	mg/L	CBL-341I	07/27/2017	yes	0.0507					
Boron, Total	mg/L	CBL-341I	09/11/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	02/08/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	08/24/2018	yes	0.0500	ND				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Boron, Total	mg/L	CBL-341I	01/22/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	07/31/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	01/30/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	09/17/2020	yes	0.1020					
Boron, Total	mg/L	CBL-341I	01/27/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	07/22/2021	yes	0.1110					
Boron, Total	mg/L	CBL-341I	01/27/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	07/28/2022	yes	0.1150					
Boron, Total	mg/L	CBL-341I	01/26/2023	,	0.1340			0.1165		
Boron, Total	mg/L	CBL-341I	07/19/2023		0.0760			0.1114		
Boron, Total	mg/L	CBL-341I	01/29/2024		0.1330			0.1634		
Calcium, Total	mg/L	CBL-301I	01/21/2016	yes	905.0000					
Calcium, Total	mg/L	CBL-301I	05/04/2016	yes	949.0000					
Calcium, Total	mg/L	CBL-301I	07/27/2016	yes	925.0000					
Calcium, Total	mg/L	CBL-301I	10/24/2016	yes	978.0000					
Calcium, Total	mg/L	CBL-301I	01/23/2017	yes	1000.0000					
Calcium, Total	mg/L	CBL-301I	03/22/2017	yes	1030.0000					
Calcium, Total	mg/L	CBL-301I	05/18/2017	yes	1060.0000					
Calcium, Total	mg/L	CBL-301I	07/26/2017	yes	961.0000					
Calcium, Total	mg/L	CBL-301I	02/08/2018	yes	873.0000					
Calcium, Total	mg/L	CBL-301I	07/25/2018	yes	993.0000					
Calcium, Total	mg/L	CBL-301I	01/17/2019	yes	156.0000		yes			*
Calcium, Total	mg/L	CBL-301I	05/02/2019	yes	762.0000		'			
Calcium, Total	mg/L	CBL-301I	07/31/2019	yes	783.0000					
Calcium, Total	mg/L	CBL-301I	01/28/2020	yes	851.0000					
Calcium, Total	mg/L	CBL-301I	09/17/2020	yes	1060.0000					
Calcium, Total	mg/L	CBL-301I	01/26/2021	yes	1130.0000					
Calcium, Total	mg/L	CBL-301I	07/20/2021	yes	1100.0000					
Calcium, Total	mg/L	CBL-301I	01/26/2022	yes	999.0000					
Calcium, Total	mg/L	CBL-301I	07/27/2022	yes	1010.0000					
Calcium, Total	mg/L	CBL-301I	01/25/2023	1	977.0000			964.9444		
Calcium, Total	mg/L	CBL-301I	08/02/2023		1260.0000			1184.0467		
Calcium, Total	mg/L	CBL-301I	01/29/2024		1050.0000			1193.1490		
Calcium, Total	mg/L	CBL-302I	01/22/2016	yes	1030.0000					
Calcium, Total	mg/L	CBL-302I	05/04/2016	yes	1010.0000					
Calcium, Total	mg/L	CBL-302I	07/27/2016	yes	1030.0000					
Calcium, Total	mg/L	CBL-302I	10/24/2016	yes	1070.0000					
Calcium, Total	mg/L	CBL-302I	01/23/2017	yes	1100.0000					
Calcium, Total	mg/L	CBL-302I	03/22/2017	yes	1090.0000					
Calcium, Total	mg/L	CBL-302I	05/16/2017	yes	1100.0000					
Calcium, Total	mg/L	CBL-302I	07/27/2017	yes	1040.0000					
Calcium, Total	mg/L	CBL-302I	02/08/2018	yes	934.0000					
Calcium, Total	mg/L	CBL-302I	07/27/2018	yes	995.0000					
Calcium, Total	mg/L	CBL-302I	01/22/2019	yes	855.0000					
Calcium, Total	mg/L	CBL-302I	07/31/2019	yes	914.0000					
Calcium, Total	mg/L	CBL-302I	01/30/2020	yes	838.0000					
Calcium, Total	mg/L	CBL-302I	09/17/2020	yes	853.0000					
Calcium, Total	mg/L	CBL-302I	01/28/2021	ves	1020.0000					
Calcium, Total	mg/L	CBL-302I	07/21/2021	yes	844.0000					
Calcium, Total	mg/L	CBL-302I	01/27/2022	ves	754.0000					
Jaiolaini, 10tai	g/ <u>-</u>	1 0 DE 00E1	J I/LI/LULL	,,,,,	701.0000					

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Calcium, Total	mg/L	CBL-302I	07/28/2022	yes	750.0000				
Calcium, Total	mg/L	CBL-302I	01/26/2023		889.0000		957.0556		
Calcium, Total	mg/L	CBL-302I	07/18/2023		981.0000		957.0556		
Calcium, Total	mg/L	CBL-302I	01/29/2024		937.0000		957.0556		
Calcium, Total	mg/L	CBL-306I	01/21/2016	yes	137.0000				
Calcium, Total	mg/L	CBL-306I	05/04/2016	yes	47.2000	yes			*
Calcium, Total	mg/L	CBL-306I	07/26/2016	yes	105.0000	yes			*
Calcium, Total	mg/L	CBL-306I	10/24/2016	yes	198.0000	'			
Calcium, Total	mg/L	CBL-306I	01/19/2017	yes	174.0000				
Calcium, Total	mg/L	CBL-306I	03/22/2017	yes	204.0000				
Calcium, Total	mg/L	CBL-306I	05/18/2017	yes	205.0000				
Calcium, Total	mg/L	CBL-306I	07/27/2017	yes	234.0000				
Calcium, Total	mg/L	CBL-306I	02/08/2018	yes	230.0000				
Calcium, Total	mg/L	CBL-306I	07/27/2018	yes	275.0000				
Calcium, Total	mg/L	CBL-306I	01/16/2019	yes	180.0000				
Calcium, Total	mg/L	CBL-306I	07/31/2019	yes	106.0000	yes			*
Calcium, Total	mg/L	CBL-306I	08/23/2019	ves	226.0000	,55			
Calcium, Total	mg/L	CBL-306I	01/29/2020	yes	247.0000				
Calcium, Total	mg/L	CBL-306I	09/19/2020	yes	260.0000				
Calcium, Total	mg/L	CBL-306I	01/28/2021	yes	257.0000				
Calcium, Total	mg/L	CBL-306I	07/21/2021	yes	216.0000				
Calcium, Total	mg/L	CBL-306I	01/27/2022	ves	212.0000				
Calcium, Total	mg/L	CBL-306I	07/28/2022	yes	182.0000				
Calcium, Total	mg/L	CBL-306I	01/26/2023	yes	149.0000		214.8125		
Calcium, Total	mg/L	CBL-306I	07/18/2023		260.0000		232.8073		
Calcium, Total	mg/L	CBL-306I	01/29/2024		186.0000		214.8125		
Calcium, Total	mg/L	CBL-308I	01/22/2016	ves	903.0000		214.0123		
Calcium, Total	mg/L	CBL-308I	05/04/2016	yes	870.0000				
Calcium, Total	mg/L	CBL-308I	07/26/2016		911.0000				
Calcium, Total	mg/L	CBL-308I	10/24/2016	yes yes	939.0000				
Calcium, Total	mg/L	CBL-308I	01/19/2017	yes	919.0000				
Calcium, Total	mg/L	CBL-308I	03/22/2017	ves	947.0000				
Calcium, Total		CBL-308I	05/16/2017		954.0000				
Calcium, Total	mg/L	CBL-308I	07/26/2017	yes	878.0000				
Calcium, Total	mg/L	CBL-308I	02/06/2018	yes	859.0000				
	mg/L			yes					
Calcium, Total	mg/L	CBL-308I	07/25/2018	yes	863.0000				
Calcium, Total	mg/L	CBL-308I	01/18/2019	yes	760.0000				
Calcium, Total	mg/L	CBL-308I	07/31/2019	yes	840.0000				
Calcium, Total	mg/L	CBL-308I	01/29/2020	yes	745.0000				
Calcium, Total	mg/L	CBL-308I	09/18/2020	yes	838.0000				
Calcium, Total	mg/L	CBL-308I	01/28/2021	yes	830.0000				
Calcium, Total	mg/L	CBL-308I	07/21/2021	yes	684.0000				
Calcium, Total	mg/L	CBL-308I	01/27/2022	yes	974.0000				
Calcium, Total	mg/L	CBL-308I	07/27/2022	yes	736.0000		050 0000		
Calcium, Total	mg/L	CBL-308I	01/26/2023		732.0000		858.3333		
Calcium, Total	mg/L	CBL-308I	07/18/2023		642.0000		858.3333		
Calcium, Total	mg/L	CBL-308I	01/30/2024		714.0000		858.3333		\vdash
Calcium, Total	mg/L	CBL-341I	01/23/2017	yes	854.0000				
Calcium, Total	mg/L	CBL-341I	02/23/2017	yes	870.0000				
Calcium, Total	mg/L	CBL-341I	03/22/2017	yes	906.0000				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Calcium, Total	mg/L	CBL-341I	04/20/2017	yes	898.0000	+ +		-	
Calcium, Total	mg/L	CBL-341I	05/16/2017	yes	860.0000				
Calcium, Total	mg/L	CBL-341I	06/20/2017	yes	950.0000				
Calcium, Total	mg/L	CBL-341I	07/27/2017	yes	829.0000				
Calcium, Total	mg/L	CBL-341I	09/11/2017	yes	848.0000				
Calcium, Total	mg/L	CBL-341I	02/08/2018	yes	810.0000				
Calcium, Total	mg/L	CBL-341I	08/24/2018	yes	824.0000				
Calcium, Total	mg/L	CBL-341I	01/22/2019	yes	782.0000				
Calcium, Total	mg/L	CBL-341I	07/31/2019	yes	714.0000				
Calcium, Total	mg/L	CBL-341I	01/30/2020	yes	767.0000				
Calcium, Total	mg/L	CBL-341I	09/17/2020	yes	814.0000				
Calcium, Total	mg/L	CBL-3411	01/27/2021	yes	874.0000				
Calcium, Total	mg/L	CBL-341I	07/22/2021	yes	852.0000				
Calcium, Total	mg/L	CBL-341I	01/27/2022	ves	1040.0000				
Calcium, Total	mg/L	CBL-3411	07/28/2022	yes	704.0000				
Calcium, Total	mg/L	CBL-3411	01/26/2023	yes	797.0000		844.2222		
Calcium, Total	mg/L	CBL-3411	07/19/2023		710.0000		844.2222		
Calcium, Total	mg/L	CBL-3411	01/29/2024		875.0000		844.2222		
Chloride	mg/L	CBL-301I	01/21/2016	ves	2300.0000		044.2222		
Chloride	mg/L	CBL-3011	05/04/2016	yes	2160.0000				
Chloride	mg/L	CBL-3011	07/27/2016		2290.0000				
Chloride	mg/L	CBL-3011	10/24/2016	yes	2250.0000				
Chloride		CBL-3011	01/23/2017	yes	3200.0000				
Chloride	mg/L	CBL-3011	03/22/2017	yes	2390.0000				
Chloride	mg/L mg/L	CBL-3011	05/18/2017	yes	2420.0000				
Chloride			07/26/2017	yes					
Chloride	mg/L	CBL-301I CBL-301I	02/08/2018	yes	2500.0000 2480.0000				
Chloride	mg/L	CBL-3011	07/25/2018	yes	1330.0000				
Chloride	mg/L mg/L	CBL-3011	01/17/2019	yes	619.0000	.,,,,			*
Chloride		CBL-3011	05/02/2019	yes	1910.0000	yes			
Chloride	mg/L			yes					
Chloride	mg/L	CBL-301I	07/31/2019 01/28/2020	yes	2240.0000 2360.0000				
	mg/L	CBL-301I		yes					
Chloride	mg/L	CBL-301I	09/17/2020	yes	2270.0000				
Chloride	mg/L	CBL-301I	01/26/2021	yes	2420.0000				
Chloride	mg/L	CBL-301I	07/20/2021	yes	2590.0000				
Chloride	mg/L	CBL-301I	01/26/2022	yes	2440.0000				
Chloride	mg/L	CBL-301I	07/27/2022	yes	1840.0000		0000 4444		
Chloride	mg/L	CBL-301I	01/25/2023		1960.0000		2299.4444		
Chloride	mg/L	CBL-301I	08/02/2023		2220.0000		2299.4444		
Chloride	mg/L	CBL-301I	01/29/2024	1/65	2270.0000		2299.4444		
Chloride	mg/L	CBL-302I	01/22/2016	yes	2190.0000				
Chloride	mg/L	CBL-302I CBL-302I	05/04/2016	yes	2130.0000				
Chloride	mg/L		07/27/2016	yes	2210.0000				
Chloride	mg/L	CBL-302I	10/24/2016	yes	2170.0000				
Chloride	mg/L	CBL-302I	01/23/2017	yes	2080.0000				
Chloride	mg/L	CBL-302I	03/22/2017	yes	2050.0000				
Chloride	mg/L	CBL-302I	05/16/2017	yes	2230.0000				
Chloride	mg/L	CBL-302I	07/27/2017	yes	2040.0000				
Chloride	mg/L	CBL-302I	02/08/2018	yes	2080.0000				
Chloride	mg/L	CBL-302I	07/27/2018	yes	1980.0000				<u> </u>

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Chloride	mg/L	CBL-302I	01/22/2019	yes	1960.0000				
Chloride	mg/L	CBL-302I	07/31/2019	yes	1540.0000				
Chloride	mg/L	CBL-302I	01/30/2020	yes	1540.0000				
Chloride	mg/L	CBL-302I	09/17/2020	yes	1410.0000				
Chloride	mg/L	CBL-302I	01/28/2021	yes	1370.0000				
Chloride	mg/L	CBL-302I	07/21/2021	yes	1380.0000				
Chloride	mg/L	CBL-302I	01/27/2022	yes	1310.0000				
Chloride	mg/L	CBL-302I	07/28/2022	yes	1300.0000				
Chloride	mg/L	CBL-302I	01/26/2023	,	1460.0000		1831.6667		
Chloride	mg/L	CBL-302I	07/18/2023		1330.0000		1831.6667		
Chloride	mg/L	CBL-302I	01/29/2024		1440.0000		1831.6667		
Chloride	mg/L	CBL-306I	01/21/2016	yes	155.0000				
Chloride	mg/L	CBL-306I	05/04/2016	yes	20.0000	yes			*
Chloride	mg/L	CBL-306I	07/26/2016	yes	114.0000	yes			*
Chloride	mg/L	CBL-306I	10/24/2016	yes	330.0000	,55			
Chloride	mg/L	CBL-306I	01/19/2017	yes	197.0000				
Chloride	mg/L	CBL-306I	03/22/2017	yes	231.0000				
Chloride	mg/L	CBL-306I	05/18/2017	yes	289.0000				
Chloride	mg/L	CBL-306I	07/27/2017	yes	350.0000				
Chloride	mg/L	CBL-306I	02/08/2018	yes	385.0000				
Chloride		CBL-306I	07/27/2018		283.0000				
Chloride	mg/L			yes					
	mg/L	CBL-306I	01/16/2019	yes	215.0000				*
Chloride	mg/L	CBL-306I	07/31/2019	yes	538.0000	yes			
Chloride	mg/L	CBL-306I	08/23/2019	yes	318.0000				
Chloride	mg/L	CBL-306I	01/29/2020	yes	445.0000				
Chloride	mg/L	CBL-306I	09/19/2020	yes	420.0000				
Chloride	mg/L	CBL-306I	01/28/2021	yes	292.0000				
Chloride	mg/L	CBL-306I	07/21/2021	yes	255.0000				
Chloride	mg/L	CBL-306I	01/27/2022	yes	384.0000				
Chloride	mg/L	CBL-306I	07/28/2022	yes	261.0000				
Chloride	mg/L	CBL-306I	01/26/2023		148.0000		300.6250		
Chloride	mg/L	CBL-306I	07/18/2023		336.0000		300.6250		
Chloride	mg/L	CBL-306I	01/29/2024		153.0000		300.6250		
Chloride	mg/L	CBL-308I	01/22/2016	yes	2760.0000				
Chloride	mg/L	CBL-308I	05/04/2016	yes	2580.0000				
Chloride	mg/L	CBL-308I	07/26/2016	yes	2680.0000				
Chloride	mg/L	CBL-308I	10/24/2016	yes	2870.0000				
Chloride	mg/L	CBL-308I	01/19/2017	yes	2360.0000				
Chloride	mg/L	CBL-308I	03/22/2017	yes	2530.0000				
Chloride	mg/L	CBL-308I	05/16/2017	yes	2740.0000				
Chloride	mg/L	CBL-308I	07/26/2017	yes	2760.0000				
Chloride	mg/L	CBL-308I	02/06/2018	yes	2750.0000				
Chloride	mg/L	CBL-308I	07/25/2018	yes	2680.0000				
Chloride	mg/L	CBL-308I	01/18/2019	yes	2240.0000				
Chloride	mg/L	CBL-308I	07/31/2019	yes	2290.0000				
Chloride	mg/L	CBL-308I	01/29/2020	yes	2110.0000				
Chloride	mg/L	CBL-308I	09/18/2020	yes	2410.0000				
Chloride	mg/L	CBL-308I	01/28/2021	yes	2200.0000				
Chloride	mg/L	CBL-308I	07/21/2021	yes	1780.0000				
Chloride	mg/L	CBL-308I	01/27/2022	ves	2020.0000				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	(Outlier	CUSUM	Adjusted	
Chloride	mg/L	CBL-308I	07/27/2022	yes	2470.0000					
Chloride	mg/L	CBL-308I	01/26/2023		2570.0000			2457.2222		
Chloride	mg/L	CBL-308I	07/18/2023		1840.0000			2457.2222		
Chloride	mg/L	CBL-308I	01/30/2024		1790.0000			2457.2222		
Chloride	mg/L	CBL-341I	01/23/2017	yes	1600.0000					
Chloride	mg/L	CBL-341I	02/23/2017	yes	2000.0000					
Chloride	mg/L	CBL-341I	03/22/2017	yes	1780.0000					
Chloride	mg/L	CBL-341I	04/20/2017	yes	1770.0000					
Chloride	mg/L	CBL-341I	05/16/2017	yes	1900.0000					
Chloride	mg/L	CBL-341I	06/20/2017	yes	1820.0000					
Chloride	mg/L	CBL-341I	07/27/2017	yes	1970.0000					
Chloride	mg/L	CBL-341I	09/11/2017	yes	1710.0000					
Chloride	mg/L	CBL-341I	02/08/2018	yes	2110.0000					
Chloride	mg/L	CBL-341I	08/24/2018	yes	1910.0000					
Chloride	mg/L	CBL-3411	01/22/2019	yes	1790.0000					
Chloride	mg/L	CBL-3411	07/31/2019	yes	1650.0000					
Chloride	mg/L	CBL-3411	01/30/2020	yes	1780.0000					
Chloride	mg/L	CBL-3411	09/17/2020	yes	1700.0000					
Chloride		CBL-3411	01/27/2021		1800.0000					
Chloride	mg/L			yes						
	mg/L	CBL-341I	07/22/2021	yes	1750.0000					
Chloride	mg/L	CBL-341I	01/27/2022	yes	1810.0000					
Chloride	mg/L	CBL-341I	07/28/2022	yes	1690.0000					
Chloride	mg/L	CBL-341I	01/26/2023		1660.0000			1807.7778		
Chloride	mg/L	CBL-341I	07/19/2023		1530.0000			1807.7778		
Chloride	mg/L	CBL-341I	01/29/2024		1700.0000			1807.7778		
Fluoride	mg/L	CBL-301I	01/21/2016	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-301I	05/04/2016	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	07/27/2016	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	10/24/2016	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-301I	01/23/2017	yes	0.3120					
Fluoride	mg/L	CBL-301I	03/22/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	05/18/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	07/26/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	02/08/2018	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	07/25/2018	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	01/17/2019	yes	0.2190					
Fluoride	mg/L	CBL-301I	05/02/2019	yes	0.1120					
Fluoride	mg/L	CBL-301I	07/31/2019	yes	0.0510					
Fluoride	mg/L	CBL-301I	01/28/2020	yes	0.1300					
Fluoride	mg/L	CBL-301I	09/17/2020	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-301I	01/26/2021	yes	0.5000	ND			0.0000	
Fluoride	mg/L	CBL-3011	07/20/2021	ves	2.6800	110				
Fluoride	mg/L	CBL-3011	09/07/2021	yes	0.5000	ND				
Fluoride	mg/L	CBL-3011	01/26/2022	yes	0.0500	ND ND			0.5000	***
Fluoride		CBL-3011	07/27/2022		0.1560	ושאו			0.5000	
Fluoride	mg/L	CBL-3011		yes	1.7200			4 0475		
	mg/L		01/25/2023			ND		1.3175		
Fluoride	mg/L	CBL-301I	03/07/2023		0.0500	ND		0.5080		
Fluoride	mg/L	CBL-301I	08/02/2023		0.0540			0.5080		
Fluoride	mg/L	CBL-301I	01/29/2024		0.1000	ND		0.5080		40.
Fluoride	mg/L	CBL-302I	01/22/2016	yes	0.2500	ND			0.5000	***

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Fluoride	mg/L	CBL-302I	05/04/2016	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	07/27/2016	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	10/24/2016	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-302I	01/23/2017	yes	0.3320					
Fluoride	mg/L	CBL-302I	03/22/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	05/16/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	07/27/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	02/08/2018	yes	0.1120					
Fluoride	mg/L	CBL-302I	07/27/2018	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	01/22/2019	yes	0.0402					
Fluoride	mg/L	CBL-302I	07/31/2019	yes	0.0605					
Fluoride	mg/L	CBL-302I	01/30/2020	yes	0.1930					
Fluoride	mg/L	CBL-302I	09/17/2020	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-302I	01/28/2021	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	07/21/2021	yes	2.2500					
Fluoride	mg/L	CBL-302I	09/07/2021	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-302I	01/27/2022	yes	0.0500	ND			0.5000	***
Fluoride	mg/L	CBL-302I	07/28/2022	yes	0.1650	IND			0.0000	
Fluoride	mg/L	CBL-302I	01/26/2023	yes	0.5000	ND		0.4817		
Fluoride	mg/L	CBL-3021	07/18/2023		1.7600	ND		1.4133		
Fluoride	mg/L	CBL-3021	01/29/2024		0.1000	ND		0.5849		
Fluoride	mg/L	CBL-306I	01/21/2016	yes	2.5000	ND		0.3049		
Fluoride	mg/L	CBL-306I	05/04/2016	yes	1.0000					
Fluoride	mg/L	CBL-306I	07/26/2016	yes	1.3700					
Fluoride	mg/L	CBL-306I	10/24/2016	yes	2.3800					
Fluoride	mg/L	CBL-306I	01/19/2017		1.8500					
Fluoride	mg/L	CBL-306I	03/22/2017	yes yes	12.6000		1/00			*
Fluoride		CBL-306I	05/18/2017		2.2000		yes			
Fluoride	mg/L mg/L	CBL-306I	07/27/2017	yes	2.9100					
Fluoride		CBL-306I	02/08/2018	yes	2.8100					
Fluoride	mg/L	CBL-306I	07/27/2018	yes	2.9500					
	mg/L			yes						
Fluoride Fluoride	mg/L	CBL-306I CBL-306I	01/16/2019	yes	1.9800 9.2600					*
Fluoride	mg/L		07/31/2019	yes			yes			
Fluoride	mg/L	CBL-306I CBL-306I	08/23/2019 01/29/2020	yes	2.6600 2.8300					
	mg/L			yes						
Fluoride	mg/L	CBL-306I	09/19/2020	yes	2.7200					
Fluoride	mg/L	CBL-306I	01/28/2021	yes	2.9000					
Fluoride	mg/L	CBL-306I	07/21/2021	yes	2.4200					
Fluoride	mg/L	CBL-306I	01/27/2022	yes	2.9900					
Fluoride	mg/L	CBL-306I	07/28/2022	yes	2.2600			0.0050		
Fluoride	mg/L	CBL-306I	01/26/2023		1.9200			2.3959		
Fluoride	mg/L	CBL-306I	07/18/2023		2.6600			2.3959		
Fluoride	mg/L	CBL-306I	01/29/2024		1.4900			2.3959		
Fluoride	mg/L	CBL-308I	01/22/2016	yes	1.4900					
Fluoride	mg/L	CBL-308I	05/04/2016	yes	2.3000					
Fluoride	mg/L	CBL-308I	07/26/2016	yes	1.6400					
Fluoride	mg/L	CBL-308I	10/24/2016	yes	1.5900					
Fluoride	mg/L	CBL-308I	01/19/2017	yes	1.3300					
Fluoride	mg/L	CBL-308I	03/22/2017	yes	9.0500		yes			*
Fluoride	mg/L	CBL-308I	05/16/2017	yes	1.7000					

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Fluoride	mg/L	CBL-308I	07/26/2017	yes	1.9000					
Fluoride	mg/L	CBL-308I	02/06/2018	yes	1.7600					
Fluoride	mg/L	CBL-308I	07/25/2018	yes	2.1000					
Fluoride	mg/L	CBL-308I	01/18/2019	yes	1.6800					
Fluoride	mg/L	CBL-308I	07/31/2019	yes	1.6200					
Fluoride	mg/L	CBL-308I	01/29/2020	yes	1.6000					
Fluoride	mg/L	CBL-308I	09/18/2020	yes	1.3300					
Fluoride	mg/L	CBL-308I	01/28/2021	yes	1.4400					
Fluoride	mg/L	CBL-308I	07/21/2021	yes	1.7400					
Fluoride	mg/L	CBL-308I	01/27/2022	yes	1.7500					
Fluoride	mg/L	CBL-308I	07/27/2022	yes	1.4300					
Fluoride	mg/L	CBL-308I	01/26/2023	yes	0.5000	ND		1.6706		
Fluoride	mg/L	CBL-308I	07/18/2023		1.8600	ND		1.6706		
Fluoride	mg/L	CBL-308I	01/30/2024		1.2600			1.6706		
Fluoride	mg/L	CBL-341I	01/30/2024	VOC	0.5300			1.0700		
Fluoride	mg/L	CBL-3411	02/23/2017	yes	0.5000	ND				
Fluoride		CBL-3411	03/22/2017	yes	0.5000	ND				
	mg/L			yes		ND				
Fluoride	mg/L	CBL-3411	04/20/2017	yes	0.5000					
Fluoride	mg/L	CBL-341I	05/16/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-341I	06/20/2017	yes	0.3350					
Fluoride	mg/L	CBL-341I	07/27/2017	yes	0.0550					
Fluoride	mg/L	CBL-341I	09/11/2017	yes	0.3670					
Fluoride	mg/L	CBL-341I	02/08/2018	yes	0.1060					
Fluoride	mg/L	CBL-341I	08/24/2018	yes	0.1140					
Fluoride	mg/L	CBL-341I	01/22/2019	yes	0.0546					
Fluoride	mg/L	CBL-341I	07/31/2019	yes	0.1000					
Fluoride	mg/L	CBL-341I	01/30/2020	yes	0.1530					
Fluoride	mg/L	CBL-341I	09/17/2020	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-341I	01/27/2021	yes	0.5000	ND				
Fluoride	mg/L	CBL-341I	07/22/2021	yes	1.1600					
Fluoride	mg/L	CBL-341I	09/07/2021	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-341I	01/27/2022	yes	0.0500	ND			0.5000	***
Fluoride	mg/L	CBL-341I	07/28/2022	yes	0.1410					
Fluoride	mg/L	CBL-341I	01/26/2023		0.2500	ND		0.3745		
Fluoride	mg/L	CBL-341I	07/19/2023		1.1200			0.9191		
Fluoride	mg/L	CBL-341I	01/29/2024		0.1000	ND		0.3745		
pH	S.U.	CBL-301I	01/21/2016	yes	6.3300					
pH	S.U.	CBL-301I	05/04/2016	yes	6.2600					
pH	S.U.	CBL-301I	07/27/2016	yes	5.9500					
pH	S.U.	CBL-301I	10/24/2016	yes	6.2300					
pH	S.U.	CBL-301I	01/23/2017	yes	6.2600					
pH	S.U.	CBL-301I	03/22/2017	yes	6.3100					
pH	S.U.	CBL-301I	05/18/2017	yes	5.9500					
pH	S.U.	CBL-301I	07/26/2017	yes	6.0200					
pH	S.U.	CBL-301I	02/08/2018	yes	6.1700					
pH	S.U.	CBL-301I	07/25/2018	yes	6.0400					
pH	S.U.	CBL-301I	01/17/2019	yes	7.1600					
pH	S.U.	CBL-301I	05/02/2019	yes	6.1400					
pH	S.U.	CBL-3011	07/31/2019	yes	6.1900					
pH	S.U.	CBL-3011	01/28/2020	ves	6.2600					
l b	0.0.	ODE-0011	01/20/2020	ycs	0.2000					

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	_
pH	S.U.	CBL-301I	09/17/2020	yes	6.1300				
pH	S.U.	CBL-301I	01/26/2021	yes	6.0600				
pH	S.U.	CBL-301I	07/20/2021	yes	6.1300				
pH	S.U.	CBL-301I	09/07/2021	yes	6.1400				
pH	S.U.	CBL-301I	01/26/2022	yes	6.2700				
pH	S.U.	CBL-301I	07/27/2022	yes	6.0800				
pH	S.U.	CBL-301I	08/30/2022	yes	6.1400				
pH	S.U.	CBL-301I	10/25/2022	yes	6.2100				
pH	S.U.	CBL-301I	01/25/2023	,	6.3400		6.2014		
pH	S.U.	CBL-301I	08/02/2023		6.2100		6.2014		
pH	S.U.	CBL-301I	01/29/2024		6.3500		6.2014		
pH	S.U.	CBL-302I	01/22/2016	yes	6.2900		0.00		
pH	S.U.	CBL-302I	05/04/2016	yes	6.0100				
pH	S.U.	CBL-302I	07/27/2016	yes	5.1700				
pH	S.U.	CBL-302I	10/24/2016	yes	7.7500				
pH	S.U.	CBL-302I	01/23/2017	yes	5.3600				
pH	S.U.	CBL-302I	03/22/2017	yes	5.4000				
pH	S.U.	CBL-302I	05/16/2017	yes	4.9400				
pH	S.U.	CBL-302I	07/27/2017	yes	6.2000				
pH	S.U.	CBL-302I	02/08/2018	yes	6.2100				
pH	S.U.	CBL-302I	07/27/2018	yes	5.7700				
pH	S.U.	CBL-302I	01/22/2019	yes	6.4400				
pH	S.U.	CBL-3021	07/31/2019	yes	6.1500				
pH	S.U.	CBL-302I	01/30/2020	yes	6.3400				
pH	S.U.	CBL-3021	09/17/2020	yes	6.2000				
рН	S.U.	CBL-302I	01/28/2021		6.2100				
pH	S.U.	CBL-3021	07/21/2021	yes	6.0600				
pH	S.U.	CBL-3021	09/07/2021	yes yes	6.2800				
pH	S.U.	CBL-3021	01/27/2022	yes	6.3200				
pH	S.U.	CBL-3021	07/28/2022		6.2100				
	S.U.	CBL-302I	01/26/2023	yes	6.3300		6.0689		
pH pH	S.U.	CBL-302I	07/18/2023		6.2000		6.0689		
рH	S.U.	CBL-302I	01/29/2024		6.2800		6.0689		
pH	S.U.	CBL-306I	01/21/2016	yes	7.0900		0.0009		
pH	S.U.	CBL-306I	05/04/2016		6.6900				
	S.U.	CBL-306I	07/26/2016	yes	6.9500				l
pH pH	S.U.	CBL-306I	10/24/2016	yes	6.7200				l
pH	S.U.	CBL-306I	01/19/2017	yes	7.2900				
	S.U.	CBL-306I	03/22/2017	yes	4.4100				l
pH	S.U.	CBL-306I	05/18/2017	yes	5.6100				l
pH				yes					l
pH pH	S.U. S.U.	CBL-306I CBL-306I	07/27/2017 02/08/2018	yes	6.9400 6.6700				l
pH	S.U.	CBL-306I	07/27/2018	yes	6.8600				l
pH pH	S.U.			yes					l
		CBL-306I	01/16/2019	yes	6.7800	,,,,,,		*	l
pH	S.U.	CBL-306I	07/31/2019	yes	6.9200	yes		"	
pH	S.U. S.U.	CBL-306I	08/23/2019	yes	6.8300				l
pH		CBL-306I	01/29/2020	yes	6.7000				l
pH	S.U.	CBL-306I	09/19/2020	yes	7.1600				
pH	S.U.	CBL-306I	01/28/2021	yes	6.8400				l
pН	S.U.	CBL-306I	07/21/2021	yes	6.5500				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
pH	S.U.	CBL-306I	01/27/2022	yes	6.8700				
pH	S.U.	CBL-306I	07/28/2022	yes	6.7000				
pH	S.U.	CBL-306I	01/26/2023	,	7.3000		6.8073		
pH	S.U.	CBL-306I	07/18/2023		6.4900		6.6478		
pH	S.U.	CBL-306I	01/29/2024		6.5500		6.6478		
pH	S.U.	CBL-308I	01/22/2016	yes	6.3600				
pH	S.U.	CBL-308I	05/04/2016	yes	6.1300				
pH	S.U.	CBL-308I	07/26/2016	yes	5.9500				
pH	S.U.	CBL-308I	10/24/2016	yes	6.2700				
pH	S.U.	CBL-308I	01/19/2017	yes	6.8300				
pH	S.U.	CBL-308I	03/22/2017	yes	6.2700				
рН	S.U.	CBL-308I	05/16/2017	yes	5.5400				
pH	S.U.	CBL-308I	07/26/2017	yes	6.2700				
pH	S.U.	CBL-308I	02/06/2018	yes	6.2600				
pH	S.U.	CBL-308I	07/25/2018	yes	6.0700				
pH	S.U.	CBL-308I	01/18/2019	yes	6.3900				
pH	S.U.	CBL-308I	07/31/2019	yes	6.2500				
pH	S.U.	CBL-308I	01/29/2020	yes	6.3700				
pH	S.U.	CBL-308I	09/18/2020	yes	6.2200				
pH	S.U.	CBL-308I	01/28/2021	yes	6.2600				
pH	S.U.	CBL-308I	07/21/2021	yes	6.1600				
pH	S.U.	CBL-308I	01/27/2022	yes	6.3600				
pH	S.U.	CBL-308I	07/27/2022	yes	6.2300				
pH	S.U.	CBL-308I	01/26/2023		6.4100		6.2328		
pH	S.U.	CBL-308I	07/18/2023		6.2600		6.2328		
pH	S.U.	CBL-308I	01/30/2024		6.5700		6.3844		
pH	S.U.	CBL-341I	01/23/2017	yes	5.7400				
pH	S.U.	CBL-341I	02/23/2017	yes	5.2300	yes			*
pH	S.U.	CBL-341I	03/22/2017	yes	5.7200				
pH	S.U.	CBL-341I	04/20/2017	yes	5.7300				
pH	S.U.	CBL-341I	05/16/2017	yes	5.5400				
pH	S.U.	CBL-341I	06/20/2017	yes	6.1900				
pH	S.U.	CBL-341I	07/27/2017	yes	6.2100				
pH	S.U.	CBL-341I	09/11/2017	yes	6.1000				
pH	S.U.	CBL-341I	02/08/2018	yes	6.1800				
pH	S.U.	CBL-341I	08/24/2018	yes	5.8200				
PΗ	S.U.	CBL-341I	01/22/2019	yes	6.3800				
pH	S.U.	CBL-341I	07/31/2019	yes	6.2300				
pН	S.U.	CBL-341I	01/30/2020	yes	6.2700				
pH	S.U.	CBL-341I	09/17/2020	yes	6.1400				
pH	S.U.	CBL-341I	01/27/2021	yes	6.0600				
pH	S.U.	CBL-341I	07/22/2021	yes	5.9800				
pH	S.U.	CBL-341I	09/07/2021	yes	6.1800				
pH	S.U.	CBL-341I	01/27/2022	yes	6.2600				
pH	S.U.	CBL-341I	07/28/2022	yes	6.1600				
pH	S.U.	CBL-341I	01/26/2023	-	6.2800		6.1017		
pH	S.U.	CBL-341I	07/19/2023		6.2200		6.0939		
pH	S.U.	CBL-341I	01/29/2024		6.3800		6.2462		
Sulfate	mg/L	CBL-301I	01/21/2016	yes	336.0000				
Sulfate	mg/L	CBL-301I	05/04/2016	ves	311.0000				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Sulfate	mg/L	CBL-301I	07/27/2016	yes	336.0000				
Sulfate	mg/L	CBL-301I	10/24/2016	yes	326.0000				
Sulfate	mg/L	CBL-301I	01/23/2017	yes	488.0000				
Sulfate	mg/L	CBL-301I	03/22/2017	yes	337.0000				
Sulfate	mg/L	CBL-301I	05/18/2017	yes	342.0000				
Sulfate	mg/L	CBL-301I	07/26/2017	yes	381.0000				
Sulfate	mg/L	CBL-301I	02/08/2018	yes	344.0000				
Sulfate	mg/L	CBL-301I	07/25/2018	yes	196.0000				
Sulfate	mg/L	CBL-301I	01/17/2019	yes	104.0000	yes			*
Sulfate	mg/L	CBL-301I	05/02/2019	yes	398.0000	, , , ,			
Sulfate	mg/L	CBL-301I	07/31/2019	yes	332.0000				
Sulfate	mg/L	CBL-301I	01/28/2020	yes	349.0000				
Sulfate	mg/L	CBL-301I	09/17/2020	yes	350.0000				
Sulfate	mg/L	CBL-301I	01/26/2021	yes	374.0000				
Sulfate	mg/L	CBL-3011	07/20/2021	yes	419.0000				
Sulfate	mg/L	CBL-3011	01/26/2022	yes	406.0000				
Sulfate	mg/L	CBL-3011	07/27/2022	yes	285.0000				
Sulfate	mg/L	CBL-3011	01/25/2023	yes	1370.0000		1324.7798		**
Sulfate	mg/L	CBL-3011	03/07/2023		207.0000		350.5556		
Sulfate		CBL-3011	08/02/2023		383.0000		350.5556		
Sulfate	mg/L	CBL-3011			475.0000				
Sulfate	mg/L	CBL-3011	01/29/2024 01/22/2016	1/00			429.7798		
	mg/L			yes	1020.0000				
Sulfate Sulfate	mg/L	CBL-302I CBL-302I	05/04/2016 07/27/2016	yes	993.0000 1090.0000				
	mg/L			yes					
Sulfate	mg/L	CBL-302I	10/24/2016	yes	1180.0000				
Sulfate	mg/L	CBL-302I	01/23/2017	yes	1150.0000				
Sulfate	mg/L	CBL-302I	03/22/2017	yes	1120.0000				
Sulfate	mg/L	CBL-302I	05/16/2017	yes	1230.0000				
Sulfate	mg/L	CBL-302I	07/27/2017	yes	1180.0000				
Sulfate	mg/L	CBL-302I	02/08/2018	yes	1240.0000				
Sulfate	mg/L	CBL-302I	07/27/2018	yes	1390.0000				
Sulfate	mg/L	CBL-302I	01/22/2019	yes	1250.0000				
Sulfate	mg/L	CBL-302I	07/31/2019	yes	1260.0000				
Sulfate	mg/L	CBL-302I	01/30/2020	yes	1350.0000				
Sulfate	mg/L	CBL-302I	09/17/2020	yes	1280.0000				
Sulfate	mg/L	CBL-302I	01/28/2021	yes	1290.0000				
Sulfate	mg/L	CBL-302I	07/21/2021	yes	1350.0000				
Sulfate	mg/L	CBL-302I	01/27/2022	yes	1340.0000				
Sulfate	mg/L	CBL-302I	07/28/2022	yes	1300.0000				
Sulfate	mg/L	CBL-302I	01/26/2023		1390.0000		1304.4147		
Sulfate	mg/L	CBL-302I	07/18/2023		1230.0000		1225.8850		
Sulfate	mg/L	CBL-302I	01/29/2024		1330.0000		1247.3553		
Sulfate	mg/L	CBL-306I	01/21/2016	yes	266.0000				
Sulfate	mg/L	CBL-306I	05/04/2016	yes	29.5000	yes			*
Sulfate	mg/L	CBL-306I	07/26/2016	yes	139.0000				
Sulfate	mg/L	CBL-306I	10/24/2016	yes	432.0000				
Sulfate	mg/L	CBL-306I	01/19/2017	yes	270.0000				
Sulfate	mg/L	CBL-306I	03/22/2017	yes	340.0000				
Sulfate	mg/L	CBL-306I	05/18/2017	yes	412.0000				
Sulfate	mg/L	CBL-306I	07/27/2017	yes	513.0000				1

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Sulfate	mg/L	CBL-306I	02/08/2018	yes	493.0000				
Sulfate	mg/L	CBL-306I	07/27/2018	yes	406.0000				
Sulfate	mg/L	CBL-306I	01/16/2019	yes	292.0000				
Sulfate	mg/L	CBL-306I	07/31/2019	yes	816.0000	yes			*
Sulfate	mg/L	CBL-306I	08/23/2019	yes	387.0000	'			
Sulfate	mg/L	CBL-306I	01/29/2020	yes	561.0000				
Sulfate	mg/L	CBL-306I	09/19/2020	yes	506.0000				
Sulfate	mg/L	CBL-306I	01/28/2021	yes	388.0000				
Sulfate	mg/L	CBL-306I	07/21/2021	yes	336.0000				
Sulfate	mg/L	CBL-306I	01/27/2022	yes	510.0000				
Sulfate	mg/L	CBL-306I	07/28/2022	yes	348.0000				
Sulfate	mg/L	CBL-306I	01/26/2023	,,,,	205.0000		388.1765		
Sulfate	mg/L	CBL-306I	07/18/2023		454.0000		388.1765		
Sulfate	mg/L	CBL-306I	01/29/2024		266.0000		388.1765		
Sulfate	mg/L	CBL-308I	01/22/2016	yes	1490.0000		300.1703		
Sulfate	mg/L	CBL-308I	05/04/2016	yes	1410.0000				
Sulfate	mg/L	CBL-308I	07/26/2016	yes	1490.0000				
Sulfate		CBL-308I	10/24/2016		1550.0000				
Sulfate	mg/L	CBL-308I	01/19/2017	yes					
Sulfate	mg/L	CBL-308I		yes	1320.0000				
	mg/L		03/22/2017	yes	1470.0000				
Sulfate	mg/L	CBL-308I	05/16/2017	yes	1580.0000				
Sulfate	mg/L	CBL-308I	07/26/2017	yes	1550.0000				
Sulfate	mg/L	CBL-308I	02/06/2018	yes	1570.0000				
Sulfate	mg/L	CBL-308I	07/25/2018	yes	1540.0000				
Sulfate	mg/L	CBL-308I	01/18/2019	yes	1520.0000				
Sulfate	mg/L	CBL-308I	07/31/2019	yes	1420.0000				
Sulfate	mg/L	CBL-308I	01/29/2020	yes	1340.0000				
Sulfate	mg/L	CBL-308I	09/18/2020	yes	1310.0000				
Sulfate	mg/L	CBL-308I	01/28/2021	yes	1340.0000				
Sulfate	mg/L	CBL-308I	07/21/2021	yes	1240.0000				
Sulfate	mg/L	CBL-308I	01/27/2022	yes	1310.0000				
Sulfate	mg/L	CBL-308I	07/27/2022	yes	1190.0000				
Sulfate	mg/L	CBL-308I	01/26/2023		445.0000		1424.4444		
Sulfate	mg/L	CBL-308I	07/18/2023		1290.0000		1424.4444		
Sulfate	mg/L	CBL-308I	01/30/2024		1360.0000		1424.4444		
Sulfate	mg/L	CBL-341I	01/23/2017	yes	307.0000				
Sulfate	mg/L	CBL-341I	02/23/2017	yes	404.0000				
Sulfate	mg/L	CBL-341I	03/22/2017	yes	346.0000				
Sulfate	mg/L	CBL-341I	04/20/2017	yes	336.0000				
Sulfate	mg/L	CBL-341I	05/16/2017	yes	369.0000				
Sulfate	mg/L	CBL-341I	06/20/2017	yes	363.0000				
Sulfate	mg/L	CBL-341I	07/27/2017	yes	419.0000				
Sulfate	mg/L	CBL-341I	09/11/2017	yes	354.0000				
Sulfate	mg/L	CBL-341I	02/08/2018	yes	383.0000				
Sulfate	mg/L	CBL-341I	08/24/2018	yes	376.0000				
Sulfate	mg/L	CBL-3411	01/22/2019	yes	358.0000				
Sulfate	mg/L	CBL-3411	07/31/2019	yes	329.0000				
Sulfate	mg/L	CBL-3411	01/30/2020	yes	351.0000				
Sulfate		CBL-3411	09/17/2020		336.0000				
Sulfate	mg/L	CBL-3411	09/17/2020	yes	324.0000				
Juliate	mg/L	UDL-34 II	01/2//2021	yes	324.0000				<u> </u>

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Sulfate	mg/L	CBL-341I	07/22/2021	yes	316.0000				
Sulfate	mg/L	CBL-341I	01/27/2022	yes	320.0000				
Sulfate	mg/L	CBL-341I	07/28/2022	yes	296.0000				
Sulfate	mg/L	CBL-341I	01/26/2023		309.0000		349.2778		
Sulfate	mg/L	CBL-341I	07/19/2023		259.0000		349.2778		
Sulfate	mg/L	CBL-341I	01/29/2024		346.0000		349.2778		
Total Dissolved Solids	mg/L	CBL-301I	01/21/2016	yes	4380.0000				
Total Dissolved Solids	mg/L	CBL-301I	05/04/2016	yes	5050.0000				
Total Dissolved Solids	mg/L	CBL-301I	07/27/2016	yes	6020.0000				
Total Dissolved Solids	mg/L	CBL-301I	10/24/2016	yes	4570.0000				
Total Dissolved Solids	mg/L	CBL-301I	01/23/2017	yes	6140.0000				
Total Dissolved Solids	mg/L	CBL-301I	03/22/2017	yes	6570.0000				
Total Dissolved Solids	mg/L	CBL-301I	05/18/2017	yes	6430.0000				
Total Dissolved Solids	mg/L	CBL-301I	07/26/2017	yes	4290.0000				
Total Dissolved Solids	mg/L	CBL-301I	02/08/2018	yes	5120.0000				
Total Dissolved Solids	mg/L	CBL-301I	07/25/2018	yes	5390.0000				
Total Dissolved Solids	mg/L	CBL-3011	01/17/2019	yes	1460.0000	yes			*
Total Dissolved Solids	mg/L	CBL-3011	05/02/2019	yes	5650.0000	yes			
Total Dissolved Solids	mg/L	CBL-3011	07/31/2019	ves	6040.0000				
Total Dissolved Solids	mg/L	CBL-3011	01/28/2020		4790.0000				
Total Dissolved Solids			09/17/2020	yes	6340.0000				
Total Dissolved Solids	mg/L	CBL-301I CBL-301I	01/26/2021	yes					
	mg/L			yes	6060.0000				
Total Dissolved Solids	mg/L	CBL-301I	07/20/2021	yes	5870.0000				
Total Dissolved Solids	mg/L	CBL-301I	01/26/2022	yes	4700.0000				
Total Dissolved Solids	mg/L	CBL-301I	07/27/2022	yes	4590.0000		5444 4444		
Total Dissolved Solids	mg/L	CBL-301I	01/25/2023		5160.0000		5444.4444		
Total Dissolved Solids	mg/L	CBL-301I	08/02/2023		5360.0000		5444.4444		
Total Dissolved Solids	mg/L	CBL-301I	01/29/2024		4820.0000		5444.4444		
Total Dissolved Solids	mg/L	CBL-302I	01/22/2016	yes	5500.0000				
Total Dissolved Solids	mg/L	CBL-302I	05/04/2016	yes	5390.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/27/2016	yes	6850.0000				
Total Dissolved Solids	mg/L	CBL-302I	10/24/2016	yes	4210.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/23/2017	yes	6430.0000				
Total Dissolved Solids	mg/L	CBL-302I	03/22/2017	yes	6460.0000				
Total Dissolved Solids	mg/L	CBL-302I	05/16/2017	yes	5860.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/27/2017	yes	5120.0000				
Total Dissolved Solids	mg/L	CBL-302I	02/08/2018	yes	6010.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/27/2018	yes	5510.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/22/2019	yes	5060.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/31/2019	yes	4190.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/30/2020	yes	4790.0000				
Total Dissolved Solids	mg/L	CBL-302I	09/17/2020	yes	4990.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/28/2021	yes	4800.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/21/2021	yes	4810.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/27/2022	yes	4510.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/28/2022	yes	5120.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/26/2023	1	4930.0000		5311.6667		
Total Dissolved Solids	mg/L	CBL-302I	07/18/2023		5150.0000		5311.6667		
Total Dissolved Solids	mg/L	CBL-302I	01/29/2024		4950.0000		5311.6667		
Total Dissolved Solids	mg/L	CBL-306I	01/21/2016	yes	1280.0000				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Total Dissolved Solids	mg/L	CBL-306I	05/04/2016	yes	431.0000	yes		•	*
Total Dissolved Solids	mg/L	CBL-306I	07/26/2016	yes	790.0000	yes			
Total Dissolved Solids	mg/L	CBL-306I	10/24/2016	yes	1150.0000				
Total Dissolved Solids	mg/L	CBL-306I	01/19/2017	yes	1320.0000				
Total Dissolved Solids	mg/L	CBL-306I	03/22/2017	yes	1460.0000				
Total Dissolved Solids	mg/L	CBL-306I	05/18/2017	yes	1440.0000				
Total Dissolved Solids	mg/L	CBL-306I	07/27/2017	yes	1280.0000				
Total Dissolved Solids	mg/L	CBL-306I	02/08/2018	yes	1760.0000				
Total Dissolved Solids	mg/L	CBL-306I	07/27/2018	yes	1450.0000				
Total Dissolved Solids	mg/L	CBL-306I	01/16/2019	yes	1220.0000				
Total Dissolved Solids	mg/L	CBL-306I	07/31/2019	yes	676.0000	yes			*
Total Dissolved Solids	mg/L	CBL-306I	08/23/2019	yes	1710.0000	yes			
Total Dissolved Solids	mg/L	CBL-306I	01/29/2020	yes	1830.0000				
Total Dissolved Solids	mg/L	CBL-306I	09/19/2020	ves	1730.0000				
Total Dissolved Solids	mg/L	CBL-306I	01/28/2021	yes	1420.0000				
Total Dissolved Solids	mg/L	CBL-306I	07/21/2021	yes	1320.0000				
Total Dissolved Solids	mg/L	CBL-306I	01/21/2021	yes	1730.0000				
Total Dissolved Solids	mg/L	CBL-306I	07/28/2022		1540.0000				
Total Dissolved Solids	mg/L	CBL-306I	01/26/2023	yes	1000.0000		1437.0588		
Total Dissolved Solids		CBL-306I	07/18/2023		1910.0000		1709.6860		
	mg/L								
Total Dissolved Solids Total Dissolved Solids	mg/L	CBL-306I	01/29/2024	1/00	1170.0000		1437.0588		
	mg/L	CBL-308I	01/22/2016	yes	6820.0000				
Total Dissolved Solids	mg/L	CBL-308I	05/04/2016	yes	6120.0000				
Total Dissolved Solids Total Dissolved Solids	mg/L	CBL-308I	07/26/2016	yes	7890.0000				
	mg/L	CBL-308I	10/24/2016	yes	10200.0000				
Total Dissolved Solids	mg/L	CBL-308I	01/19/2017	yes	9620.0000				
Total Dissolved Solids	mg/L	CBL-308I	03/22/2017	yes	7260.0000				
Total Dissolved Solids	mg/L	CBL-308I	05/16/2017	yes	6590.0000				
Total Dissolved Solids	mg/L	CBL-308I	07/26/2017	yes	6480.0000				
Total Dissolved Solids	mg/L	CBL-308I	02/06/2018	yes	6200.0000				
Total Dissolved Solids	mg/L	CBL-308I	07/25/2018	yes	6320.0000				
Total Dissolved Solids	mg/L	CBL-308I	01/18/2019	yes	4760.0000				
Total Dissolved Solids	mg/L	CBL-308I	07/31/2019	yes	5820.0000				
Total Dissolved Solids	mg/L	CBL-308I	01/29/2020	yes	5980.0000				
Total Dissolved Solids	mg/L	CBL-308I	09/18/2020	yes	6860.0000				
Total Dissolved Solids	mg/L	CBL-308I	01/28/2021	yes	6190.0000				
Total Dissolved Solids	mg/L	CBL-308I	07/21/2021	yes	5270.0000				
Total Dissolved Solids	mg/L	CBL-308I	01/27/2022	yes	5320.0000				
Total Dissolved Solids	mg/L	CBL-308I	07/27/2022	yes	6840.0000				
Total Dissolved Solids	mg/L	CBL-308I	01/26/2023		5810.0000		6696.6667		
Total Dissolved Solids	mg/L	CBL-308I	07/18/2023		5680.0000		6696.6667		
Total Dissolved Solids	mg/L	CBL-308I	01/30/2024		5410.0000		6696.6667		
Total Dissolved Solids	mg/L	CBL-341I	01/23/2017	yes	5000.0000				
Total Dissolved Solids	mg/L	CBL-341I	02/23/2017	yes	4520.0000				
Total Dissolved Solids	mg/L	CBL-341I	03/22/2017	yes	5110.0000				
Total Dissolved Solids	mg/L	CBL-341I	04/20/2017	yes	4240.0000				
Total Dissolved Solids	mg/L	CBL-341I	05/16/2017	yes	4840.0000				
Total Dissolved Solids	mg/L	CBL-341I	06/20/2017	yes	5940.0000				
Total Dissolved Solids	mg/L	CBL-341I	07/27/2017	yes	4150.0000				
Total Dissolved Solids	mg/L	CBL-341I	09/11/2017	yes	4860.0000				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted
Total Dissolved Solids	mg/L	CBL-341I	02/08/2018	yes	4320.0000			
Total Dissolved Solids	mg/L	CBL-341I	08/24/2018	yes	4800.0000			
Total Dissolved Solids	mg/L	CBL-341I	01/22/2019	yes	3870.0000			
Total Dissolved Solids	mg/L	CBL-341I	07/31/2019	yes	5370.0000			
Total Dissolved Solids	mg/L	CBL-341I	01/30/2020	yes	4900.0000			
Total Dissolved Solids	mg/L	CBL-341I	09/17/2020	yes	4930.0000			
Total Dissolved Solids	mg/L	CBL-341I	01/27/2021	yes	3940.0000			
Total Dissolved Solids	mg/L	CBL-341I	07/22/2021	yes	4520.0000			
Total Dissolved Solids	mg/L	CBL-341I	01/27/2022	yes	3800.0000			
Total Dissolved Solids	mg/L	CBL-341I	07/28/2022	yes	4910.0000			
Total Dissolved Solids	mg/L	CBL-341I	01/26/2023		4390.0000		4667.7778	
Total Dissolved Solids	mg/L	CBL-341I	07/19/2023		4190.0000		4667.7778	
Total Dissolved Solids	mg/L	CBL-341I	01/29/2024		3990.0000		4667.7778	

^{* -} Outlier for that well and constituent.

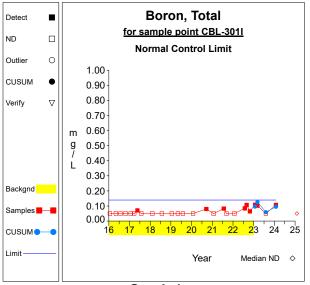
** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

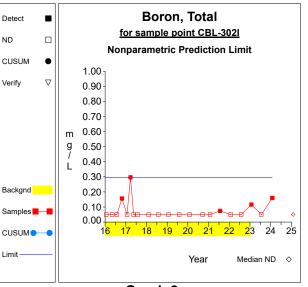
*** - ND value replaced with median RL.

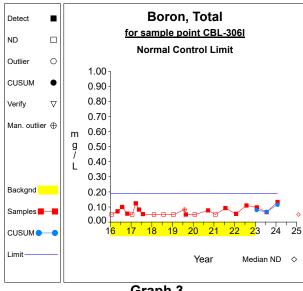
**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 4

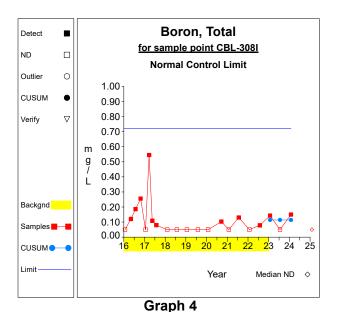

Dixon's Test Outliers 1% Significance Level

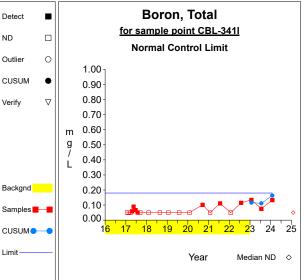

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value
Calcium, Total	mg/L	CBL-301I	01/17/2019	156.0000		01/21/2016-07/27/2022	19	0.5503
Chloride	mg/L	CBL-301I	01/17/2019	619.0000		01/21/2016-07/27/2022	19	0.5503
Chloride	mg/L	CBL-306I	05/04/2016	20.0000		01/21/2016-07/28/2022	17	0.5798
Fluoride	mg/L	CBL-306I	03/22/2017	12.6000		01/21/2016-07/28/2022	18	0.5643
Fluoride	mg/L	CBL-308I	03/22/2017	9.0500		01/22/2016-07/27/2022	18	0.5643
Sulfate	mg/L	CBL-301I	01/17/2019	104.0000		01/21/2016-07/27/2022	19	0.5503
Sulfate	mg/L	CBL-306I	05/04/2016	29.5000		01/21/2016-07/28/2022	18	0.5643
Total Dissolved Solids	mg/L	CBL-301I	01/17/2019	1460.0000		01/21/2016-07/27/2022	19	0.5503
Total Dissolved Solids	mg/L	CBL-306I	05/04/2016	431.0000		01/21/2016-07/28/2022	18	0.5643


N = Total number of independent measurements in background at each well.

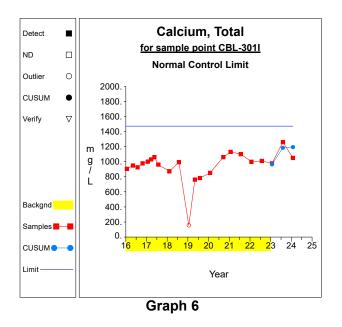
Date Range = Dates of the first and last measurements included in background at each well.

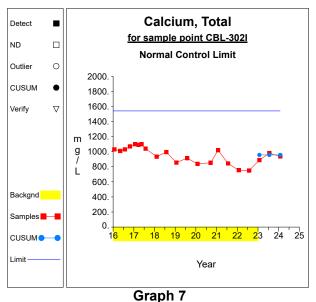
Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

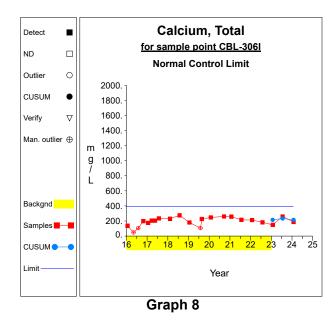


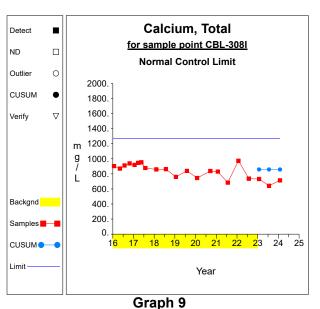


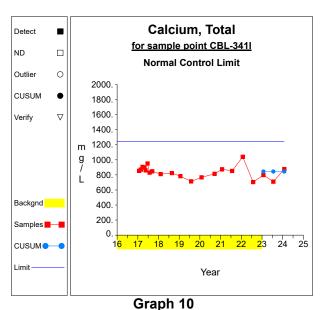
Graph 1

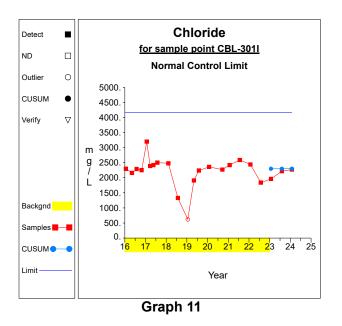

Graph 2

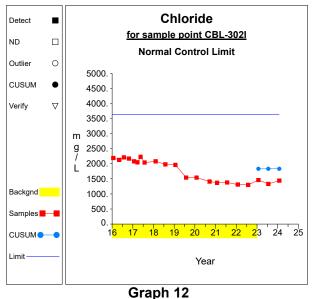

Graph 3

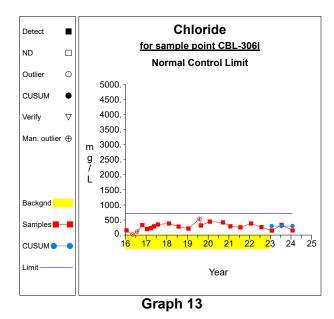


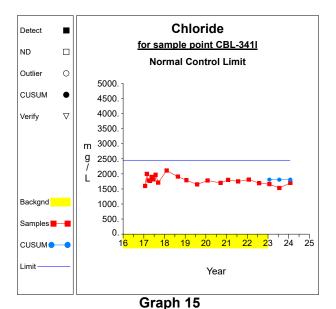


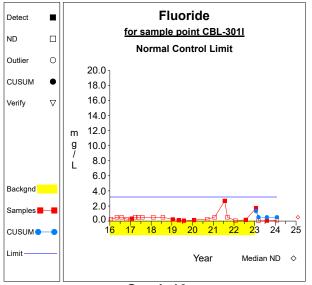

Graph 5

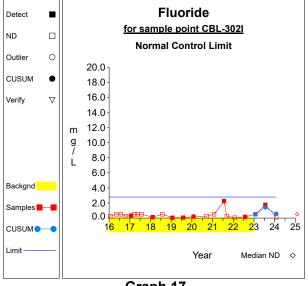


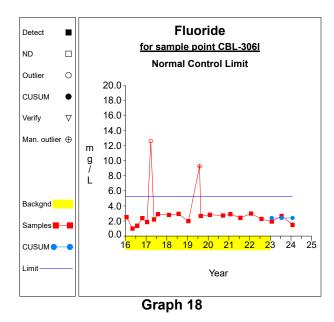




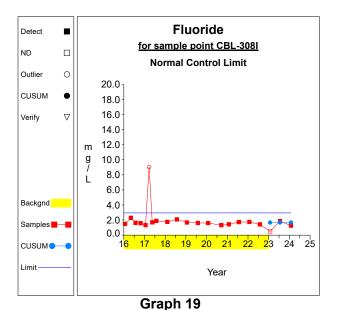


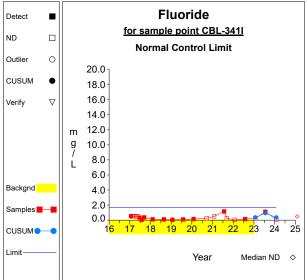

Chloride Detect for sample point CBL-308I ND **Normal Control Limit** Outlier 5000. CUSUM 4500. 4000 Verify 3500. 3000 2500. 2000. 1500. Backgnd 1000. 500. Samples -1<mark>6 17 18 19 20 21 22 2</mark>3 24 25 CUSUM

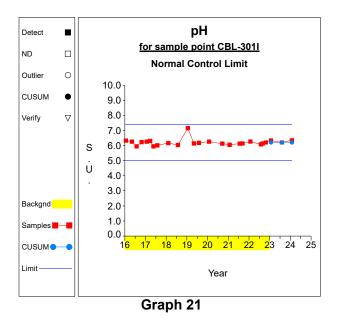

Graph 14

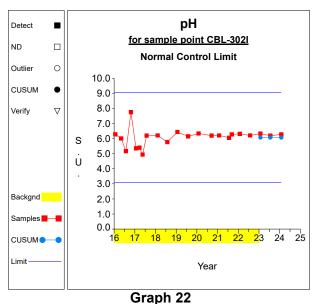

Year

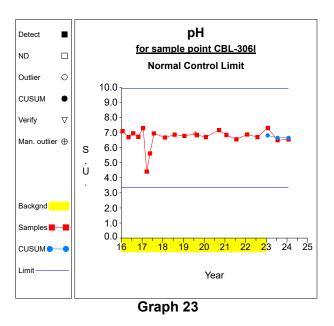
Limit

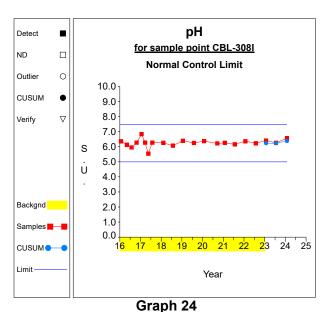


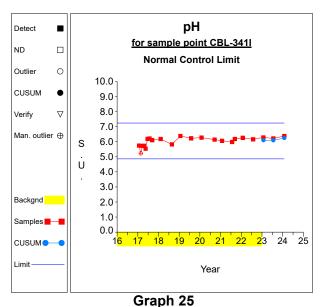


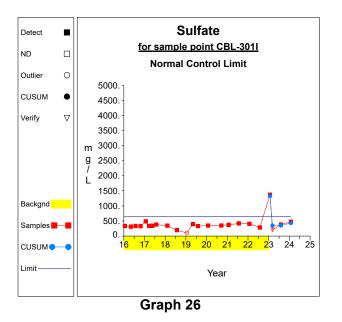

Graph 16

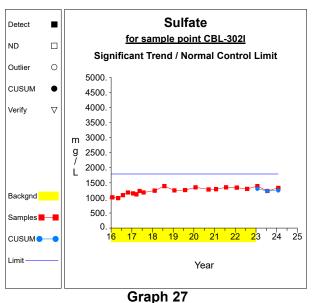

Graph 17

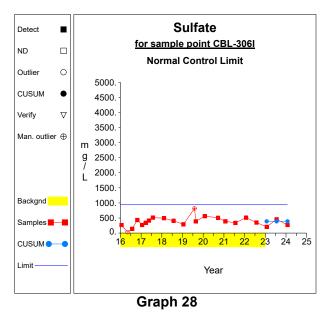


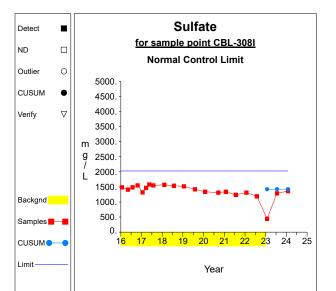


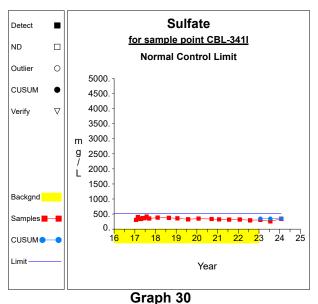

Graph 20

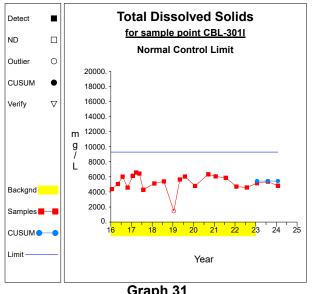


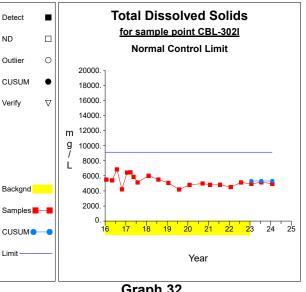






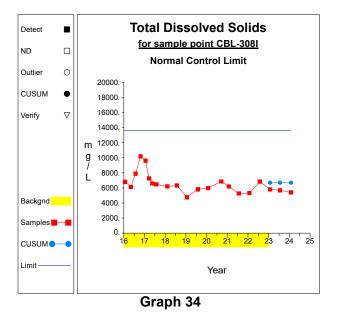


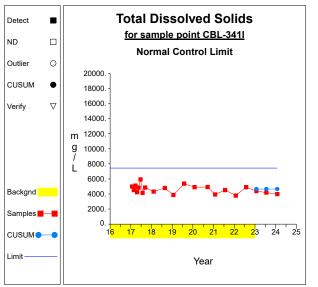


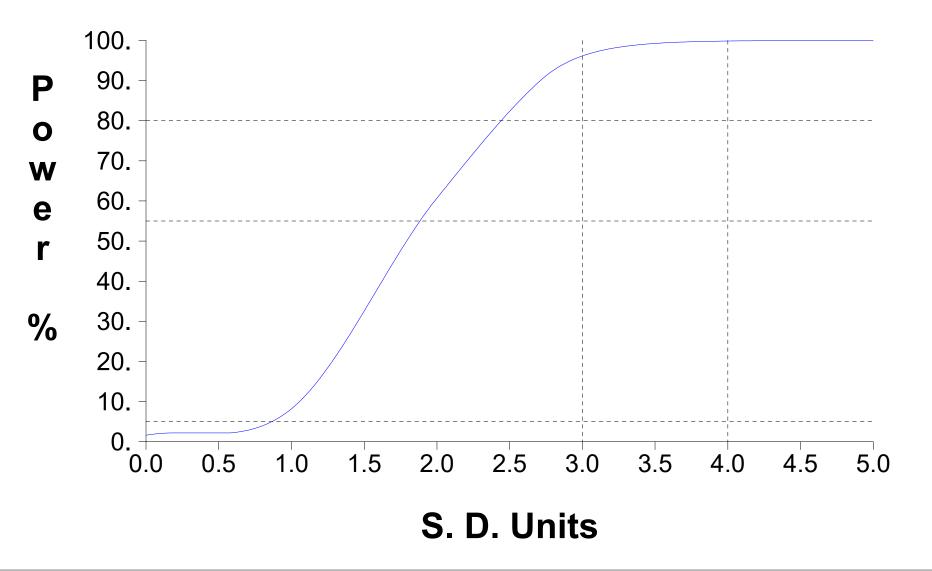




Graph 29






Graph 31

Graph 32

False Positive and False Negative Rates for Current Intra-Well Control Charts Monitoring Program

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 1.29 / 22 = 0.059	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{\frac{1}{2}}$ $= ((0.081 - 1.664/22) / (22-1))^{\frac{1}{2}}$ $= 0.016$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.059 + 5.0 * 0.016 = 0.139	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 22 * (22-1) / 2 = 231	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 764.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (231 - 2.326 * 764.333 \frac{1}{2}) / 2 = 83.347	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = 0.0	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-302I Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = max(X)	Compute nonparametric prediction limit as largest background measurement.
	= 0.297	
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 1.222 / 18	
	= 0.068	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((0.093 - 1.494/18) / (18-1)) ^{1/2}	
	= 0.024	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.068 + 5.0 * 0.024	
	= 0.189	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 631.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\mathrm{M_1}^{\mathrm{th}}$ largest slope estimate. When $\mathrm{M_1}$ is
	= (153 - 2.326 * 631.667 ^{1/2}) / 2	the $M_1^{u_1}$ largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 47.27	
8	LCL(S) = -0.003	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 2.059 / 18	
	= 0.114	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((0.486 - 4.239/18) / (18-1)) ¹ / ₂	
	= 0.121	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 0.114 + 5.0 * 0.121	
	= 0.722	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 605.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is
	= (153 - 2.326 * 605.0 ^{1/2}) / 2	the $M_1^{u_1}$ largest slope estimate. When M_1 is not an integer, interpolation is used.
	= 47.894	
8	LCL(S) = -0.027	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 1.144 / 18 = 0.064	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((0.082 - 1.308/18) / (18-1))^{1/2}$ = 0.023	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.064 + 5.0 * 0.023 = 0.18	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 532.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 532.0 ^{1/2}) / 2 = 49.675	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = 0.0	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 17369.0 / 18 = 964.944	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((1.69 \times 10^{7} - 3.02 \times 10^{8}/18) / (18-1))^{1/2}$ $= 101.271$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 964.944 + 5.0 * 101.271 = 1471.3	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 16.171	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -27.044	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 17227.0 / 18 = 957.056	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((1.67 \times 10^{7} - 2.97 \times 10^{8}/18) / (18-1))^{1/2}$ $= 116.748$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 957.056 + 5.0 * 116.748 = 1540.795	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -46.655	Sen's estimator of trend.
6	var(S) = 695.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (153 - 2.326 * 695.0 ^{1/2}) / 2 = 45.84	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -66.423	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 3437.0 / 16 = 214.813	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((758029.0 - 1.18 \times 10^7/16) / (16-1))^{1/2}$	Compute background sd.
	= 36.257	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 214.813 + 5.0 * 36.257	
	= 396.097	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 16 * (16-1) / 2	
	= 120	
5	S = 9.18	Sen's estimator of trend.
6	var(S) = 493.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\mathrm{M_1}^{\mathrm{th}}$ largest slope estimate. When $\mathrm{M_1}$ is
	= (120 - 2.326 * 493.333 ^{1/2}) / 2	the $M_1^{\text{**}}$ largest slope estimate. When $M_1^{\text{*}}$ is not an integer, interpolation is used.
	= 34.168	
8	LCL(S) = -4.826	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 15450.0 / 18 = 858.333	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((1.34 \times 10^7 - 2.39 \times 10^8/18) / (18-1))^{1/2}$ = 82.361	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 858.333 + 5.0 * 82.361 = 1270.141	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -24.047	Sen's estimator of trend.
6	var(S) = 697.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (153 - 2.326 * 697.0 ^{1/2}) / 2 = 45.796	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -45.396	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 15196.0 / 18 = 844.222	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((1.29 \times 10^{7} - 2.31 \times 10^{8}/18) / (18-1))^{1/2}$ $= 79.475$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 844.222 + 5.0 * 79.475 = 1241.598	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -24.621	Sen's estimator of trend.
6	var(S) = 697.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (153 - 2.326 * 697.0 ^{1/2}) / 2 = 45.796	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -46.4	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 41390.0 / 18 = 2299.444	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((9.75 \times 10^{7} - 1.71 \times 10^{9}/18) / (18-1))^{1/2}$ $= 372.424$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 2299.444 + 5.0 * 372.424 = 4161.565	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 10.311	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -82.048	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	\overline{X} = sum[X] / N = 32970.0 / 18 = 1831.667	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((6.26 \times 10^7 - 1.09 \times 10^9/18) / (18-1))^{1/2}$ = 360.265	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1831.667 + 5.0 * 360.265 = 3632.994	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -159.984	Sen's estimator of trend.
6	var(S) = 695.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 695.0 ^{1/2}) / 2 = 45.84	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -190.868	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 4810.0 / 16 = 300.625	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((1.55 \times 10^{6} - 2.31 \times 10^{7}/16) / (16-1))^{1/2}$ $= 82.083$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 300.625 + 5.0 * 82.083 = 711.039	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 16 * (16-1) / 2 = 120	Number of sample pairs during trend detection period.
5	S = 16.104	Sen's estimator of trend.
6	var(S) = 493.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$ = $(120 - 2.326 * 493.333^{1/2}) / 2$ = 34.168	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -15.759	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 44230.0 / 18 = 2457.222	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((1.10 \times 10^8 - 1.96 \times 10^9/18) / (18-1))^{1/2}$ = 303.175	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 2457.222 + 5.0 * 303.175 = 3973.1	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -106.468	Sen's estimator of trend.
6	var(S) = 695.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var(S)}^{1/2}) / 2$ = (153 - 2.326 * 695.0 \(^{1/2}) / 2 = 45.84	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -174.502	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 32540.0 / 18 = 1807.778	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((5.91 \times 10^{7} - 1.06 \times 10^{9}/18) / (18-1))^{1/2}$ $= 129.14$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1807.778 + 5.0 * 129.14 = 2453.477	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -16.82	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -57.489	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 10.16 / 20 = 0.508	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((10.634 - 103.226/20) / (20-1))^{1/2}$ = 0.537	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.508 + 5.0 * 0.537 = 3.191	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 20 * (20-1) / 2 = 190	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 681.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (190 - 2.326 * 681.333 ^{1/2}) / 2 = 64.643	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.035	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 9.153 / 19 = 0.482	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((8.255 - 83.772/19) / (19-1))^{1/2}$ = 0.462	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.482 + 5.0 * 0.462 = 2.793	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 19 * (19-1) / 2 = 171	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 604.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (171 - 2.326 * 604.333 ^{1/2}) / 2 = 56.91	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.031	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 40.73 / 17 = 2.396	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((102.838 - 1658.933/17) / (17-1))^{1/2}$ = 0.573	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 2.396 + 5.0 * 0.573 = 5.261	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 17 * (17-1) / 2 = 136	Number of sample pairs during trend detection period.
5	S = 0.119	Sen's estimator of trend.
6	var(S) = 589.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (136 - 2.326 * 589.333 ^{1/2}) / 2 = 39.767	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.032	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 28.4 / 17 = 1.671	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((48.489 - 806.56/17) / (17-1))^{1/2}$ = 0.255	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1.671 + 5.0 * 0.255 = 2.948	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 17 * (17-1) / 2 = 136	Number of sample pairs during trend detection period.
5	S = -0.02	Sen's estimator of trend.
6	var(S) = 588.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (136 - 2.326 * 588.333 ^{1/2}) / 2 = 39.791	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.111	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 7.116 / 19 = 0.375	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((3.957 - 50.632/19) / (19-1))^{1/2}$ = 0.268	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.375 + 5.0 * 0.268 = 1.714	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 19 * (19-1) / 2 = 171	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 751.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (171 - 2.326 * 751.667 \(\frac{1}{2} \) / 2 = 53.615	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.133	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 136.43 / 22	
	= 6.201	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((847.258 - 18613.145/22) / (22-1)) ^{1/2}	
	= 0.24	
3	$SCL = \overline{X} \pm F * S$	Compute combined Shewhart-CUSUM normal control interval.
	= 6.201 ± 5.0 * 0.24	
	= 5.003, 7.4	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 22 * (22 -1) / 2	
	= 231	
5	S = -0.007	Sen's estimator of trend.
6	var(S) = 1248.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (231 - 2.326 * 1248.333 ^{1/2}) / 2	the ${\sf M_1}^{\sf th}$ largest slope estimate. When ${\sf M_1}$ is not an integer, interpolation is used.
	= 74.409	
8	LCL(S) = -0.036	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 115.31 / 19	Compute background mean.
	= 6.069	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((706.23 - 13296.396/19) / (19-1)) ^{1/2}	
	= 0.597	
3	$SCL = \overline{X} \pm F * S$	Compute combined Shewhart-CUSUM normal control interval.
	= 6.069 ± 5.0 * 0.597	
	= 3.083, 9.055	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 19 * (19 -1) / 2	
	= 171	
5	S = 0.044	Sen's estimator of trend.
6	var(S) = 812.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (171 - 2.326 * 812.333 ^{1/2}) / 2	the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
	= 52.353	
8	LCL(S) = -0.04	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-306I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 119.66 / 18	Compute background mean.
	= 6.648	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((802.809 - 14318.516/18) / (18-1))^{1/2}$	Compute background sd.
	= 0.657	
3	$SCL = \overline{X} \pm F * S$	Compute combined Shewhart-CUSUM normal control interval.
	= 6.648 ± 5.0 * 0.657 = 3.363, 9.932	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = -0.011	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.094	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 112.19 / 18	Compute background mean.
	= 6.233	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((700.296 - 12586.596/18) / (18-1)) ^{1/2}	
	= 0.247	
3	$SCL = \overline{X} \pm F * S$	Compute combined Shewhart-CUSUM normal control interval.
	= 6.233 ± 5.0 * 0.247	
	= 4.996, 7.47	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = -0.002	Sen's estimator of trend.
6	var(S) = 691.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (153 - 2.326 * 691.333 ^{1/2}) / 2	the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
	= 45.921	
8	LCL(S) = -0.03	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 108.89 / 18	Compute background mean.
2	= 6.049 $S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((659.685 - 11857.032/18) / (18-1))^{1/2}$ $= 0.238$	Compute background sd.
3	$SCL = \overline{X} \pm F * S$ = 6.049 ± 5.0 * 0.238 = 4.861, 7.238	Compute combined Shewhart-CUSUM normal control interval.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 0.067	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.015	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-301I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 6310.0 / 18	
	= 350.556	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= $((2.27 \times 10^6 - 3.98 \times 10^7 / 18) / (18-1))^{1/2}$	
	= 60.294	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 350.556 + 5.0 * 60.294	
	= 652.024	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = 6.483	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (153 - 2.326 * 696.0 ^{1/2}) / 2	the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
	= 45.818	
8	LCL(S) = -8.207	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 22013.0 / 18 = 1222.944	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((2.71 \times 10^7 - 4.85 \times 10^8/18) / (18-1))^{1/2}$ = 114.114	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1222.944 + 5.0 * 114.114 = 1793.513	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 45.342	Sen's estimator of trend.
6	var(S) = 695.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 695.0 ^{1/2}) / 2 = 45.84	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = 25.012	One-sided lower confidence limit for slope.
9	LCL(S) > 0	Significant increasing trend.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 6599.0 / 17 = 388.176	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((2.76 \times 10^6 - 4.35 \times 10^7/17) / (17-1))^{1/2}$ = 110.356	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 388.176 + 5.0 * 110.356 = 939.958	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 17 * (17-1) / 2 = 136	Number of sample pairs during trend detection period.
5	S = 18.243	Sen's estimator of trend.
6	var(S) = 589.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (136 - 2.326 * 589.333 ^{1/2}) / 2 = 39.767	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -14.639	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 25640.0 / 18 = 1424.444	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((3.68 \times 10^7 - 6.57 \times 10^8/18) / (18-1))^{1/2}$ = 121.424	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1424.444 + 5.0 * 121.424 = 2031.565	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -41.243	Sen's estimator of trend.
6	var(S) = 693.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var(S)}^{1/2}) / 2$ = (153 - 2.326 * 693.0 ^{1/2}) / 2 = 45.884	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -65.458	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-341I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 6287.0 / 18	
	= 349.278	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= $((2.21 \times 10^6 - 3.95 \times 10^7 / 18) / (18-1))^{1/2}$	
	= 32.89	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 349.278 + 5.0 * 32.89	
	= 513.727	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = -10.817	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\mathrm{M_1}^{\mathrm{th}}$ largest slope estimate. When $\mathrm{M_1}$ is
	= (153 - 2.326 * 696.0 ^{1/2}) / 2	the M ₁ ^{III} largest slope estimate. When M ₁ is not an integer, interpolation is used.
	= 45.818	
8	LCL(S) = -19.435	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 98000.0 / 18	
	= 5444.444	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= $((5.44 \times 10^8 - 9.60 \times 10^9 / 18) / (18-1))^{1/2}$	
	= 767.695	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 5444.444 + 5.0 * 767.695	
	= 9282.919	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = 8.889	Sen's estimator of trend.
6	var(S) = 697.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (153 - 2.326 * 697.0 ^{1/2}) / 2	the M ₁ th largest slope estimate. When M ₁ is not an integer, interpolation is used.
	= 45.796	
8	LCL(S) = -248.456	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 95610.0 / 18 = 5311.667	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((5.18 \times 10^8 - 9.14 \times 10^9/18) / (18-1))^{1/2}$ = 764.87	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 5311.667 + 5.0 * 764.87 = 9136.018	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -219.811	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 \(^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -407.793	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 24430.0 / 17 = 1437.059	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((3.62\times10^{7} - 5.97\times10^{8}/17) / (17-1))^{1/2}$ $= 267.085$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1437.059 + 5.0 * 267.085 = 2772.485	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 17 * (17-1) / 2 = 136	Number of sample pairs during trend detection period.
5	S = 76.005	Sen's estimator of trend.
6	var(S) = 586.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (136 - 2.326 * 586.333 ^{1/2}) / 2 = 39.839	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -5.732	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 120540.0 / 18 = 6696.667	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((8.40 \times 10^8 - 1.45 \times 10^{10}/18) / (18-1))^{1/2}$ = 1385.271	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 6696.667 + 5.0 * 1385.271 = 13623.023	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -270.134	Sen's estimator of trend.
6	var(S) = 697.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 697.0 ^{1/2}) / 2 = 45.796	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -711.043	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 84020.0 / 18 = 4667.778	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((3.97 \times 10^8 - 7.06 \times 10^9/18) / (18-1))^{1/2}$ = 554.018	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 4667.778 + 5.0 * 554.018 = 7437.868	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -76.49	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = $(153 - 2.326 * 696.0^{1/2}) / 2$ = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{\ th}$ largest slope estimate. When $\rm M_1^{\ th}$ is not an integer, interpolation is used.
8	LCL(S) = -305.108	One-sided lower confidence limit for slope.

APPENDIX C

Results of the Groundwater Statistics for the Lower Colorado River Authority Second Semi-Annual Monitoring Event in 2024 Otter Creek Environmental Services, LLC November 2024

Results of the Ground Water Statistics for Lower Colorado River Authority Fayette Power Project

Second Semi-Annual Monitoring Event in 2024

Prepared for:
Lower Colorado River Authority (LCRA)
Fayette Power Project
LaGrange, TX

Prepared by:
Jeffrey A. Holmgren
Otter Creek Environmental Services, L.L.C.
40W565 Foxwick Court
Elgin, IL 60124
(847) 464-1355

November 2024

INTRODUCTION

This report contains the results of the statistical analyses used to evaluate the groundwater data obtained during the second semi-annual monitoring event in 2024 at the Lower Colorado River Authority (LCRA) Fayette Power Project (FPP) Combustion Byproducts Landfill (CBL), the Coal Combustion Residuals (CCR) unit addressed in this report. The statistical analyses were completed within 90 days of receipt of the analytical data. The groundwater at the FPP is monitored by wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, CBL-340I, and CBL-341I.

Statistical comparisons and evaluation for statistically significant increases (SSIs) are conducted on all wells with the exception of former background (side-gradient) monitoring well CBL-340I. Based on the Alternative Source Determination (ASD) study conducted in 2018, the identification of natural aquifer heterogeneity resulted in determination that CBL-340I could not be used to reliably characterize the background geochemistry of the groundwater flowing beneath the CCR unit. As such, intrawell analysis of wells potentially affected by CCR operation was selected at that time, and the need for use of CBL-340I geochemical data was negated. A Groundwater Monitoring System Addendum Certification was prepared in 2018, documenting the transition from former interwell analysis to intrawell analysis.

The statistical plan is designed to detect a release from the facility at the earliest indication. An intrawell methodology is described and then applied to the FPP data. The statistical method conforms with the Coal Combustion Residual (CCR) rule (40 CFR Part 257), USEPA Guidance document (*Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Unified Guidance, March 2009*), and the American Society for Testing and Materials (ASTM) standard D6312-98, *Developing Appropriate Statistical Approaches for Ground-Water Detection Monitoring Programs*. The intrawell statistical evaluations were completed within 90 days of receipt of laboratory data.

Ground Water Monitoring Program

The groundwater monitoring network for FPP includes background well CBL-340I and downgradient wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I. Each of the groundwater monitoring wells is to be sampled at least semiannually and analyzed for the detection monitoring parameters listed in Appendix III of 40 CFR Part 257, as follows:

Boron Calcium Chloride Fluoride pH Sulfate Total Dissolved Solids

Statistical analysis is conducted on data from all Groundwater Monitoring Plan (GMP) wells with the exception of CBL-340I, as described above. The groundwater data obtained for statistical evaluation during the second semi-annual monitoring event in 2024 are summarized in Attachment A. Historical Appendix III data is summarized in Attachment B.

STATISTICAL METHODOLOGIES FOR DETECTION MONITORING

The CCR rule for statistical analysis provides several options for evaluating the ground water data [40 CFR 257.93(f)]. As referenced in Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (EPA 530/R-09-007), the preferred methods for comparing ground water data are using either prediction limits or using control charts. The control chart procedure offers an advantage over the prediction limits procedure as more data is generated over time, because the control chart procedure generates a graph of compliance data over time and allows for better identification of long-term trends.

An intrawell control chart method was applied to the FPP 2024 second semiannual data using the DUMPStat® statistical program. DUMPStat® is a program for the statistical analysis of groundwater monitoring data using methods described in "Statistical Methods for Groundwater Monitoring" by Dr. Robert D. Gibbons. Groundwater statistical analysis was conducted on the Appendix III constituents listed above.

Intrawell statistics

Intrawell statistics compare new measurements to the historical data at each groundwater monitoring well independently. The Unified Guidance-recommended technique for intrawell comparisons is the combined Shewhart-CUSUM control chart. This control chart procedure detects changes in analyte concentrations both in terms of constituent concentration and cumulative concentration increases. This method is also extremely sensitive to sudden and gradual releases. A requirement for constructing these control charts is that the parameter is detected at a frequency greater than or equal to 25%, otherwise the data variance is not properly defined (ASTM D 6312-98 Standard Guide for Developing Appropriate Statistical Approaches for Ground-Water Detection Monitoring Programs).

The combined Shewhart-CUSUM control chart assumes that the data are independent and normally distributed with a fixed mean and a constant variance. Independent data is much more critical than the normality assumption. To achieve independence, it is recommended that data are collected no more frequently than quarterly to account for seasonal variation. The combined Shewhart-CUSUM control chart is robust to deviations from normality. Because the control charts do not use a specific multiplier based on a normal distribution, it is more conservative to assume normality.

Some groundwater monitoring parameters are not detected at a frequency great enough to generate the combined Shewhart-CUSUM control charts. For constituents that are detected less than 25% of the time at a particular well, the data are plotted as a time series until a sufficient number of data points are available to provide a 99% confidence nonparametric prediction limit. Thirteen independent measurements (with 1 resample) are necessary to achieve a 99% confidence (1% false positive rate) nonparametric prediction limit. Eight independent measurements (for pass 1 of 2 resamples) are necessary to achieve a 99% confidence nonparametric prediction limit. The nonparametric prediction limit is the largest determination out of the data set collected for that well and parameter. If the detection frequency is 0% after thirteen samples have been collected, the practical quantitation limit (PQL) becomes the nonparametric prediction limit.

In developing the statistical background, the historical data must be thoroughly screened for anomalous data due to sample collection error or laboratory analysis error. An erroneous data point, if not removed prior to the mean and variance computations, would yield a larger control limit thus increasing the false negative rate. The DUMPStat® program screens the background for outliers using the Dixon test on values at least three times the median background concentration for intrawell analyses. If the Dixon test indicates a statistical outlier, the value will not be used in the mean and variance determinations. Anomalous data will still be plotted on the graphs (with a unique symbol) but will not be included in the calculations.

The verification resample plan is an integral function of the statistical plan to reduce the probability that anomalous data obtained after the background has been established is indicative of a landfill release. Should an indication of an SSI be identified, the resampling plan is implemented by the operator to collect a verification sample.

The background data for each well and constituent is tested for existing trends using Sen's nonparametric estimate of trend.

Results of the Intrawell Statistics

The Appendix III parameter data from wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I were evaluated using the combined Shewhart-CUSUM control chart method.

The initial background was established with the ProUCL software using data obtained in 2016 and 2017. Initial exceedances for boron at CBL-301I and boron at CBL-341I were reported following the second semi-annual monitoring in 2020. Since the boron concentrations determined subsequently in January 2021 at CBL-301I (<0.050 mg/L) and CBL-341I (<0.050 mg/L) do not exceed the baseline threshold values (BTV), the previous exceedances are not statistically significant. BTV will be analogous to control limits in this report and future reports. Background was later established to include historical data obtained from 2016 through 2020 using DUMPStats.

Monitoring well background data sets must be periodically updated with valid detection monitoring results that are representative of background groundwater quality. Failure to update background data sets will exclude factors such as natural temporal variation, changes in field or laboratory methodologies, and changes in the water table due to meteorological conditions or other influences. Since there were no exceedances attributed to the unit, the background data in this evaluation includes historical data obtained from 2016 through 2022 for wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I.

A summary of the intrawell statistics is included in Attachment C, Table 1 "Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts." The control charts or time series graphs follow the summary table.

For the parameters evaluated, there is a control limit exceedance detected for boron at CBL-341I. The CUSUM value for boron at CBL-341I (0.2013 mg/L) exceeded the normal control limit of 0.1803 mg/L, however, the boron concentration determined at CBL-341I (0.119 mg/L) did not exceed the limit.

A slight increasing trend was detected in the background data for sulfate at CBL-302I.

A control chart factor was selected to provide a balance of the site-wide false positive and false negative rates. A statistical power curve indicates the expected false assessments for the site as a whole. The site-wide false positive rate is 2% and the test becomes sensitive to 4 standard deviation units over background.

Monitoring well CBL-341I was resampled on October 1, 2024 and analyzed for boron. For the resample conducted, CUSUM value for boron at CBL-341I (0.2183 mg/L) exceeded the normal control limit of 0.1803 mg/L, however, the boron concentration determined at CBL-341I (0.136 mg/L) did not exceed the limit.

CONCLUSIONS

This document describes a comprehensive statistical plan designated for the FPP. The groundwater monitoring network for FPP consists of wells CBL-301I, CBL-302I, CBL-306I, CBL-308I, and CBL-341I. Each of the groundwater monitoring wells is sampled and analyzed for the detection monitoring parameters listed in Appendix III of 40 CFR Part 257. The current ground water data was compared to background using intrawell control charts. Using intrawell comparisons, there is a control limit exceedance detected for boron at CBL-341I. The boron concentration determined at CBL-341I is consistent with boron levels at each of the other monitoring wells.

Attachment A

Ground Water Data obtained during the Second Semi-Annual Monitoring Event in 2024

Table 1
Analytical Data Summary for 7/22/2024 to 7/23/2024

Constituents	Units	CBL-301I	CBL-302I	CBL-306I	CBL-308I	CBL-340I	CBL-341I
Boron, Total	mg/L	.082	.137	.134	.139	.181	.119
Calcium, Total	mg/L	912	845	115	683	560	801
Chloride	mg/L	2350.0	1650.0	10.2	2250.0	2480.0	1960.0
Fluoride	mg/L	<.100	.101	.823	.864	.521	<.100
pH	S.Ŭ.	6.45	6.41	6.54	6.53	6.12	6.39
Sulfate	mg/L	454.0	1370.0	70.7	1430.0	780.0	367.0
Total Dissolved Solids	mg/L	4580	4840	691	5810	5320	3700

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 2

Analytical Data Summary for 10/1/2024

Constituents	Units	CBL-341I
Boron, Total	mg/L	.136

* - The displayed value is the arithmetic mean of multiple database matches.

Attachment B

Historical Appendix III Ground Water Data

Table 1

Analytical Data Summary for CBL-301I

Constituents	Units	1/21/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/18/2017	7/26/2017	2/8/2018	7/25/2018	1/17/2019	5/2/2019	7/31/2019
Boron, Total	mg/L	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	.0707	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	905	949	925	978	1000	1030	1060	961	873	993	156	762	783
Chloride	mg/L	2300	2160	2290	2250	3200	2390	2420	2500	2480	1330	619	1910	2240
Fluoride	mg/L	<.250	<.500	<.500	<.250	.312	<.500	<.500	<.500	<.500	<.500	.219	.112	.051
pH	S.Ŭ.	6.33	6.26	5.95	6.23	6.26	6.31	5.95	6.02	6.17	6.04	7.16	6.14	6.19
Sulfate	mg/L	336	311	336	326	488	337	342	381	344	196	104	398	332
Total Dissolved Solids	mg/L	4380	5050	6020	4570	6140	6570	6430	4290	5120	5390	1460	5650	6040

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 1

Analytical Data Summary for CBL-301I

Constituents	1/28/2020	9/17/2020	1/26/2021	7/20/2021	9/7/2021	1/26/2022	7/27/2022	8/30/2022	10/25/2022	1/25/2023	3/7/2023	8/2/2023	1/29/2024	7/23/2024
Boron, Total	<.0500	.0801	<.0500	.0826	<.0500	<.0500	.0850	.1070	.0645	.1080	.1020	<.0500	.1070	.0820
Calcium, Total	851	1060	1130	1100		999	1010			977		1260	1050	912
Chloride	2360	2270	2420	2590		2440	1840			1960		2220	2270	2350
Fluoride	.130	<.250	<.500	2.680	<.500	<.050	.156			1.720	<.050	.054	<.100	<.100
pH	6.26	6.13	6.06	6.13	6.14	6.27	6.08	6.14	6.21	6.34		6.21	6.35	6.45
Sulfate	349	350	374	419		406	285			1370	207	383	475	454
Total Dissolved Solids	4790	6340	6060	5870		4700	4590			5160		5360	4820	4580

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 2

Analytical Data Summary for CBL-302I

Constituents	Units	1/22/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/16/2017	7/27/2017	2/8/2018	7/27/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.1560	<.0500	.2970	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	1030	1010	1030	1070	1100	1090	1100	1040	934	995	855	914	838
Chloride	mg/L	2190	2130	2210	2170	2080	2050	2230	2040	2080	1980	1960	1540	1540
Fluoride	mg/L	<.2500	<.5000	<.5000	<.2500	.3320	<.5000	<.5000	<.5000	.1120	<.5000	.0402	.0605	.1930
pH	S.U.	6.29	6.01	5.17	7.75	5.36	5.40	4.94	6.20	6.21	5.77	6.44	6.15	6.34
Sulfate	mg/L	1020	993	1090	1180	1150	1120	1230	1180	1240	1390	1250	1260	1350
Total Dissolved Solids	mg/L	5500	5390	6850	4210	6430	6460	5860	5120	6010	5510	5060	4190	4790

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 2

Analytical Data Summary for CBL-302I

Constituents	9/17/2020	1/28/2021	7/21/2021	9/7/2021	1/27/2022	7/28/2022	1/26/2023	7/18/2023	1/29/2024	4/5/2024	7/22/2024
Boron, Total	<.0500	<.0500	.0743		<.0500	<.0500	.1160	<.0500	.1600	.1630	.1370
Calcium, Total	853	1020	844		754	750	889	981	937		845
Chloride	1410	1370	1380		1310	1300	1460	1330	1440		1650
Fluoride	<.2500	<.5000	2.2500	<.2500	<.0500	.1650	<.5000	1.7600	<.1000		.1010
pΗ	6.20	6.21	6.06	6.28	6.32	6.21	6.33	6.20	6.28		6.41
Sulfate	1280	1290	1350		1340	1300	1390	1230	1330		1370
Total Dissolved Solids	4990	4800	4810		4510	5120	4930	5150	4950		4840

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 3

Analytical Data Summary for CBL-306I

Constituents	Units	1/21/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/18/2017	7/27/2017	2/8/2018	7/27/2018	1/16/2019	7/31/2019	8/23/2019
Boron, Total	mg/L	<.0500	.0717	.0998	.0556	<.0500	.1240	.0832	.0531	<.0500	<.0500	<.0500	.0824	.0500
Calcium, Total	mg/L	137.0	47.2	105.0	198.0	174.0	204.0	205.0	234.0	230.0	275.0	180.0	106.0	226.0
Chloride	mg/L	155.0	20.0	114.0	330.0	197.0	231.0	289.0	350.0	385.0	283.0	215.0	538.0	318.0
Fluoride	mg/L	2.500	1.000	1.370	2.380	1.850	12.600	2.200	2.910	2.810	2.950	1.980	9.260	2.660
pH	S.Ū.	7.09	6.69	6.95	6.72	7.29	4.41	5.61	6.94	6.67	6.86	6.78	6.92	6.83
Sulfate	mg/L	266.0	29.5	139.0	432.0	270.0	340.0	412.0	513.0	493.0	406.0	292.0	816.0	387.0
Total Dissolved Solids	mg/L	1280	431	790	1150	1320	1460	1440	1280	1760	1450	1220	676	1710

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 3

Analytical Data Summary for CBL-306I

Constituents	1/29/2020	9/19/2020	1/28/2021	7/21/2021	1/27/2022	7/28/2022	1/26/2023	7/18/2023	1/29/2024	7/23/2024
Boron, Total	<.0500	.0773	<.0500	.0927	.0548	.1100	.0973	.0659	.1330	.1340
Calcium, Total	247.0	260.0	257.0	216.0	212.0	182.0	149.0	260.0	186.0	115.0
Chloride	445.0	420.0	292.0	255.0	384.0	261.0	148.0	336.0	153.0	10.2
Fluoride	2.830	2.720	2.900	2.420	2.990	2.260	1.920	2.660	1.490	.823
pH	6.70	7.16	6.84	6.55	6.87	6.70	7.30	6.49	6.55	6.54
Sulfate	561.0	506.0	388.0	336.0	510.0	348.0	205.0	454.0	266.0	70.7
Total Dissolved Solids	1830	1730	1420	1320	1730	1540	1000	1910	1170	691

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 4

Analytical Data Summary for CBL-308I

Constituents	Units	1/22/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/16/2017	7/26/2017	2/6/2018	7/25/2018	1/18/2019	7/31/2019	1/29/2020
Boron, Total	mg/L	<.0500	.1210	.1860	.2560	<.0500	.5450	.1090	.0799	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	903	870	911	939	919	947	954	878	859	863	760	840	745
Chloride	mg/L	2760	2580	2680	2870	2360	2530	2740	2760	2750	2680	2240	2290	2110
Fluoride	mg/L	1.490	2.300	1.640	1.590	1.330	9.050	1.700	1.900	1.760	2.100	1.680	1.620	1.600
pH	S.Ū.	6.36	6.13	5.95	6.27	6.83	6.27	5.54	6.27	6.26	6.07	6.39	6.25	6.37
Sulfate	mg/L	1490	1410	1490	1550	1320	1470	1580	1550	1570	1540	1520	1420	1340
Total Dissolved Solids	mg/L	6820	6120	7890	10200	9620	7260	6590	6480	6200	6320	4760	5820	5980

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 4

Analytical Data Summary for CBL-308I

Constituents	9/18/2020	1/28/2021	7/21/2021	1/27/2022	7/27/2022	1/26/2023	7/18/2023	1/30/2024	7/22/2024
Boron, Total	.1030	<.0500	.1300	<.0500	.0790	.1430	<.0500	.1500	.1390
Calcium, Total	838	830	684	974	736	732	642	714	683
Chloride	2410	2200	1780	2020	2470	2570	1840	1790	2250
Fluoride	1.330	1.440	1.740	1.750	1.430	<.500	1.860	1.260	.864
pH	6.22	6.26	6.16	6.36	6.23	6.41	6.26	6.57	6.53
Sulfate	1310	1340	1240	1310	1190	445	1290	1360	1430
Total Dissolved Solids	6860	6190	5270	5320	6840	5810	5680	5410	5810

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 5

Analytical Data Summary for CBL-340I

Constituents	Units	1/21/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/16/2017	7/27/2017	2/8/2018	7/27/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	.0832	.0810	.1580	<.0500	.1740	.1040	.0816	.0638	<.0500	<.0500	.1240	.0562
Calcium, Total	mg/L	564	560	575	607	627	581	584	571	555	544	518	518	539
Chloride	mg/L	2370	2260	2350	2380	2070	2280	2520	2380	2730	2450	2250	2280	2240
Fluoride	mg/L	1.090	1.920	1.060	1.260	.840	8.440	1.010	.850	1.000	1.300	.830	.880	.870
pH	S.Ŭ.	6.52	6.13	6.95	6.19	5.46	6.49	5.77	6.42	6.41	6.25	6.59	6.45	6.49
Sulfate	mg/L	652	616	668	675	571	635	715	685	752	711	639	684	637
Total Dissolved Solids	mg/L	4990	5230	6250	5670	6230	5480	5470	4880	5290	5100	4720	5560	5080

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 5

Analytical Data Summary for CBL-340I

Constituents	9/18/2020	1/28/2021	7/22/2021	1/28/2022	7/28/2022	1/30/2023	7/19/2023	1/31/2024	7/23/2024
Boron, Total	.1460	<.0500	.3840	.1600	.2850	.1670	.2760	.1780	.1810
Calcium, Total	547	607	532	597	538	635	631	607	560
Chloride	2130	2260	2200	2200	2160	2230	2130	2210	2480
Fluoride	.725	.835	.865	1.060	.865	.850	1.070	.605	.521
pH	6.32	6.32	6.24	6.42	6.35	6.37	6.41	6.12	6.12
Sulfate	608	634	618	619	614	643	599	705	780
Total Dissolved Solids	5430	5520	4990	4870	5490	5010	5290	5090	5320

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 6
Analytical Data Summary for CBL-341I

Constituents	Units	1/23/2017	2/23/2017	3/22/2017	4/20/2017	5/16/2017	6/20/2017	7/27/2017	9/11/2017	2/8/2018	8/24/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.0587	.0896	.0668	.0507	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	854	870	906	898	860	950	829	848	810	824	782	714	767
Chloride	mg/L	1600	2000	1780	1770	1900	1820	1970	1710	2110	1910	1790	1650	1780
Fluoride	mg/L	.5300	<.5000	<.5000	<.5000	<.5000	.3350	.0550	.3670	.1060	.1140	.0546	.1000	.1530
pH	S.Ŭ.	5.74	5.23	5.72	5.73	5.54	6.19	6.21	6.10	6.18	5.82	6.38	6.23	6.27
Sulfate	mg/L	307	404	346	336	369	363	419	354	383	376	358	329	351
Total Dissolved Solids	mg/L	5000	4520	5110	4240	4840	5940	4150	4860	4320	4800	3870	5370	4900

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 6
Analytical Data Summary for CBL-341I

Constituents	9/17/2020	1/27/2021	7/22/2021	9/7/2021	1/27/2022	7/28/2022	1/26/2023	7/19/2023	1/29/2024	7/22/2024	10/1/2024
Boron, Total	.1020	<.0500	.1110		<.0500	.1150	.1340	.0760	.1330	.1190	.1360
Calcium, Total	814	874	852		1040	704	797	710	875	801	
Chloride	1700	1800	1750		1810	1690	1660	1530	1700	1960	
Fluoride	<.2500	<.5000	1.1600	<.2500	<.0500	.1410	<.2500	1.1200	<.1000	<.1000	
pH	6.14	6.06	5.98	6.18	6.26	6.16	6.28	6.22	6.38	6.39	
Sulfate	336	324	316		320	296	309	259	346	367	
Total Dissolved Solids	4930	3940	4520		3800	4910	4390	4190	3990	3700	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Attachment C

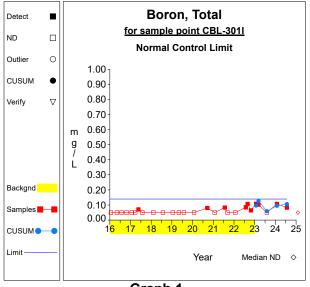
Summary Tables and Graphs for the Intrawell Comparisons

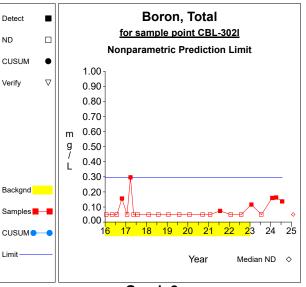
Table 1
Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

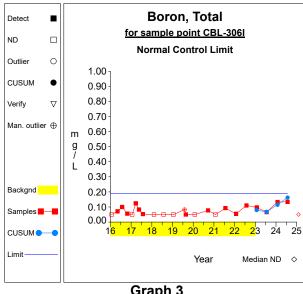
Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Type	Conf	T
Boron, Total	mg/L	CBL-301I	22	5	27	0.0586	0.0161	0.1070	0.0820	0.0949	0.1062	0.1391	normal		
Boron, Total	mg/L	CBL-302I	18	5	23			0.1630	0.1370			0.2970	nonpar	.99	**
Boron, Total	mg/L	CBL-306I	18	4	23	0.0679	0.0242	0.1330	0.1340	0.1148	0.1627	0.1891	normal		
Boron, Total	mg/L	CBL-308I	18	4	22	0.1144	0.1215	0.1500	0.1390	0.1144	0.1144	0.7217	normal		
Boron, Total	mg/L	CBL-341I	18	4	22	0.0635	0.0234	0.1330	0.1190	0.1634	0.2013	0.1803	normal		
Calcium, Total	mg/L	CBL-301I	18	4	23	964.9444	101.2710	1050.0000	912.0000	1193.1490	1064.2513	1471.2996	normal		
Calcium, Total	mg/L	CBL-302I	18	4	22	957.0556	116.7478	937.0000	845.0000	957.0556	957.0556	1540.7947	normal		
Calcium, Total	mg/L	CBL-306I	16	4	23	214.8125	36.2569	186.0000	115.0000	214.8125	214.8125	396.0970	normal		
Calcium, Total	mg/L	CBL-308I	18	4	22	858.3333	82.3615	714.0000	683.0000	858.3333	858.3333	1270.1407	normal		
Calcium, Total	mg/L	CBL-341I	18	4	22	844.2222	79.4752	875.0000	801.0000	844.2222	844.2222	1241.5980	normal		
Chloride	mg/L	CBL-301I	18	4	23	2299.4444	372.4241	2270.0000	2350.0000	2299.4444	2299.4444	4161.5647	normal		
Chloride	mg/L	CBL-302I	18	4	22	1831.6667	360.2654	1440.0000	1650.0000	1831.6667	1831.6667	3632.9938	normal		
Chloride	mg/L	CBL-306I	16	4	23	300.6250	82.0828	153.0000	10.2000	300.6250	300.6250	711.0389	normal		
Chloride	mg/L	CBL-308I	18	4	22	2457.2222	303.1755	1790.0000	2250.0000	2457.2222	2457.2222	3973.0995	normal		
Chloride	mg/L	CBL-341I	18	4	22	1807.7778	129.1399	1700.0000	1960.0000	1807.7778	1863.1450	2453.4775	normal		
Fluoride	mg/L	CBL-301I	20	5	25	0.5080	0.5367	0.1000	0.1000	0.5080	0.5080	3.1915	normal		
Fluoride	mg/L	CBL-302I	19	4	23	0.4817	0.4622	0.1000	0.1010	0.5849	0.4817	2.7929	normal		
Fluoride	mg/L	CBL-306I	17	4	23	2.3959	0.5730	1.4900	0.8230	2.3959	2.3959	5.2610	normal		
Fluoride	mg/L	CBL-308I	17	4	22	1.6706	0.2554	1.2600	0.8640	1.6706	1.6706	2.9477	normal		
Fluoride	mg/L	CBL-341I	19	4	23	0.3745	0.2679	0.1000	0.1000	0.3745	0.3745	1.7141	normal		
pH	S.U.	CBL-301I	22	4	26	6.2014	0.2396	6.3500	6.4500	6.2014	6.2703	5.00 - 7.40	normal		
pH	S.U.	CBL-302I	19	4	23	6.0689	0.5972	6.2800	6.4100	6.0689	6.0689	3.08 - 9.05	normal		
pH	S.U.	CBL-306I	18	4	23	6.6478	0.6569	6.5500	6.5400	6.6478	6.6478	3.36 - 9.93	normal		
pH	S.U.	CBL-308I	18	4	22	6.2328	0.2475	6.5700	6.5300	6.3844	6.4960	5.00 - 7.47	normal		
pH	S.U.	CBL-341I	18	4	23	6.0494	0.2377	6.3800	6.3900	6.2462	6.4084	4.86 - 7.24	normal		
Sulfate	mg/L	CBL-301I	18	5	24	350.5556	60.2936	475.0000	454.0000	429.7798	488.0040	652.0236	normal		
Sulfate	mg/L	CBL-302I	18	4	22	1222.9444	114.1137	1330.0000	1370.0000	1247.3553	1308.8255	1793.5130	normal		
Sulfate	mg/L	CBL-306I	17	4	23	388.1765	110.3564	266.0000	70.7000	388.1765	388.1765	939.9583	normal		
Sulfate	mg/L	CBL-308I	18	4	22	1424.4444	121.4240	1360.0000	1430.0000	1424.4444	1424.4444	2031.5645	normal		
Sulfate	mg/L	CBL-341I	18	4	22	349.2778	32.8898	346.0000	367.0000	349.2778	349.2778	513.7270	normal		
Total Dissolved Solids	mg/L	CBL-301I	18	4	23	5444.4444	767.6950	4820.0000	4580.0000	5444.4444	5444.4444	9282.9193	normal		
Total Dissolved Solids	mg/L	CBL-302I	18	4	22	5311.6667	764.8702	4950.0000	4840.0000	5311.6667	5311.6667	9136.0178	normal		
Total Dissolved Solids	mg/L	CBL-306I	17	4	23	1437.0588	267.0853	1170.0000	691.0000	1437.0588	1437.0588	2772.4853	normal		
Total Dissolved Solids	mg/L	CBL-308I	18	4	22	6696.6667	1385.2713	5410.0000	5810.0000	6696.6667	6696.6667	13623.0230	normal		
Total Dissolved Solids	mg/L	CBL-341I	18	4	22	4667.7778	554.0180	3990.0000	3700.0000	4667.7778	4667.7778	7437.8678			

N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods.

N(tot) = All independent measurements for that constituent and well.

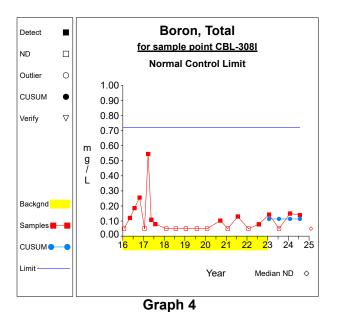

For transformed data, mean and SD in transformed units and control limit in original units.

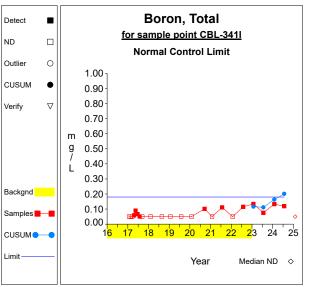

Conf = confidence level for passing initial test or one of two verification resamples (nonparametric test only).

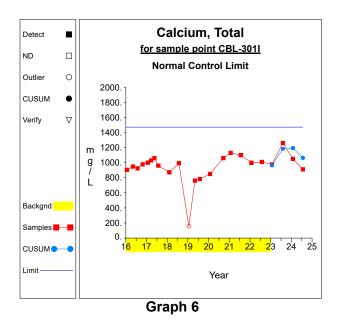

^{* -} Insufficient Data.

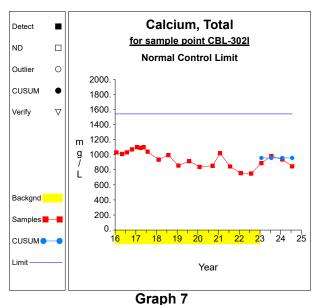
^{** -} Detection Frequency < 25%.

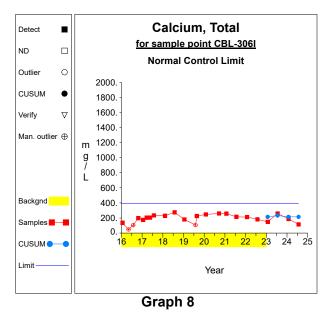
^{*** -} Zero Variance.

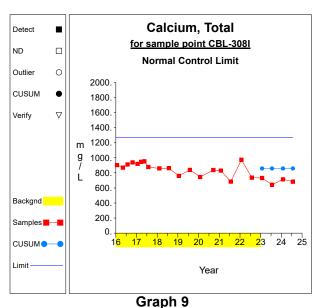


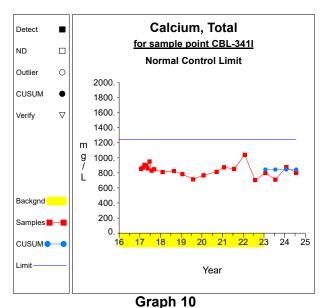


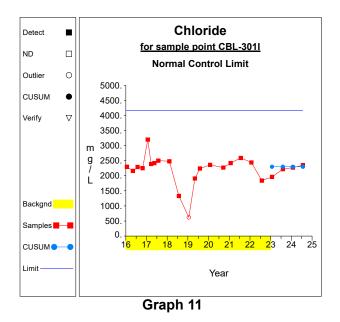

Graph 1

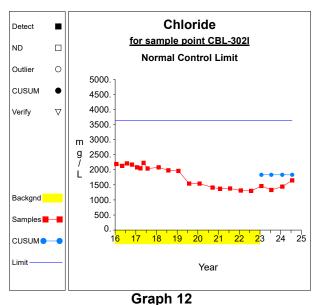

Graph 2

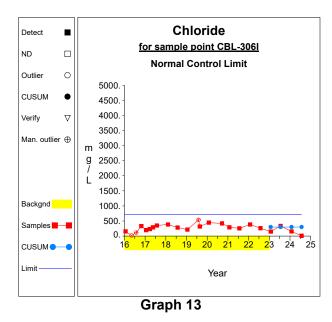

Graph 3

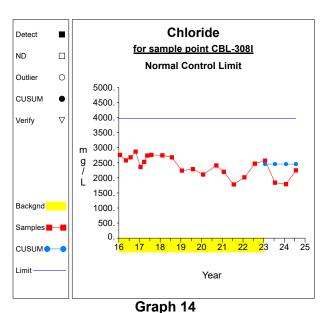


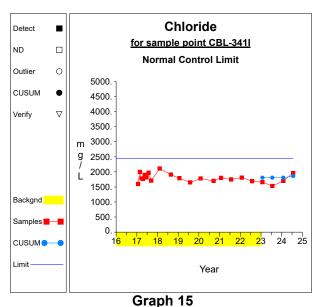


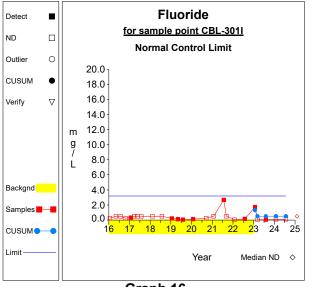


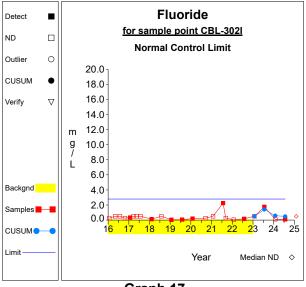


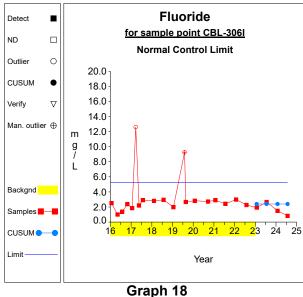


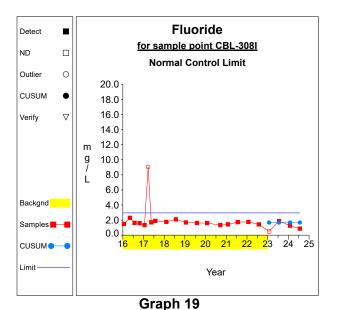


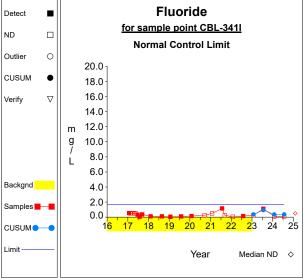






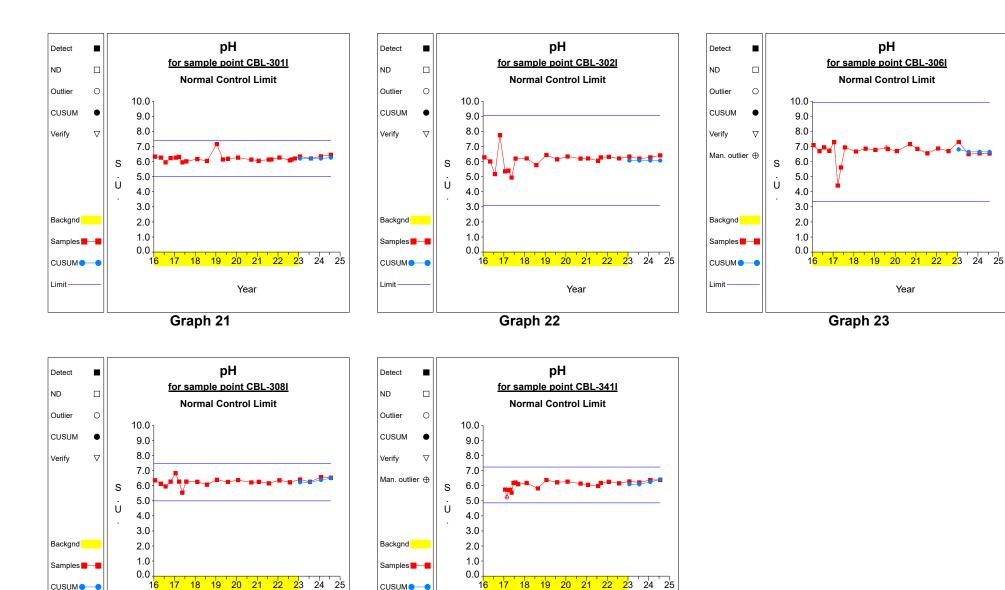






Graph 16

Graph 17

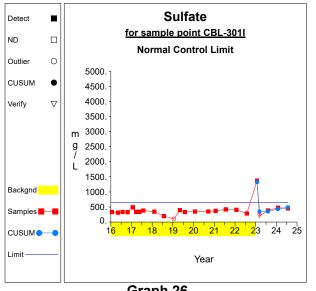


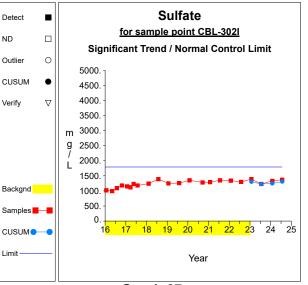
Graph 20

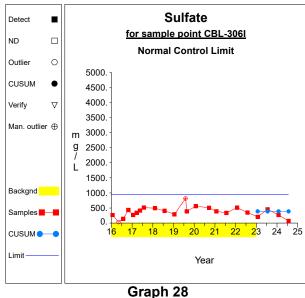
Year

Graph 25

Limit-

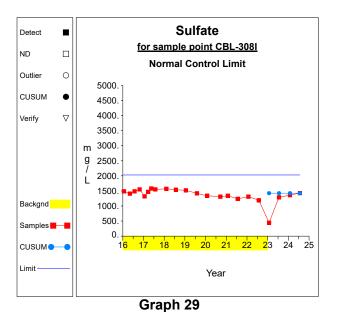

Year

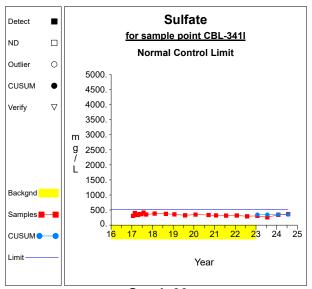

Graph 24

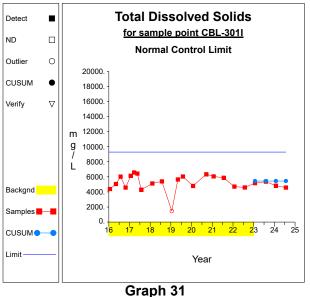

Limit

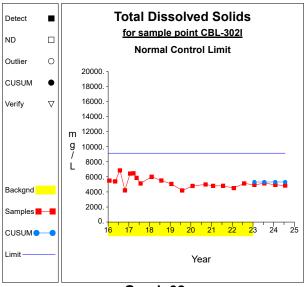
рΗ

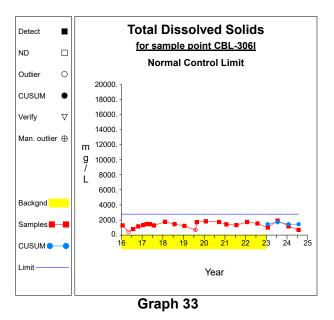
Year

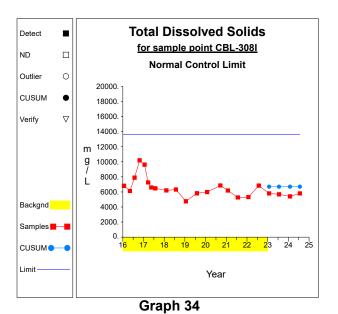


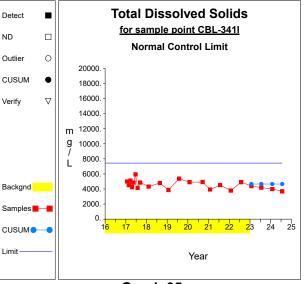



Graph 26


Graph 27




Graph 30



Graph 32

Graph 35

False Positive and False Negative Rates for Current Intra-Well Control Charts Monitoring Program

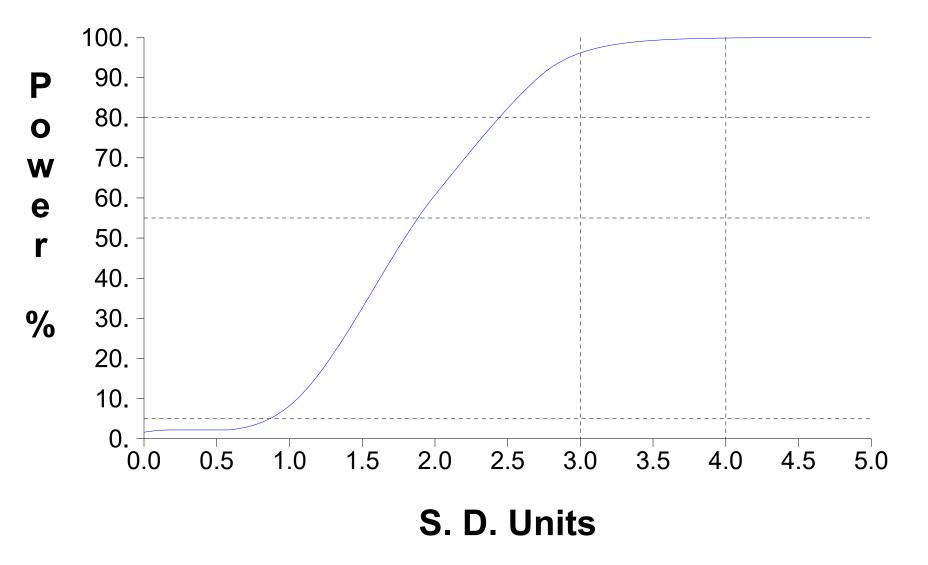


Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Boron, Total	mg/L	CBL-301I	01/21/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	05/04/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	07/27/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	10/24/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	01/23/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	03/22/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	05/18/2017	yes	0.0707					
Boron, Total	mg/L	CBL-301I	07/26/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	02/08/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	07/25/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	01/17/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	05/02/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	07/31/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	01/28/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-301I	09/17/2020	yes	0.0801					
Boron, Total	mg/L	CBL-3011	01/26/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3011	07/20/2021	yes	0.0826	.,,,				
Boron, Total	mg/L	CBL-3011	09/07/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3011	01/26/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3011	07/27/2022	yes	0.0850	ND				
Boron, Total	mg/L	CBL-3011	08/30/2022		0.1070					
Boron, Total	mg/L	CBL-3011	10/25/2022	yes	0.0645					
Boron, Total		CBL-3011	01/25/2023	yes	0.1080			0.0959		
	mg/L									
Boron, Total	mg/L	CBL-301I	03/07/2023		0.1020	ND		0.1272		
Boron, Total	mg/L	CBL-301I	08/02/2023		0.0500	ND		0.0586		
Boron, Total	mg/L	CBL-301I	01/29/2024		0.1070			0.0949		
Boron, Total	mg/L	CBL-301I	07/23/2024		0.0820	NID		0.1062		
Boron, Total	mg/L	CBL-302I	01/22/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	05/04/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/27/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	10/24/2016	yes	0.1560					
Boron, Total	mg/L	CBL-302I	01/23/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	03/22/2017	yes	0.2970					
Boron, Total	mg/L	CBL-302I	05/16/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/27/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	02/08/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/27/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	01/22/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/31/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	01/30/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	09/17/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	01/28/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/21/2021	yes	0.0743					
Boron, Total	mg/L	CBL-302I	01/27/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	07/28/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-302I	01/26/2023		0.1160					
Boron, Total	mg/L	CBL-302I	07/18/2023		0.0500	ND				
Boron, Total	mg/L	CBL-302I	01/29/2024		0.1600					
Boron, Total	mg/L	CBL-302I	04/05/2024		0.1630					
Boron, Total	mg/L	CBL-302I	07/22/2024		0.1370		1			1

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Boron, Total	mg/L	CBL-306I	01/21/2016	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	05/04/2016	yes	0.0717					
Boron, Total	mg/L	CBL-306I	07/26/2016	yes	0.0998					
Boron, Total	mg/L	CBL-306I	10/24/2016	yes	0.0556					
Boron, Total	mg/L	CBL-306I	01/19/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	03/22/2017	yes	0.1240					
Boron, Total	mg/L	CBL-306I	05/18/2017	yes	0.0832					
Boron, Total	mg/L	CBL-306I	07/27/2017	yes	0.0531					
Boron, Total	mg/L	CBL-306I	02/08/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	07/27/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	01/16/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	07/31/2019	yes	0.0824		yes			*
Boron, Total	mg/L	CBL-306I	08/23/2019	yes	0.0500		,			
Boron, Total	mg/L	CBL-306I	01/29/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	09/19/2020	yes	0.0773					
Boron, Total	mg/L	CBL-306I	01/28/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-306I	07/21/2021	yes	0.0927					
Boron, Total	mg/L	CBL-306I	01/27/2022	yes	0.0548					
Boron, Total	mg/L	CBL-306I	07/28/2022	yes	0.1100					
Boron, Total	mg/L	CBL-306I	01/26/2023	,	0.0973			0.0791		
Boron, Total	mg/L	CBL-306I	07/18/2023		0.0659			0.0679		
Boron, Total	mg/L	CBL-306I	01/29/2024		0.1330			0.1148		
Boron, Total	mg/L	CBL-306I	07/23/2024		0.1340			0.1627		
Boron, Total	mg/L	CBL-308I	01/22/2016	yes	0.0500	ND		01.70=1		
Boron, Total	mg/L	CBL-308I	05/04/2016	yes	0.1210					
Boron, Total	mg/L	CBL-308I	07/26/2016	yes	0.1860					
Boron, Total	mg/L	CBL-308I	10/24/2016	yes	0.2560					
Boron, Total	mg/L	CBL-308I	01/19/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	03/22/2017	yes	0.5450					
Boron, Total	mg/L	CBL-308I	05/16/2017	yes	0.1090					
Boron, Total	mg/L	CBL-308I	07/26/2017	yes	0.0799					
Boron, Total	mg/L	CBL-308I	02/06/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	07/25/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	01/18/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	07/31/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	01/29/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	09/18/2020	yes	0.1030	.,,				
Boron, Total	mg/L	CBL-308I	01/28/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	07/21/2021	yes	0.1300	IND				
Boron, Total	mg/L	CBL-308I	01/27/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-308I	07/27/2022	yes	0.0790	110				
Boron, Total	mg/L	CBL-308I	01/26/2023	yes	0.1430			0.1144		
Boron, Total	mg/L	CBL-308I	07/18/2023		0.0500	ND		0.1144		
Boron, Total	mg/L	CBL-308I	01/30/2024		0.1500	'10		0.1144		
Boron, Total	mg/L	CBL-308I	07/22/2024		0.1390			0.1144		
Boron, Total	mg/L	CBL-3001	01/23/2017	yes	0.0500	ND		0.1144		
Boron, Total	mg/L	CBL-3411	02/23/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3411	03/22/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-3411	04/20/2017	yes	0.0587	שוו				
Boron, Total	mg/L	CBL-3411	05/16/2017		0.0387					
וטוטוו, וטומו	IIIg/L	ODL-34 II	03/10/2017	yes	0.0090					<u> </u>

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Boron, Total	mg/L	CBL-341I	06/20/2017	yes	0.0668					
Boron, Total	mg/L	CBL-341I	07/27/2017	yes	0.0507					
Boron, Total	mg/L	CBL-341I	09/11/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	02/08/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	08/24/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	01/22/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	07/31/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	01/30/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	09/17/2020	yes	0.1020					
Boron, Total	mg/L	CBL-341I	01/27/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	07/22/2021	yes	0.1110					
Boron, Total	mg/L	CBL-341I	01/27/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	07/28/2022	yes	0.1150					
Boron, Total	mg/L	CBL-341I	01/26/2023	,	0.1340			0.1165		
Boron, Total	mg/L	CBL-341I	07/19/2023		0.0760			0.1114		
Boron, Total	mg/L	CBL-341I	01/29/2024		0.1330			0.1634		
Boron, Total	mg/L	CBL-341I	07/22/2024		0.1190			0.2013		**
Calcium, Total	mg/L	CBL-301I	01/21/2016	yes	905.0000					
Calcium, Total	mg/L	CBL-301I	05/04/2016	yes	949.0000					
Calcium, Total	mg/L	CBL-301I	07/27/2016	yes	925.0000					
Calcium, Total	mg/L	CBL-301I	10/24/2016	yes	978.0000					
Calcium, Total	mg/L	CBL-301I	01/23/2017	yes	1000.0000					
Calcium, Total	mg/L	CBL-301I	03/22/2017	yes	1030.0000					
Calcium, Total	mg/L	CBL-301I	05/18/2017	ves	1060.0000					
Calcium, Total	mg/L	CBL-301I	07/26/2017	yes	961.0000					
Calcium, Total	mg/L	CBL-301I	02/08/2018	yes	873.0000					
Calcium, Total	mg/L	CBL-301I	07/25/2018	yes	993.0000					
Calcium, Total	mg/L	CBL-301I	01/17/2019	yes	156.0000		yes			*
Calcium, Total	mg/L	CBL-301I	05/02/2019	yes	762.0000		'			
Calcium, Total	mg/L	CBL-301I	07/31/2019	yes	783.0000					
Calcium, Total	mg/L	CBL-301I	01/28/2020	yes	851.0000					
Calcium, Total	mg/L	CBL-301I	09/17/2020	yes	1060.0000					
Calcium, Total	mg/L	CBL-301I	01/26/2021	yes	1130.0000					
Calcium, Total	mg/L	CBL-301I	07/20/2021	yes	1100.0000					
Calcium, Total	mg/L	CBL-301I	01/26/2022	yes	999.0000					
Calcium, Total	mg/L	CBL-301I	07/27/2022	yes	1010.0000					
Calcium, Total	mg/L	CBL-301I	01/25/2023	,	977.0000			964.9444		
Calcium, Total	mg/L	CBL-301I	08/02/2023		1260.0000			1184.0467		
Calcium, Total	mg/L	CBL-301I	01/29/2024		1050.0000			1193.1490		
Calcium, Total	mg/L	CBL-301I	07/23/2024		912.0000			1064.2513		
Calcium, Total	mg/L	CBL-302I	01/22/2016	yes	1030.0000					
Calcium, Total	mg/L	CBL-302I	05/04/2016	yes	1010.0000					
Calcium, Total	mg/L	CBL-302I	07/27/2016	yes	1030.0000					
Calcium, Total	mg/L	CBL-302I	10/24/2016	yes	1070.0000					
Calcium, Total	mg/L	CBL-302I	01/23/2017	yes	1100.0000					
Calcium, Total	mg/L	CBL-302I	03/22/2017	yes	1090.0000					
Calcium, Total	mg/L	CBL-302I	05/16/2017	ves	1100.0000					
Calcium, Total	mg/L	CBL-302I	07/27/2017	yes	1040.0000					
Calcium, Total	mg/L	CBL-302I	02/08/2018	yes	934.0000					
Calcium, Total	mg/L	CBL-302I	07/27/2018	ves	995.0000		1			1

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Calcium, Total	mg/L	CBL-302I	01/22/2019	yes	855.0000				
Calcium, Total	mg/L	CBL-302I	07/31/2019	yes	914.0000				
Calcium, Total	mg/L	CBL-302I	01/30/2020	yes	838.0000				
Calcium, Total	mg/L	CBL-302I	09/17/2020	yes	853.0000				
Calcium, Total	mg/L	CBL-302I	01/28/2021	yes	1020.0000				
Calcium, Total	mg/L	CBL-302I	07/21/2021	yes	844.0000				
Calcium, Total	mg/L	CBL-302I	01/27/2022	yes	754.0000				
Calcium, Total	mg/L	CBL-302I	07/28/2022	yes	750.0000				
Calcium, Total	mg/L	CBL-302I	01/26/2023	, , , ,	889.0000		957.0556		
Calcium, Total	mg/L	CBL-302I	07/18/2023		981.0000		957.0556		
Calcium, Total	mg/L	CBL-302I	01/29/2024		937.0000		957.0556		
Calcium, Total	mg/L	CBL-302I	07/22/2024		845.0000		957.0556		
Calcium, Total	mg/L	CBL-306I	01/21/2016	yes	137.0000		007.000		
Calcium, Total	mg/L	CBL-306I	05/04/2016	yes	47.2000	ves			*
Calcium, Total	mg/L	CBL-306I	07/26/2016	yes	105.0000	yes			*
Calcium, Total	mg/L	CBL-306I	10/24/2016	yes	198.0000	yes			
Calcium, Total	mg/L	CBL-306I	01/19/2017	yes	174.0000				
Calcium, Total	mg/L	CBL-306I	03/22/2017	yes	204.0000				
Calcium, Total	mg/L	CBL-306I	05/18/2017	yes	205.0000				
Calcium, Total	mg/L	CBL-306I	07/27/2017	yes	234.0000				
Calcium, Total		CBL-306I	02/08/2018		230.0000				
Calcium, Total	mg/L	CBL-306I		yes	275.0000				
	mg/L		07/27/2018	yes					
Calcium, Total	mg/L	CBL-306I	01/16/2019	yes	180.0000				*
Calcium, Total	mg/L	CBL-306I	07/31/2019	yes	106.0000	yes			
Calcium, Total	mg/L	CBL-306I	08/23/2019	yes	226.0000				
Calcium, Total	mg/L	CBL-306I CBL-306I	01/29/2020	yes	247.0000 260.0000				
Calcium, Total	mg/L		09/19/2020	yes					
Calcium, Total	mg/L	CBL-306I	01/28/2021	yes	257.0000				
Calcium, Total	mg/L	CBL-306I	07/21/2021	yes	216.0000				
Calcium, Total	mg/L	CBL-306I	01/27/2022	yes	212.0000				
Calcium, Total	mg/L	CBL-306I	07/28/2022	yes	182.0000		044.0405		
Calcium, Total	mg/L	CBL-306I	01/26/2023		149.0000		214.8125		
Calcium, Total	mg/L	CBL-306I	07/18/2023		260.0000		232.8073		
Calcium, Total	mg/L	CBL-306I	01/29/2024		186.0000		214.8125		
Calcium, Total	mg/L	CBL-306I	07/23/2024		115.0000		214.8125		
Calcium, Total	mg/L	CBL-308I	01/22/2016	yes	903.0000				
Calcium, Total	mg/L	CBL-308I	05/04/2016	yes	870.0000				
Calcium, Total	mg/L	CBL-308I	07/26/2016	yes	911.0000				
Calcium, Total	mg/L	CBL-308I	10/24/2016	yes	939.0000				
Calcium, Total	mg/L	CBL-308I	01/19/2017	yes	919.0000				
Calcium, Total	mg/L	CBL-308I	03/22/2017	yes	947.0000				
Calcium, Total	mg/L	CBL-308I	05/16/2017	yes	954.0000				
Calcium, Total	mg/L	CBL-308I	07/26/2017	yes	878.0000				
Calcium, Total	mg/L	CBL-308I	02/06/2018	yes	859.0000				
Calcium, Total	mg/L	CBL-308I	07/25/2018	yes	863.0000				
Calcium, Total	mg/L	CBL-308I	01/18/2019	yes	760.0000				
Calcium, Total	mg/L	CBL-308I	07/31/2019	yes	840.0000				
Calcium, Total	mg/L	CBL-308I	01/29/2020	yes	745.0000				
Calcium, Total	mg/L	CBL-308I	09/18/2020	yes	838.0000				
Calcium, Total	mg/L	CBL-308I	01/28/2021	yes	830.0000				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Calcium, Total	mg/L	CBL-308I	07/21/2021	yes	684.0000			-	
Calcium, Total	mg/L	CBL-308I	01/27/2022	yes	974.0000				
Calcium, Total	mg/L	CBL-308I	07/27/2022	ves	736.0000				
Calcium, Total	mg/L	CBL-308I	01/26/2023	,	732.0000		858.3333		
Calcium, Total	mg/L	CBL-308I	07/18/2023		642.0000		858.3333		
Calcium, Total	mg/L	CBL-308I	01/30/2024		714.0000		858.3333		
Calcium, Total	mg/L	CBL-308I	07/22/2024		683.0000		858.3333		
Calcium, Total	mg/L	CBL-341I	01/23/2017	yes	854.0000				
Calcium, Total	mg/L	CBL-341I	02/23/2017	yes	870.0000				
Calcium, Total	mg/L	CBL-341I	03/22/2017	yes	906.0000				
Calcium, Total	mg/L	CBL-341I	04/20/2017	yes	898.0000				
Calcium, Total	mg/L	CBL-341I	05/16/2017	yes	860.0000				
Calcium, Total	mg/L	CBL-341I	06/20/2017	yes	950.0000				
Calcium, Total	mg/L	CBL-341I	07/27/2017	yes	829.0000				
Calcium, Total	mg/L	CBL-3411	09/11/2017	yes	848.0000				
Calcium, Total	mg/L	CBL-3411	02/08/2018	yes	810.0000				
Calcium, Total	mg/L	CBL-3411	08/24/2018	yes	824.0000				
Calcium, Total		CBL-3411	01/22/2019		782.0000				
	mg/L			yes					
Calcium, Total	mg/L	CBL-341I	07/31/2019	yes	714.0000				
Calcium, Total	mg/L	CBL-341I	01/30/2020	yes	767.0000				
Calcium, Total	mg/L	CBL-341I	09/17/2020	yes	814.0000				
Calcium, Total	mg/L	CBL-341I	01/27/2021	yes	874.0000				
Calcium, Total	mg/L	CBL-341I	07/22/2021	yes	852.0000				
Calcium, Total	mg/L	CBL-341I	01/27/2022	yes	1040.0000				
Calcium, Total	mg/L	CBL-341I	07/28/2022	yes	704.0000				
Calcium, Total	mg/L	CBL-341I	01/26/2023		797.0000		844.2222		
Calcium, Total	mg/L	CBL-341I	07/19/2023		710.0000		844.2222		
Calcium, Total	mg/L	CBL-341I	01/29/2024		875.0000		844.2222		
Calcium, Total	mg/L	CBL-341I	07/22/2024		801.0000		844.2222		
Chloride	mg/L	CBL-301I	01/21/2016	yes	2300.0000				
Chloride	mg/L	CBL-301I	05/04/2016	yes	2160.0000				
Chloride	mg/L	CBL-301I	07/27/2016	yes	2290.0000				
Chloride	mg/L	CBL-301I	10/24/2016	yes	2250.0000				
Chloride	mg/L	CBL-301I	01/23/2017	yes	3200.0000				
Chloride	mg/L	CBL-301I	03/22/2017	yes	2390.0000				
Chloride	mg/L	CBL-301I	05/18/2017	yes	2420.0000				
Chloride	mg/L	CBL-301I	07/26/2017	yes	2500.0000				
Chloride	mg/L	CBL-301I	02/08/2018	yes	2480.0000				
Chloride	mg/L	CBL-301I	07/25/2018	yes	1330.0000				
Chloride	mg/L	CBL-301I	01/17/2019	ves	619.0000	yes			*
Chloride	mg/L	CBL-301I	05/02/2019	yes	1910.0000	,			
Chloride	mg/L	CBL-301I	07/31/2019	yes	2240.0000				
Chloride	mg/L	CBL-301I	01/28/2020	yes	2360.0000				
Chloride	mg/L	CBL-301I	09/17/2020	yes	2270.0000				
Chloride	mg/L	CBL-3011	01/26/2021	yes	2420.0000				
Chloride	mg/L	CBL-3011	07/20/2021	yes	2590.0000				
Chloride	mg/L	CBL-3011	01/26/2022	yes	2440.0000				
Chloride	mg/L	CBL-3011	07/27/2022	yes	1840.0000				
Chloride		CBL-3011	01/27/2022	yes	1960.0000		2299.4444		
Chloride	mg/L		08/02/2023		2220.0000		2299.4444		
Chionae	mg/L	CBL-301I	00/02/2023		2220.0000		2299.4444		

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Chloride	mg/L	CBL-301I	01/29/2024		2270.0000		2299.4444		
Chloride	mg/L	CBL-301I	07/23/2024		2350.0000		2299.4444		
Chloride	mg/L	CBL-302I	01/22/2016	yes	2190.0000				
Chloride	mg/L	CBL-302I	05/04/2016	yes	2130.0000				
Chloride	mg/L	CBL-302I	07/27/2016	yes	2210.0000				
Chloride	mg/L	CBL-302I	10/24/2016	yes	2170.0000				
Chloride	mg/L	CBL-302I	01/23/2017	yes	2080.0000				
Chloride	mg/L	CBL-302I	03/22/2017	yes	2050.0000				
Chloride	mg/L	CBL-302I	05/16/2017	yes	2230.0000				
Chloride	mg/L	CBL-302I	07/27/2017	yes	2040.0000				
Chloride	mg/L	CBL-302I	02/08/2018	yes	2080.0000				
Chloride	mg/L	CBL-302I	07/27/2018	yes	1980.0000				
Chloride	mg/L	CBL-302I	01/22/2019	yes	1960.0000				
Chloride	mg/L	CBL-302I	07/31/2019	yes	1540.0000				
Chloride	mg/L	CBL-3021	01/31/2019	yes	1540.0000				
Chloride	mg/L	CBL-3021	09/17/2020		1410.0000				
Chloride		CBL-302I	01/28/2021	yes	1370.0000				
	mg/L			yes					
Chloride	mg/L	CBL-302I	07/21/2021	yes	1380.0000				
Chloride	mg/L	CBL-302I	01/27/2022	yes	1310.0000				
Chloride	mg/L	CBL-302I	07/28/2022	yes	1300.0000		1001 0007		
Chloride	mg/L	CBL-302I	01/26/2023		1460.0000		1831.6667		
Chloride	mg/L	CBL-302I	07/18/2023		1330.0000		1831.6667		
Chloride	mg/L	CBL-302I	01/29/2024		1440.0000		1831.6667		
Chloride	mg/L	CBL-302I	07/22/2024		1650.0000		1831.6667		
Chloride	mg/L	CBL-306I	01/21/2016	yes	155.0000				
Chloride	mg/L	CBL-306I	05/04/2016	yes	20.0000	yes			*
Chloride	mg/L	CBL-306I	07/26/2016	yes	114.0000	yes			*
Chloride	mg/L	CBL-306I	10/24/2016	yes	330.0000				
Chloride	mg/L	CBL-306I	01/19/2017	yes	197.0000				
Chloride	mg/L	CBL-306I	03/22/2017	yes	231.0000				
Chloride	mg/L	CBL-306I	05/18/2017	yes	289.0000				
Chloride	mg/L	CBL-306I	07/27/2017	yes	350.0000				
Chloride	mg/L	CBL-306I	02/08/2018	yes	385.0000				
Chloride	mg/L	CBL-306I	07/27/2018	yes	283.0000				
Chloride	mg/L	CBL-306I	01/16/2019	yes	215.0000				
Chloride	mg/L	CBL-306I	07/31/2019	yes	538.0000	yes			*
Chloride	mg/L	CBL-306I	08/23/2019	yes	318.0000	,			
Chloride	mg/L	CBL-306I	01/29/2020	yes	445.0000				
Chloride	mg/L	CBL-306I	09/19/2020	yes	420.0000				
Chloride	mg/L	CBL-306I	01/28/2021	yes	292.0000				
Chloride	mg/L	CBL-306I	07/21/2021	yes	255.0000				
Chloride	mg/L	CBL-306I	01/27/2022	yes	384.0000				
Chloride	mg/L	CBL-306I	07/28/2022	yes	261.0000				
Chloride	mg/L	CBL-306I	01/26/2023	yes	148.0000		300.6250		
Chloride		CBL-306I	07/18/2023		336.0000		300.6250		
	mg/L								
Chloride	mg/L	CBL-3061	01/29/2024		153.0000		300.6250		
Chloride	mg/L	CBL-306I	07/23/2024		10.2000		300.6250		
Chloride	mg/L	CBL-308I	01/22/2016	yes	2760.0000				
Chloride	mg/L	CBL-308I	05/04/2016	yes	2580.0000				
Chloride	mg/L	CBL-308I	07/26/2016	yes	2680.0000				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Chloride	mg/L	CBL-308I	10/24/2016	yes	2870.0000				
Chloride	mg/L	CBL-308I	01/19/2017	yes	2360.0000				
Chloride	mg/L	CBL-308I	03/22/2017	yes	2530.0000				
Chloride	mg/L	CBL-308I	05/16/2017	yes	2740.0000				
Chloride	mg/L	CBL-308I	07/26/2017	yes	2760.0000				
Chloride	mg/L	CBL-308I	02/06/2018	yes	2750.0000				
Chloride	mg/L	CBL-308I	07/25/2018	yes	2680.0000				
Chloride	mg/L	CBL-308I	01/18/2019	yes	2240.0000				
Chloride	mg/L	CBL-308I	07/31/2019	yes	2290.0000				
Chloride	mg/L	CBL-308I	01/29/2020	yes	2110.0000				
Chloride	mg/L	CBL-308I	09/18/2020	yes	2410.0000				
Chloride	mg/L	CBL-308I	01/28/2021	yes	2200.0000				
Chloride	mg/L	CBL-308I	07/21/2021	yes	1780.0000				
Chloride	mg/L	CBL-308I	01/27/2022	yes	2020.0000				
Chloride	mg/L	CBL-308I	07/27/2022	yes	2470.0000				
Chloride	mg/L	CBL-308I	01/26/2023	, , , ,	2570.0000		2457.2222		
Chloride	mg/L	CBL-308I	07/18/2023		1840.0000		2457.2222		
Chloride	mg/L	CBL-308I	01/30/2024		1790.0000		2457.2222		
Chloride	mg/L	CBL-308I	07/22/2024		2250.0000		2457.2222		
Chloride	mg/L	CBL-341I	01/23/2017	yes	1600.0000		2401.2222		
Chloride	mg/L	CBL-3411	02/23/2017	yes	2000.0000				
Chloride	mg/L	CBL-3411	03/22/2017		1780.0000				
Chloride		CBL-3411	04/20/2017	yes	1770.0000				
Chloride	mg/L	CBL-3411	05/16/2017	yes	1900.0000				
Chloride	mg/L	CBL-3411	06/20/2017	yes	1820.0000				
Chloride	mg/L			yes					
	mg/L	CBL-341I	07/27/2017	yes	1970.0000				
Chloride	mg/L	CBL-341I	09/11/2017	yes	1710.0000				
Chloride	mg/L	CBL-341I	02/08/2018	yes	2110.0000				
Chloride	mg/L	CBL-341I	08/24/2018	yes	1910.0000				
Chloride	mg/L	CBL-341I	01/22/2019	yes	1790.0000				
Chloride	mg/L	CBL-341I	07/31/2019	yes	1650.0000				
Chloride	mg/L	CBL-341I	01/30/2020	yes	1780.0000				
Chloride	mg/L	CBL-341I	09/17/2020	yes	1700.0000				
Chloride	mg/L	CBL-341I	01/27/2021	yes	1800.0000				
Chloride	mg/L	CBL-341I	07/22/2021	yes	1750.0000				
Chloride	mg/L	CBL-341I	01/27/2022	yes	1810.0000				
Chloride	mg/L	CBL-341I	07/28/2022	yes	1690.0000				
Chloride	mg/L	CBL-341I	01/26/2023		1660.0000		1807.7778		
Chloride	mg/L	CBL-341I	07/19/2023		1530.0000		1807.7778		
Chloride	mg/L	CBL-341I	01/29/2024		1700.0000		1807.7778		
Chloride	mg/L	CBL-341I	07/22/2024		1960.0000		1863.1450		
Fluoride	mg/L	CBL-301I	01/21/2016	yes	0.2500	ND		0.5000	***
Fluoride	mg/L	CBL-301I	05/04/2016	yes	0.5000	ND			
Fluoride	mg/L	CBL-301I	07/27/2016	yes	0.5000	ND			
Fluoride	mg/L	CBL-301I	10/24/2016	yes	0.2500	ND		0.5000	***
Fluoride	mg/L	CBL-301I	01/23/2017	yes	0.3120				
Fluoride	mg/L	CBL-301I	03/22/2017	yes	0.5000	ND			
Fluoride	mg/L	CBL-301I	05/18/2017	yes	0.5000	ND			
Fluoride	mg/L	CBL-301I	07/26/2017	yes	0.5000	ND			
Fluoride	mg/L	CBL-301I	02/08/2018	yes	0.5000	ND			

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Fluoride	mg/L	CBL-301I	07/25/2018	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	01/17/2019	yes	0.2190					
Fluoride	mg/L	CBL-301I	05/02/2019	yes	0.1120					
Fluoride	mg/L	CBL-301I	07/31/2019	yes	0.0510					
Fluoride	mg/L	CBL-301I	01/28/2020	yes	0.1300					
Fluoride	mg/L	CBL-301I	09/17/2020	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-301I	01/26/2021	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	07/20/2021	yes	2.6800					
Fluoride	mg/L	CBL-301I	09/07/2021	yes	0.5000	ND				
Fluoride	mg/L	CBL-301I	01/26/2022	yes	0.0500	ND			0.5000	***
Fluoride	mg/L	CBL-301I	07/27/2022	yes	0.1560				0.0000	
Fluoride	mg/L	CBL-301I	01/25/2023	, , ,	1.7200			1.3175		
Fluoride	mg/L	CBL-301I	03/07/2023		0.0500	ND		0.5080		
Fluoride	mg/L	CBL-301I	08/02/2023		0.0540	110		0.5080		
Fluoride	mg/L	CBL-301I	01/29/2024		0.1000	ND		0.5080		
Fluoride	mg/L	CBL-3011	07/23/2024		0.1000	ND		0.5080		
Fluoride	mg/L	CBL-3011	01/23/2024	yes	0.2500	ND		0.0000	0.5000	***
Fluoride	mg/L	CBL-3021	05/04/2016	yes	0.5000	ND			0.5000	
Fluoride	mg/L	CBL-3021	07/27/2016	yes	0.5000	ND				
Fluoride	mg/L	CBL-3021	10/24/2016	yes	0.2500	ND			0.5000	***
Fluoride		CBL-3021	01/23/2017		0.2300	ND			0.5000	
Fluoride	mg/L	CBL-3021	03/22/2017	yes	0.5000	ND				
	mg/L			yes						
Fluoride	mg/L	CBL-302I	05/16/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	07/27/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	02/08/2018	yes	0.1120	ND				
Fluoride	mg/L	CBL-302I	07/27/2018	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	01/22/2019	yes	0.0402					
Fluoride	mg/L	CBL-302I	07/31/2019	yes	0.0605					
Fluoride	mg/L	CBL-302I	01/30/2020	yes	0.1930	NID			0.5000	***
Fluoride	mg/L	CBL-302I	09/17/2020	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-302I	01/28/2021	yes	0.5000	ND				
Fluoride	mg/L	CBL-302I	07/21/2021	yes	2.2500				0.5000	***
Fluoride	mg/L	CBL-302I	09/07/2021	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-302I	01/27/2022	yes	0.0500	ND			0.5000	***
Fluoride	mg/L	CBL-302I	07/28/2022	yes	0.1650					
Fluoride	mg/L	CBL-302I	01/26/2023		0.5000	ND		0.4817		
Fluoride	mg/L	CBL-302I	07/18/2023		1.7600			1.4133		
Fluoride	mg/L	CBL-302I	01/29/2024		0.1000	ND		0.5849		
Fluoride	mg/L	CBL-302I	07/22/2024		0.1010			0.4817		
Fluoride	mg/L	CBL-306I	01/21/2016	yes	2.5000					
Fluoride	mg/L	CBL-306I	05/04/2016	yes	1.0000					
Fluoride	mg/L	CBL-306I	07/26/2016	yes	1.3700					
Fluoride	mg/L	CBL-306I	10/24/2016	yes	2.3800					
Fluoride	mg/L	CBL-306I	01/19/2017	yes	1.8500					1.
Fluoride	mg/L	CBL-306I	03/22/2017	yes	12.6000		yes			*
Fluoride	mg/L	CBL-306I	05/18/2017	yes	2.2000					
Fluoride	mg/L	CBL-306I	07/27/2017	yes	2.9100					
Fluoride	mg/L	CBL-306I	02/08/2018	yes	2.8100					
Fluoride	mg/L	CBL-306I	07/27/2018	yes	2.9500					
Fluoride	mg/L	CBL-306I	01/16/2019	yes	1.9800					

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Out	lier	CUSUM	Adjusted	
Fluoride	mg/L	CBL-306I	07/31/2019	yes	9.2600	ye	es			*
Fluoride	mg/L	CBL-306I	08/23/2019	yes	2.6600	1				
Fluoride	mg/L	CBL-306I	01/29/2020	yes	2.8300					
Fluoride	mg/L	CBL-306I	09/19/2020	yes	2.7200					
Fluoride	mg/L	CBL-306I	01/28/2021	yes	2.9000					
Fluoride	mg/L	CBL-306I	07/21/2021	yes	2.4200					
Fluoride	mg/L	CBL-306I	01/27/2022	yes	2.9900					
Fluoride	mg/L	CBL-306I	07/28/2022	yes	2.2600					
Fluoride	mg/L	CBL-306I	01/26/2023	1	1.9200			2.3959		
Fluoride	mg/L	CBL-306I	07/18/2023		2.6600			2.3959		
Fluoride	mg/L	CBL-306I	01/29/2024		1.4900			2.3959		
Fluoride	mg/L	CBL-306I	07/23/2024		0.8230			2.3959		
Fluoride	mg/L	CBL-308I	01/22/2016	yes	1.4900					
Fluoride	mg/L	CBL-308I	05/04/2016	yes	2.3000					
Fluoride	mg/L	CBL-308I	07/26/2016	yes	1.6400					
Fluoride	mg/L	CBL-308I	10/24/2016	yes	1.5900					
Fluoride	mg/L	CBL-308I	01/19/2017	yes	1.3300					
Fluoride	mg/L	CBL-308I	03/22/2017	yes	9.0500	ye	20			*
Fluoride	mg/L	CBL-308I	05/16/2017	yes	1.7000	"	,3			
Fluoride	mg/L	CBL-308I	07/26/2017	yes	1.9000					
Fluoride		CBL-308I			1.7600					
Fluoride	mg/L		02/06/2018	yes	2.1000					
	mg/L	CBL-308I	07/25/2018	yes						
Fluoride	mg/L	CBL-308I	01/18/2019	yes	1.6800					
Fluoride	mg/L	CBL-308I	07/31/2019	yes	1.6200					
Fluoride	mg/L	CBL-308I	01/29/2020	yes	1.6000					
Fluoride	mg/L	CBL-308I	09/18/2020	yes	1.3300					
Fluoride	mg/L	CBL-308I	01/28/2021	yes	1.4400					
Fluoride	mg/L	CBL-308I	07/21/2021	yes	1.7400					
Fluoride	mg/L	CBL-308I	01/27/2022	yes	1.7500					
Fluoride	mg/L	CBL-308I	07/27/2022	yes	1.4300					
Fluoride	mg/L	CBL-308I	01/26/2023		0.5000	ND		1.6706		
Fluoride	mg/L	CBL-308I	07/18/2023		1.8600			1.6706		
Fluoride	mg/L	CBL-308I	01/30/2024		1.2600			1.6706		
Fluoride	mg/L	CBL-308I	07/22/2024		0.8640			1.6706		
Fluoride	mg/L	CBL-341I	01/23/2017	yes	0.5300					
Fluoride	mg/L	CBL-341I	02/23/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-341I	03/22/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-341I	04/20/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-341I	05/16/2017	yes	0.5000	ND				
Fluoride	mg/L	CBL-341I	06/20/2017	yes	0.3350					
Fluoride	mg/L	CBL-341I	07/27/2017	yes	0.0550					
Fluoride	mg/L	CBL-341I	09/11/2017	yes	0.3670					
Fluoride	mg/L	CBL-341I	02/08/2018	yes	0.1060					
Fluoride	mg/L	CBL-341I	08/24/2018	yes	0.1140					
Fluoride	mg/L	CBL-341I	01/22/2019	yes	0.0546					
Fluoride	mg/L	CBL-341I	07/31/2019	yes	0.1000					
Fluoride	mg/L	CBL-3411	01/30/2020	yes	0.1530					
Fluoride	mg/L	CBL-3411	09/17/2020	yes	0.2500	ND			0.5000	***
Fluoride		CBL-3411	01/27/2021		0.5000	ND ND			0.5000	
Fluoride	mg/L mg/L	CBL-3411	07/22/2021	yes ves	1.1600	ו טאו				
i iuonae	IIIg/L	ODL-34 II	0112212021	yes	1.1000					<u> </u>

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Fluoride	mg/L	CBL-341I	09/07/2021	yes	0.2500	ND			0.5000	***
Fluoride	mg/L	CBL-341I	01/27/2022	yes	0.0500	ND			0.5000	***
Fluoride	mg/L	CBL-341I	07/28/2022	yes	0.1410					
Fluoride	mg/L	CBL-341I	01/26/2023	,	0.2500	ND		0.3745		
Fluoride	mg/L	CBL-341I	07/19/2023		1.1200			0.9191		
Fluoride	mg/L	CBL-341I	01/29/2024		0.1000	ND		0.3745		
Fluoride	mg/L	CBL-341I	07/22/2024		0.1000	ND		0.3745		
pH	S.U.	CBL-301I	01/21/2016	yes	6.3300					
pH	S.U.	CBL-301I	05/04/2016	yes	6.2600					
pH	S.U.	CBL-301I	07/27/2016	yes	5.9500					
pH	S.U.	CBL-301I	10/24/2016	yes	6.2300					
pH	S.U.	CBL-301I	01/23/2017	yes	6.2600					
pH	S.U.	CBL-301I	03/22/2017	yes	6.3100					
pH	S.U.	CBL-301I	05/18/2017	yes	5.9500					
pH	S.U.	CBL-301I	07/26/2017	yes	6.0200					
pH	S.U.	CBL-301I	02/08/2018	yes	6.1700					
pH	S.U.	CBL-301I	07/25/2018	yes	6.0400					
pH	S.U.	CBL-3011	01/17/2019	yes	7.1600					
pH	S.U.	CBL-3011	05/02/2019	yes	6.1400					
pH	S.U.	CBL-3011	07/31/2019		6.1900					
pH	S.U.	CBL-3011		yes	6.2600					
рп	S.U.	CBL-3011	01/28/2020	yes	6.1300					
pH			09/17/2020	yes	6.0600					
pH	S.U.	CBL-301I	01/26/2021	yes						
pH	S.U.	CBL-301I	07/20/2021	yes	6.1300					
pH	S.U.	CBL-301I	09/07/2021	yes	6.1400					
pH	S.U.	CBL-301I	01/26/2022	yes	6.2700					
pH	S.U.	CBL-301I	07/27/2022	yes	6.0800					
pH	S.U.	CBL-301I	08/30/2022	yes	6.1400					
pH	S.U.	CBL-301I	10/25/2022	yes	6.2100					
pH	S.U.	CBL-301I	01/25/2023		6.3400			6.2014		
pH	S.U.	CBL-301I	08/02/2023		6.2100			6.2014		
pH	S.U.	CBL-301I	01/29/2024		6.3500			6.2014		
pH	S.U.	CBL-301I	07/23/2024		6.4500			6.2703		
pH	S.U.	CBL-302I	01/22/2016	yes	6.2900					
pH	S.U.	CBL-302I	05/04/2016	yes	6.0100					
pH	S.U.	CBL-302I	07/27/2016	yes	5.1700					
pH	S.U.	CBL-302I	10/24/2016	yes	7.7500					
pH	S.U.	CBL-302I	01/23/2017	yes	5.3600					
pH	S.U.	CBL-302I	03/22/2017	yes	5.4000					
pH	S.U.	CBL-302I	05/16/2017	yes	4.9400					
pH	S.U.	CBL-302I	07/27/2017	yes	6.2000					
pH	S.U.	CBL-302I	02/08/2018	yes	6.2100					
pH	S.U.	CBL-302I	07/27/2018	yes	5.7700					
pH	S.U.	CBL-302I	01/22/2019	yes	6.4400					
pH	S.U.	CBL-302I	07/31/2019	yes	6.1500					
pH	S.U.	CBL-302I	01/30/2020	yes	6.3400					
pH	S.U.	CBL-302I	09/17/2020	yes	6.2000					
pH	S.U.	CBL-302I	01/28/2021	yes	6.2100					
pH	S.U.	CBL-302I	07/21/2021	yes	6.0600					
pH	S.U.	CBL-3021	09/07/2021	ves	6.2800					
рп	U.U.	ODE-0021	1 03/01/2021	l yes	0.2000		l			

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
pH	S.U.	CBL-302I	01/27/2022	yes	6.3200				
pH	S.U.	CBL-302I	07/28/2022	yes	6.2100				
pH	S.U.	CBL-302I	01/26/2023	,	6.3300		6.0689		
pH	S.U.	CBL-302I	07/18/2023		6.2000		6.0689		
pH	S.U.	CBL-302I	01/29/2024		6.2800		6.0689		
pH	S.U.	CBL-302I	07/22/2024		6.4100		6.0689		
pH	S.U.	CBL-306I	01/21/2016	yes	7.0900				
pH	S.U.	CBL-306I	05/04/2016	yes	6.6900				
pH	S.U.	CBL-306I	07/26/2016	yes	6.9500				
pH	S.U.	CBL-306I	10/24/2016	yes	6.7200				
pH	S.U.	CBL-306I	01/19/2017	yes	7.2900				
pH	S.U.	CBL-306I	03/22/2017	yes	4.4100				
pH	S.U.	CBL-306I	05/18/2017	yes	5.6100				
pH	S.U.	CBL-306I	07/27/2017	yes	6.9400				
pH	S.U.	CBL-306I	02/08/2018	yes	6.6700				
pH	S.U.	CBL-306I	07/27/2018	yes	6.8600				
pH	S.U.	CBL-306I	01/16/2019	yes	6.7800				
pH	S.U.	CBL-306I	07/31/2019		6.9200				*
	S.U.	CBL-306I	08/23/2019	yes	6.8300	yes			
pH	S.U.			yes					
pH		CBL-306I	01/29/2020	yes	6.7000				
pH	S.U.	CBL-306I	09/19/2020	yes	7.1600				
pH	S.U.	CBL-306I	01/28/2021	yes	6.8400				
pH	S.U.	CBL-306I	07/21/2021	yes	6.5500				
pН	S.U.	CBL-306I	01/27/2022	yes	6.8700				
pH	S.U.	CBL-306I	07/28/2022	yes	6.7000				
pH	S.U.	CBL-306I	01/26/2023		7.3000		6.8073		
pH	S.U.	CBL-306I	07/18/2023		6.4900		6.6478		
pH	S.U.	CBL-306I	01/29/2024		6.5500		6.6478		
рН	S.U.	CBL-306I	07/23/2024		6.5400		6.6478		
pH	S.U.	CBL-308I	01/22/2016	yes	6.3600				
pH	S.U.	CBL-308I	05/04/2016	yes	6.1300				
pH	S.U.	CBL-308I	07/26/2016	yes	5.9500				
pH	S.U.	CBL-308I	10/24/2016	yes	6.2700				
pH	S.U.	CBL-308I	01/19/2017	yes	6.8300				
pH	S.U.	CBL-308I	03/22/2017	yes	6.2700				
pH	S.U.	CBL-308I	05/16/2017	yes	5.5400				
pH	S.U.	CBL-308I	07/26/2017	yes	6.2700				
pH	S.U.	CBL-308I	02/06/2018	yes	6.2600				
pH	S.U.	CBL-308I	07/25/2018	yes	6.0700				
pH	S.U.	CBL-308I	01/18/2019	yes	6.3900				
pH	S.U.	CBL-308I	07/31/2019	yes	6.2500				
pH	S.U.	CBL-308I	01/29/2020	yes	6.3700				
pH	S.U.	CBL-308I	09/18/2020	yes	6.2200				
pH	S.U.	CBL-308I	01/28/2021	yes	6.2600				
pH	S.U.	CBL-308I	07/21/2021	yes	6.1600				
pH	S.U.	CBL-308I	01/21/2021		6.3600				
рH	S.U.	CBL-308I	07/27/2022	yes	6.2300				
				yes			6.2328		
pH	S.U.	CBL-308I	01/26/2023		6.4100				
pH	S.U.	CBL-308I	07/18/2023		6.2600		6.2328		
pH	S.U.	CBL-308I	01/30/2024		6.5700		6.3844		<u> </u>

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
pH	S.U.	CBL-308I	07/22/2024		6.5300		6.4960		
pH	S.U.	CBL-341I	01/23/2017	yes	5.7400				
pH	S.U.	CBL-341I	02/23/2017	yes	5.2300	yes			*
рН	S.U.	CBL-341I	03/22/2017	yes	5.7200	'			
pH	S.U.	CBL-341I	04/20/2017	yes	5.7300				
pH	S.U.	CBL-341I	05/16/2017	yes	5.5400				
pН	S.U.	CBL-341I	06/20/2017	yes	6.1900				
pН	S.U.	CBL-341I	07/27/2017	yes	6.2100				
pH	S.U.	CBL-3411	09/11/2017	yes	6.1000				
рH	S.U.	CBL-3411	02/08/2018	yes	6.1800				
pΠ									
pH	S.U. S.U.	CBL-341I CBL-341I	08/24/2018	yes	5.8200				
pH			01/22/2019	yes	6.3800				
pH	S.U.	CBL-341I	07/31/2019	yes	6.2300				
pH	S.U.	CBL-341I	01/30/2020	yes	6.2700				
pH	S.U.	CBL-341I	09/17/2020	yes	6.1400				1
pH	S.U.	CBL-341I	01/27/2021	yes	6.0600				
рН	S.U.	CBL-341I	07/22/2021	yes	5.9800				
pH	S.U.	CBL-341I	09/07/2021	yes	6.1800				
pН	S.U.	CBL-341I	01/27/2022	yes	6.2600				
pH	S.U.	CBL-341I	07/28/2022	yes	6.1600				
pH	S.U.	CBL-341I	01/26/2023	'	6.2800		6.1017		
pH	S.U.	CBL-341I	07/19/2023		6.2200		6.0939		
pН	S.U.	CBL-341I	01/29/2024		6.3800		6.2462		
рH	S.U.	CBL-341I	07/22/2024		6.3900		6.4084		
Sulfate	mg/L	CBL-301I	01/21/2016	yes	336.0000		0.1001		
Sulfate	mg/L	CBL-301I	05/04/2016	yes	311.0000				
Sulfate	mg/L	CBL-3011	07/27/2016	yes	336.0000				
Sulfate	mg/L	CBL-3011	10/24/2016	yes	326.0000				
Sulfate	mg/L	CBL-3011	01/23/2017		488.0000				
				yes					
Sulfate	mg/L	CBL-301I	03/22/2017	yes	337.0000				
Sulfate	mg/L	CBL-301I	05/18/2017	yes	342.0000				
Sulfate	mg/L	CBL-301I	07/26/2017	yes	381.0000				
Sulfate	mg/L	CBL-301I	02/08/2018	yes	344.0000				
Sulfate	mg/L	CBL-301I	07/25/2018	yes	196.0000				
Sulfate	mg/L	CBL-301I	01/17/2019	yes	104.0000	yes			*
Sulfate	mg/L	CBL-301I	05/02/2019	yes	398.0000				
Sulfate	mg/L	CBL-301I	07/31/2019	yes	332.0000				
Sulfate	mg/L	CBL-301I	01/28/2020	yes	349.0000				
Sulfate	mg/L	CBL-301I	09/17/2020	yes	350.0000				
Sulfate	mg/L	CBL-301I	01/26/2021	yes	374.0000				
Sulfate	mg/L	CBL-301I	07/20/2021	yes	419.0000				
Sulfate	mg/L	CBL-3011	01/26/2022	yes	406.0000				
Sulfate	mg/L	CBL-3011	07/27/2022	yes	285.0000				
Sulfate	mg/L	CBL-3011	01/25/2023	,00	1370.0000		1324.7798		**
Sulfate	mg/L	CBL-3011	03/07/2023		207.0000		350.5556		
	0								
Sulfate	mg/L	CBL-301I	08/02/2023		383.0000		350.5556		
Sulfate	mg/L	CBL-301I	01/29/2024		475.0000		429.7798		
Sulfate	mg/L	CBL-301I	07/23/2024		454.0000		488.0040		-
Sulfate	mg/L	CBL-302I	01/22/2016	yes	1020.0000				
Sulfate	mg/L	CBL-302I	05/04/2016	yes	993.0000				

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Sulfate	Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Sulfate mg/L CBL-302 01/23/2017 yes 1150.0000 Sulfate mg/L CBL-302 03/22/2017 yes 1120.0000 Sulfate mg/L CBL-302 03/22/2017 yes 1120.0000 Sulfate mg/L CBL-302 07/27/2017 yes 1120.0000 Sulfate mg/L CBL-302 07/27/2018 yes 1230.0000 Sulfate mg/L CBL-302 07/27/2018 yes 1240.0000 Sulfate mg/L CBL-302 07/27/2018 yes 1250.0000 Sulfate mg/L CBL-302 07/27/2018 yes 1250.0000 Sulfate mg/L CBL-302 07/27/2019 yes 1250.0000 Sulfate mg/L CBL-302 07/37/2020 yes 1250.0000 Sulfate mg/L CBL-302 07/37/2022 yes 1350.0000 Sulfate mg/L CBL-302 07/37/2022 yes 1350.0000 Sulfate mg/L CBL-302 07/38/2022 yes 1350.0000 Sulfate mg/L CBL-306 07/28/2023 1390.0000 1225.8850 Sulfate mg/L CBL-306 07/28/2023 1390.0000 1225.8850 Sulfate mg/L CBL-306 07/28/2023 1390.0000 1225.8850 Sulfate mg/L CBL-306 07/28/2016 yes 256.0000 yes Sulfate mg/L CBL-306 07/28/2016 yes 139.0000 Sulfate mg/L CBL-306 07/28/2019 yes 360.0000 Sulfate mg/L CBL-306 07/28/2019 yes 360.0000 Sulfate mg/L CBL-306 07/28/2019		mg/L			yes					
Sulfate		mg/L			yes					
Sulfate	Sulfate	mg/L	CBL-302I	01/23/2017	yes	1150.0000				
Sulfate	Sulfate	mg/L	CBL-302I	03/22/2017	yes	1120.0000				
Sulfate	Sulfate	mg/L	CBL-302I	05/16/2017	yes	1230.0000				
Sulfate	Sulfate		CBL-302I	07/27/2017	yes	1180.0000				
Sulfate	Sulfate		CBL-302I							
Sulfate	Sulfate		CBL-302I	07/27/2018		1390.0000				
Sulfate	Sulfate		CBL-302I	01/22/2019	ves	1250.0000				
Sulfate mg/L CBL-302 01/30/2020 yes 1350.0000 yes 1350.0000 yes 1350.0000 yes 1350.0000 yes 1280.0000 yes 1360.0000 yes 1	Sulfate									
Sulfate					,					
Sulfate										
Sulfate										
Sulfate										
Sulfate										
Sulfate										
Sulfate					yes			1304 4147		
Sulfate										
Sulfate										
Sulfate										
Sulfate					1/00			1300.0233		
Sulfate					,					*
Sulfate mg/L CBL-306I 10/24/2016 yes 432.0000 Sulfate mg/L CBL-306I 01/19/2017 yes 270.0000 Sulfate mg/L CBL-306I 03/22/2017 yes 340.0000 Sulfate mg/L CBL-306I 05/18/2017 yes 412.0000 Sulfate mg/L CBL-306I 07/27/2017 yes 513.0000 Sulfate mg/L CBL-306I 07/27/2018 yes 493.0000 Sulfate mg/L CBL-306I 07/27/2018 yes 493.0000 Sulfate mg/L CBL-306I 07/27/2018 yes 292.0000 Sulfate mg/L CBL-306I 07/31/2019 yes 292.0000 Sulfate mg/L CBL-306I 07/31/2019 yes 387.0000 Sulfate mg/L CBL-306I 07/29/2020 yes 561.0000 Sulfate mg/L CBL-306I 07/28/2021 yes 336.0000 Sulfate							yes			
Sulfate										
Sulfate mg/L orang/L o										
Sulfate mg/L CBL-306I 05/18/2017 yes 412.0000 Sulfate mg/L CBL-306I 07/27/2017 yes 513.0000 Sulfate mg/L CBL-306I 02/08/2018 yes 493.0000 Sulfate mg/L CBL-306I 07/27/2018 yes 406.0000 Sulfate mg/L CBL-306I 07/18/2019 yes 292.0000 Sulfate mg/L CBL-306I 07/18/2019 yes 387.0000 Sulfate mg/L CBL-306I 08/23/2019 yes 387.0000 Sulfate mg/L CBL-306I 01/29/2020 yes 561.0000 Sulfate mg/L CBL-306I 01/29/2020 yes 566.0000 Sulfate mg/L CBL-306I 07/21/2021 yes 336.0000 Sulfate mg/L CBL-306I 07/21/2022 yes 510.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate					,					
Sulfate										
Sulfate mg/L CBL-306I 02/08/2018 yes 493.0000 Sulfate mg/L CBL-306I 07/27/2018 yes 406.0000 Sulfate mg/L CBL-306I 07/31/2019 yes 292.0000 Sulfate mg/L CBL-306I 07/31/2019 yes 816.0000 yes Sulfate mg/L CBL-306I 08/23/2019 yes 387.0000 yes 387.0000 Sulfate mg/L CBL-306I 01/29/2020 yes 561.0000 yes 388.0000 yes 388.1765 yes 348.0000 yes 348.0000 yes 388.1765 <td></td>										
Sulfate mg/L CBL-306I 07/27/2018 yes 406.0000 Sulfate mg/L CBL-306I 01/16/2019 yes 292.0000 Sulfate mg/L CBL-306I 07/31/2019 yes 387.0000 Sulfate mg/L CBL-306I 08/23/2019 yes 387.0000 Sulfate mg/L CBL-306I 01/29/2020 yes 561.0000 Sulfate mg/L CBL-306I 01/28/2021 yes 388.0000 Sulfate mg/L CBL-306I 07/21/2021 yes 336.0000 Sulfate mg/L CBL-306I 07/21/2022 yes 510.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 07/18/2023 205.0000 388.1765 Sulfate mg/L CBL-306I 01/29/2024 266.0000 388.1765 Sulfate </td <td></td>										
Sulfate mg/L CBL-306I 01/16/2019 yes 292.0000 Sulfate mg/L CBL-306I 07/31/2019 yes 816.0000 Sulfate mg/L CBL-306I 08/23/2019 yes 387.0000 Sulfate mg/L CBL-306I 01/29/2020 yes 561.0000 Sulfate mg/L CBL-306I 01/29/2020 yes 506.0000 Sulfate mg/L CBL-306I 01/28/2021 yes 338.0000 Sulfate mg/L CBL-306I 01/27/2022 yes 510.0000 Sulfate mg/L CBL-306I 01/27/2022 yes 510.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 510.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 07/18/2023 205.0000 388.1765 Sulfate mg/L CBL-306I 07/23/2024 206.0000 388.1765 Sulfate </td <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>					,					
Sulfate mg/L CBL-306I 07/31/2019 yes 816.0000 yes * Sulfate mg/L CBL-306I 08/23/2019 yes 387.0000 yes 387.0000 Sulfate mg/L CBL-306I 01/29/2020 yes 561.0000 Sulfate mg/L CBL-306I 09/19/2020 yes 506.0000 Sulfate mg/L CBL-306I 07/21/2021 yes 338.0000 Sulfate mg/L CBL-306I 07/21/2021 yes 336.0000 Sulfate mg/L CBL-306I 07/21/2022 yes 510.0000 Sulfate Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate Sulfate mg/L CBL-306I 07/18/2023 205.0000 388.1765 Sulfate Sulfate mg/L CBL-306I 07/28/2024 266.0000 388.1765 Sulfate Sulfate mg/L CBL-308I 07/23/2024 70.7000 388.1765 Su										
Sulfate mg/L CBL-306I 08/23/2019 yes 387.0000 Sulfate mg/L CBL-306I 01/29/2020 yes 561.0000 Sulfate mg/L CBL-306I 09/19/2020 yes 506.0000 Sulfate mg/L CBL-306I 01/28/2021 yes 388.0000 Sulfate mg/L CBL-306I 07/21/2021 yes 336.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 510.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 510.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 07/18/2023 205.0000 388.1765 Sulfate mg/L CBL-306I 07/29/2024 266.0000 388.1765 Sulfate mg/L CBL-308I 01/29/2024 yes 1490.0000 Sulfate<										
Sulfate mg/L CBL-306I 01/29/2020 yes 561.0000 Sulfate mg/L CBL-306I 09/19/2020 yes 506.0000 Sulfate mg/L CBL-306I 01/28/2021 yes 388.0000 Sulfate mg/L CBL-306I 07/21/2021 yes 336.0000 Sulfate mg/L CBL-306I 01/27/2022 yes 510.0000 Sulfate mg/L CBL-306I 01/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 01/26/2023 205.0000 388.1765 Sulfate mg/L CBL-306I 01/26/2023 454.0000 388.1765 Sulfate mg/L CBL-306I 01/29/2024 266.0000 388.1765 Sulfate mg/L CBL-306I 07/23/2024 70.7000 388.1765 Sulfate mg/L CBL-308I 01/22/2016 yes 1490.0000 Sulfate mg/L CBL-308I 07/26/2016 yes 1490.0000 <t< td=""><td></td><td></td><td></td><td></td><td>yes</td><td></td><td>yes</td><td></td><td></td><td>*</td></t<>					yes		yes			*
Sulfate mg/L CBL-306I 09/19/2020 yes 506.0000 Sulfate mg/L CBL-306I 01/28/2021 yes 388.0000 Sulfate mg/L CBL-306I 07/21/2021 yes 336.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 510.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 07/28/2023 205.0000 388.1765 Sulfate mg/L CBL-306I 07/18/2023 454.0000 388.1765 Sulfate mg/L CBL-306I 07/28/2024 266.0000 388.1765 Sulfate mg/L CBL-308I 07/23/2024 70.7000 388.1765 Sulfate mg/L CBL-308I 07/22/2016 yes 1490.0000 Sulfate mg/L CBL-308I 07/26/2016 yes 1490.0000 <t< td=""><td></td><td></td><td></td><td></td><td>yes</td><td></td><td></td><td></td><td></td><td></td></t<>					yes					
Sulfate mg/L CBL-306I 01/28/2021 yes 388.0000 Sulfate mg/L CBL-306I 07/21/2021 yes 336.0000 Sulfate mg/L CBL-306I 01/27/2022 yes 510.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 07/18/2023 205.0000 388.1765 Sulfate mg/L CBL-306I 07/18/2023 454.0000 388.1765 Sulfate mg/L CBL-306I 07/23/2024 266.0000 388.1765 Sulfate mg/L CBL-308I 07/23/2024 70.7000 388.1765 Sulfate mg/L CBL-308I 07/23/2024 yes 1490.0000 Sulfate mg/L CBL-308I 05/04/2016 yes 1490.0000 Sulfate mg/L CBL-308I 07/26/2016 yes 1490.0000 <		mg/L			yes					
Sulfate mg/L mg/L mg/L cBL-306l 07/21/2021 yes 336.0000 yes 336.0					yes					
Sulfate mg/L CBL-306l 01/27/2022 yes 510.0000 Sulfate mg/L CBL-306l 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306l 01/26/2023 205.0000 388.1765 Sulfate mg/L CBL-306l 07/18/2023 454.0000 388.1765 Sulfate mg/L CBL-306l 07/29/2024 266.0000 388.1765 Sulfate mg/L CBL-306l 07/23/2024 70.7000 388.1765 Sulfate mg/L CBL-308l 01/22/2016 yes 1490.0000 Sulfate mg/L CBL-308l 05/04/2016 yes 1410.0000 Sulfate mg/L CBL-308l 07/26/2016 yes 1490.0000 Sulfate mg/L CBL-308l 01/24/2016 yes 1550.0000 Sulfate mg/L CBL-308l 01/19/2017 yes 1320.0000 Sulfate mg/L CBL-308l 03/22/2017 yes 1470.0000	Sulfate	mg/L	CBL-306I	01/28/2021	yes	388.0000				
Sulfate mg/L CBL-306I 07/28/2022 yes 348.0000 Sulfate mg/L CBL-306I 01/26/2023 205.0000 388.1765 Sulfate mg/L CBL-306I 07/18/2023 454.0000 388.1765 Sulfate mg/L CBL-306I 01/29/2024 266.0000 388.1765 Sulfate mg/L CBL-306I 07/23/2024 70.7000 388.1765 Sulfate mg/L CBL-308I 01/22/2016 yes 1490.0000 Sulfate mg/L CBL-308I 05/04/2016 yes 1410.0000 Sulfate mg/L CBL-308I 07/26/2016 yes 1490.0000 Sulfate mg/L CBL-308I 07/26/2016 yes 1550.0000 Sulfate mg/L CBL-308I 01/19/2017 yes 1320.0000 Sulfate mg/L CBL-308I 03/22/2017 yes 1470.0000	Sulfate	mg/L	CBL-306I	07/21/2021	yes	336.0000				
Sulfate mg/L CBL-306I 01/26/2023 205.0000 388.1765 Sulfate mg/L CBL-306I 07/18/2023 454.0000 388.1765 Sulfate mg/L CBL-306I 01/29/2024 266.0000 388.1765 Sulfate mg/L CBL-306I 07/23/2024 70.7000 388.1765 Sulfate mg/L CBL-308I 07/22/2016 yes 1490.0000 Sulfate mg/L CBL-308I 05/04/2016 yes 1490.0000 Sulfate mg/L CBL-308I 07/26/2016 yes 1490.0000 Sulfate mg/L CBL-308I 01/24/2016 yes 1550.0000 Sulfate mg/L CBL-308I 01/19/2017 yes 1320.0000 Sulfate mg/L CBL-308I 03/22/2017 yes 1470.0000	Sulfate	mg/L	CBL-306I	01/27/2022	yes	510.0000				
Sulfate mg/L bulfate CBL-306l bulfate 07/18/2023 bulfate 454.0000 bulfate 388.1765 bulfate Sulfate mg/L bulfate CBL-306l bulfate 07/23/2024 bulfate 70.7000 bulfate 388.1765 bulfate Sulfate mg/L bulfate CBL-308l bulfate 01/22/2016 bulfate yes 1490.0000 bulfate Sulfate mg/L bulfate CBL-308l bulfate 05/04/2016 bulfate yes 1490.0000 bulfate Sulfate mg/L bulfate CBL-308l bulfate 07/26/2016 bulfate yes 1550.0000 bulfate Sulfate mg/L bulfate CBL-308l bulfate 01/19/2017 bulfate yes 1320.0000 bulfate Sulfate mg/L bulfate CBL-308l bulfate 03/22/2017 bulfate yes 1470.0000 bulfate	Sulfate	mg/L	CBL-306I	07/28/2022	yes	348.0000				
Sulfate mg/L buffate CBL-306l buffate 01/29/2024 buffate 266.0000 buffate 388.1765 buffate Sulfate mg/L buffate CBL-308l buffate 01/22/2016 buffate yes buffate 1490.0000 buffate Sulfate mg/L buffate CBL-308l buffate 05/04/2016 buffate yes buffate 1490.0000 buffate Sulfate mg/L buffate CBL-308l buffate 07/26/2016 buffate yes buffate 1550.0000 buffate Sulfate mg/L buffate CBL-308l buffate 01/19/2017 buffate yes buffate 1320.0000 buffate Sulfate mg/L buffate CBL-308l buffate 03/22/2017 buffate 1470.0000 buffate	Sulfate	mg/L	CBL-306I	01/26/2023	,	205.0000		388.1765		
Sulfate mg/L brack CBL-306l brack 01/29/2024 brack 266.0000 brack 388.1765 brack Sulfate mg/L brack CBL-306l brack 07/23/2024 brack 70.7000 brack 388.1765 brack Sulfate mg/L brack CBL-308l brack 01/22/2016 brack yes brack 1490.0000 brack Sulfate mg/L brack CBL-308l brack 07/26/2016 brack yes brack 1490.0000 brack Sulfate mg/L brack CBL-308l brack 10/24/2016 brack yes brack 1550.0000 brack Sulfate mg/L brack CBL-308l brack 01/19/2017 brack yes brack 1320.0000 brack Sulfate mg/L brack CBL-308l brack 03/22/2017 brack yes brack 1470.0000 brack	Sulfate					454.0000		388.1765		
Sulfate mg/L CBL-306I 07/23/2024 70.7000 388.1765 Sulfate mg/L CBL-308I 01/22/2016 yes 1490.0000 Sulfate mg/L CBL-308I 05/04/2016 yes 1410.0000 Sulfate mg/L CBL-308I 07/26/2016 yes 1490.0000 Sulfate mg/L CBL-308I 10/24/2016 yes 1550.0000 Sulfate mg/L CBL-308I 01/19/2017 yes 1320.0000 Sulfate mg/L CBL-308I 03/22/2017 yes 1470.0000										
Sulfate mg/L CBL-308I 01/22/2016 yes 1490.0000 Sulfate mg/L CBL-308I 05/04/2016 yes 1410.0000 Sulfate mg/L CBL-308I 07/26/2016 yes 1490.0000 Sulfate mg/L CBL-308I 10/24/2016 yes 1550.0000 Sulfate mg/L CBL-308I 01/19/2017 yes 1320.0000 Sulfate mg/L CBL-308I 03/22/2017 yes 1470.0000	Sulfate									
Sulfate mg/L CBL-308I 05/04/2016 yes 1410.0000 Sulfate mg/L CBL-308I 07/26/2016 yes 1490.0000 Sulfate mg/L CBL-308I 10/24/2016 yes 1550.0000 Sulfate mg/L CBL-308I 01/19/2017 yes 1320.0000 Sulfate mg/L CBL-308I 03/22/2017 yes 1470.0000					yes					
Sulfate mg/L CBL-308I 07/26/2016 yes 1490.0000 Sulfate mg/L CBL-308I 10/24/2016 yes 1550.0000 Sulfate mg/L CBL-308I 01/19/2017 yes 1320.0000 Sulfate mg/L CBL-308I 03/22/2017 yes 1470.0000	Sulfate		CBL-308I	05/04/2016	,	1410.0000				
Sulfate mg/L CBL-308l 10/24/2016 yes 1550.0000 Sulfate mg/L CBL-308l 01/19/2017 yes 1320.0000 Sulfate mg/L CBL-308l 03/22/2017 yes 1470.0000										
Sulfate mg/L CBL-308I 01/19/2017 yes 1320.0000 Sulfate mg/L CBL-308I 03/22/2017 yes 1470.0000										
Sulfate mg/L CBL-308I 03/22/2017 yes 1470.0000										
Sulfate mg/L CBL-308I 05/16/2017 yes 1580.0000										

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Sulfate	mg/L	CBL-308I	07/26/2017	yes	1550.0000				
Sulfate	mg/L	CBL-308I	02/06/2018	yes	1570.0000				
Sulfate	mg/L	CBL-308I	07/25/2018	yes	1540.0000				
Sulfate	mg/L	CBL-308I	01/18/2019	yes	1520.0000				
Sulfate	mg/L	CBL-308I	07/31/2019	yes	1420.0000				
Sulfate	mg/L	CBL-308I	01/29/2020	yes	1340.0000				
Sulfate	mg/L	CBL-308I	09/18/2020	yes	1310.0000				
Sulfate	mg/L	CBL-308I	01/28/2021	yes	1340.0000				
Sulfate	mg/L	CBL-308I	07/21/2021	yes	1240.0000				
Sulfate	mg/L	CBL-308I	01/27/2022	yes	1310.0000				
Sulfate	mg/L	CBL-308I	07/27/2022	yes	1190.0000				
Sulfate	mg/L	CBL-308I	01/26/2023	,	445.0000		1424.4444		
Sulfate	mg/L	CBL-308I	07/18/2023		1290.0000		1424.4444		
Sulfate	mg/L	CBL-308I	01/30/2024		1360.0000		1424.4444		
Sulfate	mg/L	CBL-308I	07/22/2024		1430.0000		1424.4444		
Sulfate	mg/L	CBL-341I	01/23/2017	yes	307.0000				
Sulfate	mg/L	CBL-341I	02/23/2017	yes	404.0000				
Sulfate	mg/L	CBL-341I	03/22/2017	yes	346.0000				
Sulfate	mg/L	CBL-341I	04/20/2017	yes	336.0000				
Sulfate	mg/L	CBL-341I	05/16/2017	yes	369.0000				
Sulfate	mg/L	CBL-341I	06/20/2017	yes	363.0000				
Sulfate	mg/L	CBL-341I	07/27/2017	yes	419.0000				
Sulfate	mg/L	CBL-341I	09/11/2017	yes	354.0000				
Sulfate	mg/L	CBL-341I	02/08/2018	ves	383.0000				
Sulfate	mg/L	CBL-341I	08/24/2018	yes	376.0000				
Sulfate	mg/L	CBL-341I	01/22/2019	yes	358.0000				
Sulfate	mg/L	CBL-341I	07/31/2019	yes	329.0000				
Sulfate	mg/L	CBL-341I	01/30/2020	yes	351.0000				
Sulfate	mg/L	CBL-341I	09/17/2020	yes	336.0000				
Sulfate	mg/L	CBL-341I	01/27/2021	yes	324.0000				
Sulfate	mg/L	CBL-341I	07/22/2021	yes	316.0000				
Sulfate	mg/L	CBL-341I	01/27/2022	yes	320.0000				
Sulfate	mg/L	CBL-341I	07/28/2022	yes	296.0000				
Sulfate	mg/L	CBL-341I	01/26/2023	,,,,	309.0000		349.2778		
Sulfate	mg/L	CBL-3411	07/19/2023		259.0000		349.2778		
Sulfate	mg/L	CBL-3411	01/29/2024		346.0000		349.2778		
Sulfate	mg/L	CBL-3411	07/22/2024		367.0000		349.2778		
Total Dissolved Solids	mg/L	CBL-301I	01/21/2016	yes	4380.0000		040.2770		
Total Dissolved Solids	mg/L	CBL-3011	05/04/2016	yes	5050.0000				
Total Dissolved Solids	mg/L	CBL-3011	07/27/2016	yes	6020.0000				
Total Dissolved Solids	mg/L	CBL-301I	10/24/2016	yes	4570.0000				
Total Dissolved Solids	mg/L	CBL-3011	01/23/2017	yes	6140.0000				
Total Dissolved Solids	mg/L	CBL-3011	03/22/2017	yes	6570.0000				
Total Dissolved Solids	mg/L	CBL-3011	05/18/2017	yes	6430.0000				
Total Dissolved Solids	mg/L	CBL-3011	07/26/2017	yes	4290.0000				
Total Dissolved Solids	mg/L	CBL-3011	02/08/2018		5120.0000				
Total Dissolved Solids	mg/L	CBL-3011	07/25/2018	yes yes	5390.0000				
Total Dissolved Solids	mg/L	CBL-3011	01/17/2019	yes	1460.0000	\ \vec{vec}			*
Total Dissolved Solids					5650.0000	yes			
Total Dissolved Solids	mg/L	CBL-301I	05/02/2019 07/31/2019	yes	6040.0000				
IOIAI DISSUIVEU SUIIUS	mg/L	CBL-301I	01/31/2019	yes	0040.0000				<u> </u>

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted	
Total Dissolved Solids	mg/L	CBL-301I	01/28/2020	yes	4790.0000				
Total Dissolved Solids	mg/L	CBL-301I	09/17/2020	yes	6340.0000				
Total Dissolved Solids	mg/L	CBL-301I	01/26/2021	yes	6060.0000				
Total Dissolved Solids	mg/L	CBL-301I	07/20/2021	yes	5870.0000				
Total Dissolved Solids	mg/L	CBL-301I	01/26/2022	yes	4700.0000				
Total Dissolved Solids	mg/L	CBL-301I	07/27/2022	yes	4590.0000				
Total Dissolved Solids	mg/L	CBL-301I	01/25/2023	,	5160.0000		5444.4444		
Total Dissolved Solids	mg/L	CBL-301I	08/02/2023		5360.0000		5444.4444		
Total Dissolved Solids	mg/L	CBL-301I	01/29/2024		4820.0000		5444.4444		
Total Dissolved Solids	mg/L	CBL-301I	07/23/2024		4580.0000		5444.4444		
Total Dissolved Solids	mg/L	CBL-302I	01/22/2016	yes	5500.0000		011111111		
Total Dissolved Solids	mg/L	CBL-302I	05/04/2016	yes	5390.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/27/2016	ves	6850.0000				
Total Dissolved Solids	mg/L	CBL-302I	10/24/2016	ves	4210.0000				
Total Dissolved Solids	mg/L	CBL-3021	01/23/2017	yes	6430.0000				
Total Dissolved Solids	mg/L	CBL-3021	03/22/2017	ves	6460.0000				
Total Dissolved Solids		CBL-3021	05/16/2017	,	5860.0000				
	mg/L			yes					
Total Dissolved Solids	mg/L	CBL-302I	07/27/2017	yes	5120.0000				
Total Dissolved Solids	mg/L	CBL-302I	02/08/2018	yes	6010.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/27/2018	yes	5510.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/22/2019	yes	5060.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/31/2019	yes	4190.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/30/2020	yes	4790.0000				
Total Dissolved Solids	mg/L	CBL-302I	09/17/2020	yes	4990.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/28/2021	yes	4800.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/21/2021	yes	4810.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/27/2022	yes	4510.0000				
Total Dissolved Solids	mg/L	CBL-302I	07/28/2022	yes	5120.0000				
Total Dissolved Solids	mg/L	CBL-302I	01/26/2023		4930.0000		5311.6667		
Total Dissolved Solids	mg/L	CBL-302I	07/18/2023		5150.0000		5311.6667		
Total Dissolved Solids	mg/L	CBL-302I	01/29/2024		4950.0000		5311.6667		
Total Dissolved Solids	mg/L	CBL-302I	07/22/2024		4840.0000		5311.6667		
Total Dissolved Solids	mg/L	CBL-306I	01/21/2016	yes	1280.0000				
Total Dissolved Solids	mg/L	CBL-306I	05/04/2016	yes	431.0000	yes			*
Total Dissolved Solids	mg/L	CBL-306I	07/26/2016	yes	790.0000	'			
Total Dissolved Solids	mg/L	CBL-306I	10/24/2016	yes	1150.0000				
Total Dissolved Solids	mg/L	CBL-306I	01/19/2017	yes	1320.0000				
Total Dissolved Solids	mg/L	CBL-306I	03/22/2017	yes	1460.0000				
Total Dissolved Solids	mg/L	CBL-306I	05/18/2017	yes	1440.0000				
Total Dissolved Solids	mg/L	CBL-306I	07/27/2017	yes	1280.0000				
Total Dissolved Solids	mg/L	CBL-306I	02/08/2018	yes	1760.0000				
Total Dissolved Solids	mg/L	CBL-306I	07/27/2018	yes	1450.0000				
Total Dissolved Solids	mg/L	CBL-306I	01/16/2019	yes	1220.0000				
Total Dissolved Solids	mg/L	CBL-306I	07/31/2019	ves	676.0000	yes			*
Total Dissolved Solids	mg/L	CBL-306I	08/23/2019	yes	1710.0000	,55			
Total Dissolved Solids	mg/L	CBL-306I	01/29/2020	ves	1830.0000				
Total Dissolved Solids	mg/L	CBL-306I	09/19/2020	yes	1730.0000				
Total Dissolved Solids	mg/L	CBL-306I	01/28/2021	ves	1420.0000				
Total Dissolved Solids		CBL-306I	07/21/2021	,	1320.0000				
Total Dissolved Solids	mg/L	CBL-306I	01/21/2021	yes	1730.0000				
TOTAL DISSUIVED SOURS	mg/L	ODL-3001	01/2//2022	yes	1730.0000				<u> </u>

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result	Outlier	CUSUM	Adjusted
Total Dissolved Solids	mg/L	CBL-306I	07/28/2022	yes	1540.0000			.,
Total Dissolved Solids	mg/L	CBL-306I	01/26/2023	yes	1000.0000		1437.0588	
Total Dissolved Solids	mg/L	CBL-306I	07/18/2023		1910.0000		1709.6860	
Total Dissolved Solids	mg/L	CBL-306I	01/29/2024		1170.0000		1437.0588	
Total Dissolved Solids	mg/L	CBL-306I	07/23/2024		691.0000		1437.0588	
Total Dissolved Solids	mg/L	CBL-308I	01/22/2016	yes	6820.0000		1 107.0000	
Total Dissolved Solids	mg/L	CBL-308I	05/04/2016	yes	6120.0000			
Total Dissolved Solids	mg/L	CBL-308I	07/26/2016	yes	7890.0000			
Total Dissolved Solids	mg/L	CBL-308I	10/24/2016	ves	10200.0000			
Total Dissolved Solids	mg/L	CBL-308I	01/19/2017	yes	9620.0000			
Total Dissolved Solids	mg/L	CBL-308I	03/22/2017	yes	7260.0000			
Total Dissolved Solids	mg/L	CBL-308I	05/16/2017	yes	6590.0000			
Total Dissolved Solids	mg/L	CBL-308I	07/26/2017	yes	6480.0000			
Total Dissolved Solids	mg/L	CBL-308I	02/06/2018	yes	6200.0000			
Total Dissolved Solids	mg/L	CBL-308I	07/25/2018	yes	6320.0000			
Total Dissolved Solids	mg/L	CBL-308I	01/18/2019	yes	4760.0000			
Total Dissolved Solids	mg/L	CBL-308I	07/31/2019	yes	5820.0000			
Total Dissolved Solids	mg/L	CBL-308I	01/29/2020	yes	5980.0000			
Total Dissolved Solids	mg/L	CBL-308I	09/18/2020	ves	6860.0000			
Total Dissolved Solids	mg/L	CBL-308I	01/28/2021	ves	6190.0000			
Total Dissolved Solids	mg/L	CBL-308I	07/21/2021	ves	5270.0000			
Total Dissolved Solids	mg/L	CBL-308I	01/21/2021	ves	5320.0000			
Total Dissolved Solids	mg/L	CBL-308I	07/27/2022	yes	6840.0000			
Total Dissolved Solids	mg/L	CBL-308I	01/26/2023	yes	5810.0000		6696.6667	
Total Dissolved Solids	mg/L	CBL-308I	07/18/2023		5680.0000		6696.6667	
Total Dissolved Solids	mg/L	CBL-308I	01/30/2024		5410.0000		6696.6667	
Total Dissolved Solids	mg/L	CBL-308I	07/22/2024		5810.0000		6696.6667	
Total Dissolved Solids	mg/L	CBL-341I	01/23/2017	yes	5000.0000		0030.0007	
Total Dissolved Solids	mg/L	CBL-3411	02/23/2017	yes	4520.0000			
Total Dissolved Solids	mg/L	CBL-3411	03/22/2017	yes	5110.0000			
Total Dissolved Solids	mg/L	CBL-3411	04/20/2017	yes	4240.0000			
Total Dissolved Solids	mg/L	CBL-3411	05/16/2017	ves	4840.0000			
Total Dissolved Solids	mg/L	CBL-3411	06/20/2017	ves	5940.0000			
Total Dissolved Solids	mg/L	CBL-3411	07/27/2017	ves	4150.0000			
Total Dissolved Solids	mg/L	CBL-3411	09/11/2017	ves	4860.0000			
Total Dissolved Solids	mg/L	CBL-3411	02/08/2018	yes	4320.0000			
Total Dissolved Solids	mg/L	CBL-3411	08/24/2018	yes	4800.0000			
Total Dissolved Solids	mg/L	CBL-3411	01/22/2019	yes	3870.0000			
Total Dissolved Solids	mg/L	CBL-3411	07/31/2019	yes	5370.0000			
Total Dissolved Solids	mg/L	CBL-3411	01/30/2020	yes	4900.0000			
Total Dissolved Solids	mg/L	CBL-3411	09/17/2020	yes	4930.0000			
Total Dissolved Solids	mg/L	CBL-3411	01/27/2021	yes	3940.0000			
Total Dissolved Solids	mg/L	CBL-3411	07/22/2021	yes	4520.0000			
Total Dissolved Solids	mg/L	CBL-3411	01/27/2022	yes	3800.0000			
Total Dissolved Solids	mg/L	CBL-3411	07/28/2022	yes	4910.0000			
Total Dissolved Solids	mg/L	CBL-3411	01/26/2023	yes	4390.0000		4667.7778	
Total Dissolved Solids	mg/L	CBL-3411	07/19/2023		4190.0000		4667.7778	
Total Dissolved Solids	mg/L	CBL-3411	01/19/2023		3990.0000		4667.7778	
Total Dissolved Solids	mg/L	CBL-3411	07/22/2024		3700.0000		4667.7778	
Total Dissolved Collus	my/L	ODL-04 II	0112212024		37 00.0000		+001.1110	

^{* -} Outlier for that well and constituent.

** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Table 4

Dixon's Test Outliers 1% Significance Level

Constituent	Units	Well	Date	Result	ND Qualifier	Date Range	N	Critical Value
Calcium, Total	mg/L	CBL-301I	01/17/2019	156.0000		01/21/2016-07/27/2022	19	0.5503
Chloride	mg/L	CBL-301I	01/17/2019	619.0000		01/21/2016-07/27/2022	19	0.5503
Chloride	mg/L	CBL-306I	05/04/2016	20.0000		01/21/2016-07/28/2022	17	0.5798
Fluoride	mg/L	CBL-306I	03/22/2017	12.6000		01/21/2016-07/28/2022	18	0.5643
Fluoride	mg/L	CBL-308I	03/22/2017	9.0500		01/22/2016-07/27/2022	18	0.5643
Sulfate	mg/L	CBL-301I	01/17/2019	104.0000		01/21/2016-07/27/2022	19	0.5503
Sulfate	mg/L	CBL-306I	05/04/2016	29.5000		01/21/2016-07/28/2022	18	0.5643
Total Dissolved Solids	mg/L	CBL-301I	01/17/2019	1460.0000		01/21/2016-07/27/2022	19	0.5503
Total Dissolved Solids	mg/L	CBL-306I	05/04/2016	431.0000		01/21/2016-07/28/2022	18	0.5643

N = Total number of independent measurements in background at each well.

Date Range = Dates of the first and last measurements included in background at each well.

Critical Value depends on the significance level and on N-1 when the two most extreme values are tested or N for the most extreme value.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 1.29 / 22 = 0.059	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((0.081 - 1.664/22) / (22-1))^{1/2}$ = 0.016	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.059 + 5.0 * 0.016 = 0.139	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 22 * (22-1) / 2 = 231	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 764.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (231 - 2.326 * 764.333 ^{1/2}) / 2 = 83.347	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = 0.0	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-302I Nonparametric Prediction Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	PL = max(X)	Compute nonparametric prediction limit as largest background measurement.
	= 0.297	
2	Conf = 0.99	Confidence level is based on N, K and resampling strategy (see Gibbons 1994).

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 1.222 / 18 = 0.068	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((0.093 - 1.494/18) / (18-1))^{1/2}$ = 0.024	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.068 + 5.0 * 0.024 = 0.189	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 631.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 631.667 ^{1/2}) / 2 = 47.27	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.003	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 2.059 / 18 = 0.114	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((0.486 - 4.239/18) / (18-1))^{1/2}$ = 0.121	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.114 + 5.0 * 0.121 = 0.722	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 605.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 605.0 ^{1/2}) / 2 = 47.894	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.027	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 1.144 / 18 = 0.064	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((0.082 - 1.308/18) / (18-1))^{1/2}$ = 0.023	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.064 + 5.0 * 0.023 = 0.18	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 532.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 532.0 ^{1/2}) / 2 = 49.675	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = 0.0	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 17369.0 / 18 = 964.944	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{\frac{1}{2}}$ $= ((1.69 \times 10^{7} - 3.02 \times 10^{8}/18) / (18-1))^{\frac{1}{2}}$ $= 101.271$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 964.944 + 5.0 * 101.271 = 1471.3	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 16.171	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -27.044	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 17227.0 / 18 = 957.056	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((1.67 \times 10^7 - 2.97 \times 10^8/18) / (18-1))^{1/2}$ = 116.748	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 957.056 + 5.0 * 116.748 = 1540.795	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -46.655	Sen's estimator of trend.
6	var(S) = 695.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$ = (153 - 2.326 * 695.0 \(^{1/2}) / 2 = 45.84	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -66.423	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 3437.0 / 16 = 214.813	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((758029.0 - 1.18 \times 10^{7}/16) / (16-1))^{1/2}$ $= 36.257$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 214.813 + 5.0 * 36.257 = 396.097	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 16 * (16-1) / 2 = 120	Number of sample pairs during trend detection period.
5	S = 9.18	Sen's estimator of trend.
6	var(S) = 493.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = $(120 - 2.326 * 493.333^{1/2}) / 2$ = 34.168	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -4.826	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 15450.0 / 18 = 858.333	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((1.34 \times 10^7 - 2.39 \times 10^8/18) / (18-1))^{1/2}$ = 82.361	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 858.333 + 5.0 * 82.361 = 1270.141	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -24.047	Sen's estimator of trend.
6	var(S) = 697.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 697.0 ^{1/2}) / 2 = 45.796	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -45.396	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Calcium, Total (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 15196.0 / 18 = 844.222	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((1.29 \times 10^7 - 2.31 \times 10^8/18) / (18-1))^{1/2}$ = 79.475	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 844.222 + 5.0 * 79.475 = 1241.598	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -24.621	Sen's estimator of trend.
6	var(S) = 697.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (153 - 2.326 * 697.0 ^{1/2}) / 2 = 45.796	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -46.4	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 41390.0 / 18 = 2299.444	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((9.75 \times 10^7 - 1.71 \times 10^9/18) / (18-1))^{1/2}$ = 372.424	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 2299.444 + 5.0 * 372.424 = 4161.565	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 10.311	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -82.048	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	\overline{X} = sum[X] / N = 32970.0 / 18 = 1831.667	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((6.26 \times 10^7 - 1.09 \times 10^9/18) / (18-1))^{1/2}$ = 360.265	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1831.667 + 5.0 * 360.265 = 3632.994	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -159.984	Sen's estimator of trend.
6	var(S) = 695.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 695.0 ^{1/2}) / 2 = 45.84	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -190.868	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 4810.0 / 16 = 300.625	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((1.55 \times 10^{6} - 2.31 \times 10^{7}/16) / (16-1))^{1/2}$ $= 82.083$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 300.625 + 5.0 * 82.083 = 711.039	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 16 * (16-1) / 2 = 120	Number of sample pairs during trend detection period.
5	S = 16.104	Sen's estimator of trend.
6	var(S) = 493.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$ = $(120 - 2.326 * 493.333^{1/2}) / 2$ = 34.168	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -15.759	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 44230.0 / 18 = 2457.222	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((1.10 \times 10^8 - 1.96 \times 10^9/18) / (18-1))^{1/2}$ = 303.175	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 2457.222 + 5.0 * 303.175 = 3973.1	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -106.468	Sen's estimator of trend.
6	var(S) = 695.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var(S)}^{1/2}) / 2$ = (153 - 2.326 * 695.0 ^{1/2}) / 2 = 45.84	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -174.502	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Chloride (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 32540.0 / 18 = 1807.778	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((5.91 \times 10^7 - 1.06 \times 10^9/18) / (18-1))^{1/2}$ = 129.14	Compute background sd.
3	SCL = \overline{X} + F * S = 1807.778 + 5.0 * 129.14 = 2453.477	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -16.82	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 \(\frac{1}{2} \) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -57.489	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 10.16 / 20 = 0.508	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((10.634 - 103.226/20) / (20-1))^{1/2}$ = 0.537	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.508 + 5.0 * 0.537 = 3.191	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 20 * (20-1) / 2 = 190	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 681.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var(S)}^{1/2}) / 2$ = (190 - 2.326 * 681.333 \(^{1/2}\) / 2 = 64.643	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.035	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 9.153 / 19 = 0.482	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((8.255 - 83.772/19) / (19-1))^{1/2}$ = 0.462	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.482 + 5.0 * 0.462 = 2.793	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 19 * (19-1) / 2 = 171	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 604.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (171 - 2.326 * 604.333 ^{1/2}) / 2 = 56.91	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.031	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 40.73 / 17 = 2.396	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((102.838 - 1658.933/17) / (17-1))^{1/2}$ = 0.573	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 2.396 + 5.0 * 0.573 = 5.261	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 17 * (17-1) / 2 = 136	Number of sample pairs during trend detection period.
5	S = 0.119	Sen's estimator of trend.
6	var(S) = 589.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (136 - 2.326 * 589.333 ^{1/2}) / 2 = 39.767	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.032	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 28.4 / 17 = 1.671	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((48.489 - 806.56/17) / (17-1))^{1/2}$ = 0.255	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1.671 + 5.0 * 0.255 = 2.948	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 17 * (17-1) / 2 = 136	Number of sample pairs during trend detection period.
5	S = -0.02	Sen's estimator of trend.
6	var(S) = 588.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (136 - 2.326 * 588.333 ^{1/2}) / 2 = 39.791	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.111	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Fluoride (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 7.116 / 19 = 0.375	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((3.957 - 50.632/19) / (19-1))^{1/2}$ = 0.268	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.375 + 5.0 * 0.268 = 1.714	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 19 * (19-1) / 2 = 171	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 751.667	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (171 - 2.326 * 751.667 \(\frac{1}{2} \) / 2 = 53.615	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.133	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 136.43 / 22	Compute background mean.
	= 6.201	
2	$S = ((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((847.258 - 18613.145/22) / (22-1)) ^{1/2}	
	= 0.24	
3	$SCL = \overline{X} \pm F * S$	Compute combined Shewhart-CUSUM normal control interval.
	= 6.201 ± 5.0 * 0.24	
	= 5.003, 7.4	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 22 * (22 -1) / 2	
	= 231	
5	S = -0.007	Sen's estimator of trend.
6	var(S) = 1248.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (231 - 2.326 * 1248.333 ^{1/2}) / 2	the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
	= 74.409	
8	LCL(S) = -0.036	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 115.31 / 19	Compute background mean.
2	= 6.069 $S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((706.23 - 13296.396/19) / (19-1))^{1/2}$ $= 0.597$	Compute background sd.
3	SCL = $\overline{X} \pm F * S$ = 6.069 \pm 5.0 * 0.597 = 3.083, 9.055	Compute combined Shewhart-CUSUM normal control interval.
4	N' = N * (N-1) / 2 = 19 * (19-1) / 2 = 171	Number of sample pairs during trend detection period.
5	S = 0.044	Sen's estimator of trend.
6	var(S) = 812.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$ = (171 - 2.326 * 812.333 ^{1/2}) / 2 = 52.353	Ordinal position for one-sided lower confidence limit for slope. The LCL is the M_1^{th} largest slope estimate. When M_1 is not an integer, interpolation is used.
8	LCL(S) = -0.04	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-306I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 119.66 / 18	Compute background mean.
	= 6.648	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((802.809 - 14318.516/18) / (18-1))^{1/2}$	Compute background sd.
	= 0.657	
3	$SCL = \overline{X} \pm F * S$	Compute combined Shewhart-CUSUM normal control interval.
	= 6.648 ± 5.0 * 0.657 = 3.363, 9.932	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = -0.011	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.094	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 112.19 / 18	Compute background mean.
	= 6.233	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= ((700.296 - 12586.596/18) / (18-1)) ^{1/2}	
	= 0.247	
3	$SCL = \overline{X} \pm F * S$	Compute combined Shewhart-CUSUM normal control interval.
	= 6.233 ± 5.0 * 0.247	
	= 4.996, 7.47	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = -0.002	Sen's estimator of trend.
6	var(S) = 691.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (153 - 2.326 * 691.333 ^{1/2}) / 2	the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
	= 45.921	
8	LCL(S) = -0.03	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits pH (S.U.) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 108.89 / 18	Compute background mean.
2	= 6.049 $S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((659.685 - 11857.032/18) / (18-1))^{1/2}$ $= 0.238$	Compute background sd.
3	$SCL = \overline{X} \pm F * S$ = 6.049 ± 5.0 * 0.238 = 4.861, 7.238	Compute combined Shewhart-CUSUM normal control interval.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 0.067	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -0.015	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-301I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 6310.0 / 18 = 350.556	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((2.27 \times 10^{6} - 3.98 \times 10^{7}/18) / (18-1))^{1/2}$ $= 60.294$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 350.556 + 5.0 * 60.294 = 652.024	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 6.483	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -8.207	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 22013.0 / 18	Compute background mean.
	= 1222.944	
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((2.71\times10^{7} - 4.85\times10^{8}/18) / (18-1))^{1/2}$	Compute background sd.
	= 114.114	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 1222.944 + 5.0 * 114.114 = 1793.513	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = 45.342	Sen's estimator of trend.
6	var(S) = 695.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is
	= (153 - 2.326 * 695.0 ^½) / 2	the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
	= 45.84	
8	LCL(S) = 25.012	One-sided lower confidence limit for slope.
9	LCL(S) > 0	Significant increasing trend.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 6599.0 / 17 = 388.176	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((2.76 \times 10^6 - 4.35 \times 10^7/17) / (17-1))^{1/2}$ = 110.356	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 388.176 + 5.0 * 110.356 = 939.958	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 17 * (17-1) / 2 = 136	Number of sample pairs during trend detection period.
5	S = 18.243	Sen's estimator of trend.
6	var(S) = 589.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$ = (136 - 2.326 * 589.333 ^{1/2}) / 2 = 39.767	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -14.639	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 25640.0 / 18 = 1424.444	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((3.68 \times 10^7 - 6.57 \times 10^8/18) / (18-1))^{1/2}$ = 121.424	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1424.444 + 5.0 * 121.424 = 2031.565	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -41.243	Sen's estimator of trend.
6	var(S) = 693.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 693.0 ^{1/2}) / 2 = 45.884	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -65.458	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Sulfate (mg/L) at CBL-341I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 6287.0 / 18 = 349.278	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((2.21 \times 10^6 - 3.95 \times 10^7/18) / (18-1))^{1/2}$ = 32.89	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 349.278 + 5.0 * 32.89 = 513.727	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -10.817	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var(S)}^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -19.435	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-3011 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 98000.0 / 18 = 5444.444	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((5.44 \times 10^8 - 9.60 \times 10^9/18) / (18-1))^{1/2}$ = 767.695	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 5444.444 + 5.0 * 767.695 = 9282.919	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 8.889	Sen's estimator of trend.
6	var(S) = 697.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 697.0 ^{1/2}) / 2 = 45.796	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -248.456	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-302I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 95610.0 / 18 = 5311.667	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{\frac{1}{2}}$ $= ((5.18 \times 10^{8} - 9.14 \times 10^{9}/18) / (18-1))^{\frac{1}{2}}$ $= 764.87$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 5311.667 + 5.0 * 764.87 = 9136.018	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -219.811	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* var(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 \(^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -407.793	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-306l Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 24430.0 / 17 = 1437.059	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((3.62 \times 10^7 - 5.97 \times 10^8/17) / (17-1))^{1/2}$ = 267.085	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 1437.059 + 5.0 * 267.085 = 2772.485	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 17 * (17-1) / 2 = 136	Number of sample pairs during trend detection period.
5	S = 76.005	Sen's estimator of trend.
6	var(S) = 586.333	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (136 - 2.326 * 586.333 ^{1/2}) / 2 = 39.839	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -5.732	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-308I Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$	Compute background mean.
	= 120540.0 / 18	
	= 6696.667	
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$	Compute background sd.
	= $((8.40 \times 10^8 - 1.45 \times 10^{10}/18) / (18-1))^{1/2}$	
	= 1385.271	
3	$SCL = \overline{X} + F * S$	Compute combined Shewhart-CUSUM normal control limit.
	= 6696.667 + 5.0 * 1385.271	
	= 13623.023	
4	N' = N * (N-1) / 2	Number of sample pairs during trend detection period.
	= 18 * (18-1) / 2	
	= 153	
5	S = -270.134	Sen's estimator of trend.
6	var(S) = 697.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{99}^* var(S)^{1/2}) / 2$	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\mathrm{M_1}^{\mathrm{th}}$ largest slope estimate. When $\mathrm{M_1}$ is
	= (153 - 2.326 * 697.0 ^{1/2}) / 2	the M ₁ ¹¹ largest slope estimate. When M ₁ is not an integer, interpolation is used.
	= 45.796	
8	LCL(S) = -711.043	One-sided lower confidence limit for slope.

Worksheet 2 - Intra-Well Control Charts / Prediction Limits Total Dissolved Solids (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	$\overline{X} = sum[X] / N$ = 84020.0 / 18 = 4667.778	Compute background mean.
2	$S = ((sum[X^{2}] - sum[X]^{2}/N) / (N-1))^{1/2}$ $= ((3.97 \times 10^{8} - 7.06 \times 10^{9}/18) / (18-1))^{1/2}$ $= 554.018$	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 4667.778 + 5.0 * 554.018 = 7437.868	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = -76.49	Sen's estimator of trend.
6	var(S) = 696.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99}^* \text{ var}(S)^{1/2}) / 2$ = (153 - 2.326 * 696.0 ^{1/2}) / 2 = 45.818	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = -305.108	One-sided lower confidence limit for slope.

Table 1

Summary Statistics and Intermediate Computations for Combined Shewhart-CUSUM Control Charts

Constituent	Units	Well	N(back)	N(mon)	N(tot)	Mean	SD	R(i-1)	R(i)	S(i-1)	S(i)	Limit	Туре	Conf
Boron, Total	mg/L	CBL-341I	18	5	23	0.0635	0.0234	0.1190	0.1360	0.2013	0.2183	0.1803	normal	

N(back) and N(mon) = Non-outlier measurements in the background and monitoring periods.

N(tot) = All independent measurements for that constituent and well.
For transformed data, mean and SD in transformed units and control limit in original units.

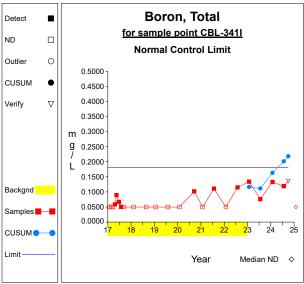
Conf = confidence level for passing initial test or one of two verification resamples (nonparametric test only).

- * Insufficient Data.
- ** Detection Frequency < 25%.
 *** Zero Variance.

Table 2 **Analytical Data and CUSUM Summary**

Constituent	Units	Well	Date	Background	Result		Outlier	CUSUM	Adjusted	
Boron, Total	mg/L	CBL-341I	01/23/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	02/23/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	03/22/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	04/20/2017	yes	0.0587					
Boron, Total	mg/L	CBL-341I	05/16/2017	yes	0.0896					
Boron, Total	mg/L	CBL-341I	06/20/2017	yes	0.0668					
Boron, Total	mg/L	CBL-341I	07/27/2017	yes	0.0507					
Boron, Total	mg/L	CBL-341I	09/11/2017	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	02/08/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	08/24/2018	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	01/22/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	07/31/2019	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	01/30/2020	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	09/17/2020	yes	0.1020					
Boron, Total	mg/L	CBL-341I	01/27/2021	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	07/22/2021	yes	0.1110					
Boron, Total	mg/L	CBL-341I	01/27/2022	yes	0.0500	ND				
Boron, Total	mg/L	CBL-341I	07/28/2022	yes	0.1150					
Boron, Total	mg/L	CBL-341I	01/26/2023		0.1340			0.1165		
Boron, Total	mg/L	CBL-341I	07/19/2023		0.0760			0.1114		
Boron, Total	mg/L	CBL-341I	01/29/2024		0.1330			0.1634		
Boron, Total	mg/L	CBL-341I	07/22/2024		0.1190			0.2013		**
Boron, Total	mg/L	CBL-341I	10/01/2024		0.1360			0.2183		**

^{* -} Outlier for that well and constituent.


** - Non-outlier detected sample Result and / or CUSUM value exceeds limit.

*** - ND value replaced with median RL.

**** - ND value replaced with manual RL.

ND = Not detected, Result = detection limit.

Intra-Well Sublist Control Charts / Prediction Limits

Graph 1

Worksheet 3 - Intra-Well Sublist Control Charts / Prediction Limits Boron, Total (mg/L) at CBL-3411 Normal Control Limit

<u>Step</u>	<u>Equation</u>	<u>Description</u>
1	X = sum[X] / N = 1.144 / 18 = 0.064	Compute background mean.
2	S = $((sum[X^2] - sum[X]^2/N) / (N-1))^{1/2}$ = $((0.082 - 1.308/18) / (18-1))^{1/2}$ = 0.023	Compute background sd.
3	$SCL = \overline{X} + F * S$ = 0.064 + 5.0 * 0.023 = 0.18	Compute combined Shewhart-CUSUM normal control limit.
4	N' = N * (N-1) / 2 = 18 * (18-1) / 2 = 153	Number of sample pairs during trend detection period.
5	S = 0.0	Sen's estimator of trend.
6	var(S) = 532.0	Variance estimate for slope.
7	$M_1(S) = (N' - Z_{.99} * var(S)^{1/2}) / 2$ = (153 - 2.326 * 532.0 \frac{1}{2}) / 2 = 49.675	Ordinal position for one-sided lower confidence limit for slope. The LCL is the $\rm M_1^{th}$ largest slope estimate. When $\rm M_1$ is not an integer, interpolation is used.
8	LCL(S) = 0.0	One-sided lower confidence limit for slope.

APPENDIX D

Analytical Data for Calendar Year 2024

February 08, 2024

Charlie Macon BBA Engineering 165 N. Lampasas St. Bertram, TX 78605

TEL: (512) 585-7180

FAX: Order No.: 2402007

RE: Fayette Q1 - CCR

Dear Charlie Macon:

DHL Analytical, Inc. received 9 sample(s) on 2/1/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

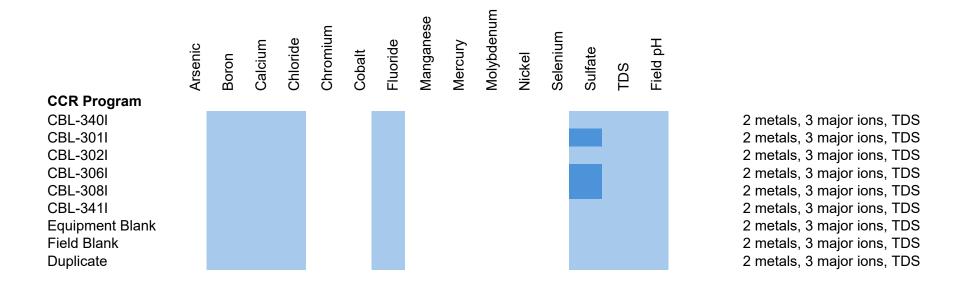
This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2402007	9
WorkOrderSampleSummary 2402007	10
PrepDatesReport 2402007	11
AnalyticalDatesReport 2402007	13
Analytical Report 2402007	15
AnalyticalQCSummaryReport 2402007	24
MQLSummaryReport 2402007	33

ঞ

2300 Double Creek Dr. Round Rock, TX 78664


Phone 512.388.8222

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

CHAIN-OF-CUSTODY

PAGE_

CLIENT: BBA Era	INEC	100				DATE: 1-31-24							DHL WORKORDER #: 2 70 2007																		
ADDRESS: 165 K/		MP/ Fis	5 5	- Ro	Mian, K	PC	D#:													D	HL \	NO	RKC	ORD	ER	#:	2	70	20	07	
PHONE: 572 - 820 DATA REPORTED TO: C	- H/155	EMAIL: 5	MGCOVIC		BAEN.	PR	OJE	CT L	OC/	ATIC	ON (OR I	NAIV	1E:	Fo	19		te	?	C.	\mathcal{L})		- (R				
ADDITIONAL REPORT CO	PIES TO			1911		CLI	ENT	PR	OJE	CT #	‡)				C	OLL	ECT	OR	:	200	am	()	1	er N	1	
Authorize 5% surcharge		W=WATE	R	SE=SE	DIMENT	_	PRE												_ [_	П				- 1	Ť		- C.W	1	
for TRRP report?	Lab	L=LIQUID		P=PAI	NT				T	T N		9	1006				8270] 625.	ONIA		8		ERB 🗆	10	ASE			į.			
☐ Yes ☐ No		S=SOIL		SL=SL	UDGE	હ			tate	Š	S	D 826	로 .	_ _	. _	_	P PEST	8270	AMM		I E		ПП	<u> </u>	&GRE/	CYAN	5	4			
	Only	SO=SOLID)			inei	H_3PO_4		7n Aretate □	ESEF	.YS	퇸	98	ors	625.1	PAH	o l	PCB	8 8		ALKA	[g] PES	RA 8		IST					
Field Sample I.D.	DHL Lab#	Collection Date	Collection Time	Matrix	Container Type	Conta		HNO3	NaOH ☐ Zn	ΙZ	ANALYSES	ВТЕХ □ МТВЕ □ [МЕТНОВ 8260]	TPH 1005 ☐ TPH 1006 ☐ HOLD 1006 ☐	GRO 8015 LL DRO 8015 LL	VOL 8260 □ VOL 624.1 □ SVOC 8270 □ SVOC 625.1 □	PAH 8270 ☐ HOLD PAH ☐	PEST 8270 □ 625.1 □ O-P PEST 8270 □	PCB 8082 ☐ 608.3 ☐ PCB 8270 ☐ 625.1 ☐	HERB 8321 ☐ T PHOS ☐ AMMONIA ☐	RCRA 8 TX11 =	PH□ HEX CHROM□ ALKALINITY□ COD□	ANIONS 300 □ 9056 □	TCLP-SVOC □ VOC □ PEST □ HERB □	TCLP-METALS 🗆 RCRA 8 🗀 TX-11 🗀 Pb 🗀	RCI 🗆 IGN 🗆 DGAS 🗆 OIL&GREASE 🗀	TDS TSS MOIST CYANIDE		102	FIF	LD NOT	FS
C31-3/11	PL	2		X	╁	TX		<u> </u>	- 1		7 ~	T		1	- -	1 2	╬	«		닉		<u> </u>	活	計							
781 - 300 T	07	1-29-34 1-29-25	1250	W	J lare	1	-	X	+	$\frac{1}{\lambda}$		H	十	\dagger	+	t^-	Н	\dashv	+	\dagger	+	Н			\dashv	长	XX				
181 - 30 h I	20	1-29-24	155%		The state of the s	es e	2	X	+	$\frac{1}{}$	1	Н	_	\top	+	†	П	\dashv	+	\top	1				\dashv	- 1	纺	忧			
CBL - 308 T	04	1-30-2	11445		no contratación	or approxim	7	X	T	$\hat{\chi}$			1	T		T	П	1	\top	\top	\dagger	П			7	Š	ХX	X			
CBL-340 T	05	1-31-31	1414		and the state of t	or the second	>	X	1	X			7	1		1	H	1	1	T	1			7	\top	Š	XK	X			
CBL-341I	06	1-29-24	1435		- Committee Committee	- Adaptive		X		X				T												- 5	χX	X			
EB-CCR	07	1-30-24	1504		-Control of the Control of the Contr	November 1)	4		χ															T)	XX	X			
PB-CZR	08	1-30.24	1510	Allera september	- Andrewson	ALCOHOLOGICAL		Κ.		X																1	XX	X			
DUF#-CCR	0	1-29-24	Managering	*	WE.	V		X		X																1	XX	X			
i i																															
																	Ш														
									\perp							_	Ш	_	\perp			Ш			\perp			$\perp \perp$			
					•			_	\bot	<u> </u>		Ш	_	_	_	_		_	_	_					\dashv			$\perp \perp$			
			1					_	_	_		Ш	_	4	_	↓_		_	_ _	_	1_				\perp	4		\sqcup			
								+	\bot			Ш	_	4	_	_	\sqcup	_	\bot	_	$oldsymbol{\perp}$			_	_			$\perp \perp$			
2 !:		<u> </u>	DATE/TIME		Darak	1/1-				+						<u></u>					<u> </u>						<u>_</u>	$\perp \perp$			
Relinquished By: (Sign)	kung	- 4		40	917	ved)by: TURN AROUND TIME LAB USE (CALL FIRST FOR RUSH) RECEIVING					E ONLY THERMO #:																				
Relinquished By: (Sign) DATE/TIME Re											, ARE SAMPLES ON ICE AND JUST COLLECTED? YES / NO																				
!						RUSH-3 DAY□ CUSTODY SEALS ON ICE CHEST: □ BROKEN □ INTAC																									
Relinquished By: (Sign) DATE/TIME F						Received by: NORMAL OTHER □ CARRIER: □ LSO □ FEDEX □ UPS □ COURIER □ HAND DE						D DELIVE	RED																		
								DUE DATE □																							

	Sample	Rece	eipt Cneck	KIIST			
Client Name: BBA Engineering				Date Recei	ved: 2/1/2	024	
Work Order Number: 2402007				Received b	y: KAO		
5.							
Checklist completed by:	2/1/2024	L		Reviewed b	nv.	<u> </u>	2/1/2024
Signature	Date			ricvicwed b	Initials	79	Date
	Carrier name:	<u>Hanc</u>	d Delivered				
Shipping container/cooler in good condition?		Yes	✓	No 🗌	Not Pre	sent	
Custody seals intact on shipping container/cooler?		Yes		No 🗌	Not Pre	sent 🗹	
Custody seals intact on sample bottles?		Yes		No 🗌	Not Pre	sent 🗹	
Chain of custody present?		Yes	✓	No 🗌			
Chain of custody signed when relinquished and reco	eived?	Yes	✓	No 🗌			
Chain of custody agrees with sample labels?		Yes	✓	No 🗌			
Samples in proper container/bottle?		Yes	✓	No 🗌			
Sample containers intact?		Yes	\checkmark	No 🗌			
Sufficient sample volume for indicated test?		Yes	✓	No 🗌			
All samples received within holding time?		Yes	✓	No 🗌			
Water - VOA vials have zero headspace?		Yes		No 🗌	No VOA v	ials submitte	ed 🗹 NA 🗌
Water - pH<2 acceptable upon receipt?		Yes	✓	No 🗌	NA 🗌	LOT#	13171
		Adjus	sted?		Check	ed by	
Water - ph>9 (S) or ph>10 (CN) acceptable upon re	ceipt?	Yes		No 🗌	NA 🗹	LOT#	74 data and an annual a
		Adjus	sted?		Check	ed by	
Container/Temp Blank temperature in compliance?		Yes	✓	No 🗌			
Cooler# 1							
Temp °C 0.7							
Seal Intact NP							
Any No response must be detailed in the comments	section below.	******					CARLES Warmer W
Client contacted: Date	te contacted:			Per	son contac	ted:	
Contacted by:	garding:						
Comments:							
Corrective Action:							

Chain-of-Custody (C-O-C) 1) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? 2) Were all departures from standard conditions described in an exception report? 3) Var eall departures from standard conditions described in an exception report? 4) Are all field sample ID numbers cross-referenced to the laboratory ID numbers? 2) Are all laboratory ID numbers cross-referenced to the laboratory ID numbers? 3) Var all laboratory ID numbers cross-referenced to the corresponding QC data? 4) Var all laboratory ID numbers cross-referenced to the corresponding QC data? 5) Were all samples prepared and analyzed within holding times? 1) Were all samples prepared and analyzed within holding times? 2) Other than those results < MOI, were all other raw values bracketed by calibration standards? 3) Were calculations checked by a peer or supervisor? 4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? 6) Were all results for soil and sediment samples reported on a day weight basis? 7) Were's monisture for solids) reported for all soil and sediment samples? 8) Were bulk soils/soilds samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, ITLs reported? 2) Were surrogates added prior to extraction? 1) Were surrogates added prior to extraction? 2) Were surrogate sadded prior to extraction? 3) Where method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? 3) Where method blanks taken through the entire analytical process, including preparation and, if applicable, eleanup procedures? 4) Were blank concentrations < MDI.? 5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples,	Lab	orat	ory Name: DHL Analytical, Inc.						
Reviewer Name: Angie O'Donnell Laboratory Work Order: 2402007 Prep Batch Number(s): See Prep Dates Report Run Batch: See Analytical Dates Report				Note: 2/8/2024					
Prep Batch Number(s): See Prep Dates Report			•						
RI O Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? X Na' NE' ER				<u>*</u>					
Chain-of-Custody (C-O-C) 1) Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? X N. 2) Were all departures from standard conditions described in an exception report? X X 2) Are all field sample from More roses-referenced to the laboratory ID numbers? X X 2) Are all liberatory ID numbers cross-referenced to the laboratory ID numbers? X X 2) Are all liberatory ID numbers cross-referenced to the corresponding QC data? X X 2) Are all liberatory ID numbers cross-referenced to the corresponding QC data? X X 3) Were all samples prepared and analyzed within holding times? X X X 3) Were all samples prepared and analyzed within holding times? X X X 4) Were all samples prepared and analyzed within holding times? X X X 5) Were sample detection limits reported for all solid and sediment samples for the properties of the samples and sediment samples? X X X 7) Were 8 monitored (or solid) in analyses not detected? X X X 8) Were bulk sonlished samples for volatile analysis extracted with methanol per EPA Method 50357 X X 9) If required for the project. TICs reported? X X 1) Were surrogates added prior to extraction? X X X 1) Were surrogates added prior to extraction? X X X 2) Were surrogates added prior to extraction? X X X 2) Were appropriate type(s) of blanks analyzed? X X X 3) Where nethod blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? X X 4) Were blank concentrations & MDL? X X 5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples, greater than 10 times the concentration in the blank sample? X X 1) Were all COCS included in the LCS? X X X X 2) Were all COCS included in the LCS? X X X X X 3) Were CLSs analyzed at the required f	•			atch: See Analytical Dates Report			_		_
RI OI Did samples meet the laboratory's standard conditions of sample acceptability upon receipt? X X X X X X X X X X	# ¹	A^2	•		Yes	No	NA ³	NR ⁴	ER# ⁵
2) Were all departures from standard conditions described in an exception report? 2) Are all field sumple in Oundrive (C) Identification 1) Are all field sumple in Dumbers cross-referenced to the laboratory ID numbers? 2) Are all flaboratory ID numbers cross-referenced to the corresponding QC data? 3) Were all smples prepared and analyzed within holding times? 2) Other than those results < MQL, were all other rare watures bracketed by calibration standards? 3) Were calculations checked by a peer or supervisor? 4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? 7) Were's morisuler (or solids) reported for all analytes not detected? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 50357 9) If required for the project, TICs reported? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 50357 2) Were surrogate percevery Data 1) Were surrogate percevery Data 1) Were surrogate percever beta 1) Were surrogate percever the coveries in all samples within the laboratory QC limits? 2) Were blanks analyzed at the appropriate frequency? 3) Where method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? 4) Were blanks concentrations * MDL? 5) For analyte(s) detected in a blank sample, was the concentration in the blank sample? 8) Were LCS (and LCS), if applicable) %8 within the laboratory QC limits? 8) Were LCS (and LCS), if applicable) %98 within the laboratory QC limits? 8) Were LCS (and LCS), if applicable) %98 within the laboratory QC limits? 5) Does the detectablity data document the laboratory of C limits? 5) Does the detectablity data document the laboratory of C limits? 4) Were LCS (and LCS), if applicable) %98 within the laboratory QC limits? 5) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS/MSD analyzed at the appropriate frequency? 4)	D1	O.I.							7.1.01
102 OI Sample and Quality Control (QC) Identification 103 104 104 104 104 105 104	KI	OI			X		***		R1-01
1) Are all field sample ID numbers cross-referenced to the corresponding QC data? X	D2	OI	,	ception report?			X		
2) Are all laboratory ID numbers cross-referenced to the corresponding QC data?	K2	OI		ary ID numbers?	Y				
R3 Oi Test Reports Di Were all samples prepared and analyzed within holding times? 2 Other than those results < MQL, were all other raw values bracketed by calibration standards? X 3 Were caliculations checked by a peer or supervisor? X 4 Were all analyte identifications checked by a peer or supervisor? X 5 Were sample detection limits reported for all analytes not detected? X 5 Were sample detection limits reported for all analytes not detected? X 5 Were sample detection limits reported for all analytes not detected? X 5 Were sumple store size of the project. TICs reported? X X 7 Were % moisture (or solids) reported for all soli and sediment samples? X X 9 If required for the project. TICs reported? X X 5 Were bulk soil/solids samples for volatile analysis extracted with methanol per EPA Method 5035? X 9 If required for the project. TICs reported? X X The surrogates added prior to extraction? X X X X The surrogates added prior to extraction? X X X X X X X X X			•						
1) Were all samples prepared and analyzed within holding times? X 3) Were calculations checked by a peer or supervisor? X 4) Were all analyte identifications checked by a peer or supervisor? X 5) Were sample detection limits reported for all analytes not detected? X 5) Were sample detection limits reported for all analytes not detected? X 7) Were % moisture (or solids) reported for all soil and sediment samples? X X 7) Were % moisture (or solids) reported for all soil and sediment samples? X X 7) Were % moisture (or solids) reported for all soil and sediment samples? X X 7) Were % moisture (or solids) reported for all soil and sediment samples? X X 7) Were surrogate Recovery Data 1) Were surrogate Recovery Data 1) Were surrogates added prior to extraction? X X 2) Were surrogates added prior to extraction? X X 2) Were surrogates percent recoveries in all samples within the laboratory QC limits? X X 2) Were blanks analyzed at the analyzed? X X 2) Were blanks analyzed at the analyzed? X X 2) Were blanks analyzed at the analyzed? X X 2) Were blanks analyzed at the analyzed? X X 2) Were blanks analyzed at the analyzed? X X 2) Were blanks analyzed at the analyzed? X X 2) Were blanks analyzed at the analyzed at the sample, was the concentration in the blank sample? X A A A A A A A A A	R3	OI		umg çe uuu.	7.				
3) Were calculations checked by a peer or supervisor? 4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were 8's moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 8) If required for the project, TICs reported? 81 81 82 83 84 84 85 85 86 87 87 87 87 88 80 80 81 81 81 82 82 83 84 84 84 85 85 86 87 87 87 88 89 80 80 80 80 80 80 80 80					X				
4) Were all analyte identifications checked by a peer or supervisor? 5) Were sample detection limits reported for all analytes not detected? 6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were 9's moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for votatite analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? A V 9) If required for the project, TICs reported? 1) Were surrogate Recovery Data 1) Were surrogate percent recoveries in all samples within the laboratory QC limits? 1) Were surrogate percent recoveries in all samples within the laboratory QC limits? 1) Were appropriate type(3) of blanks analyzed? 2) Were blanks analyzed at the appropriate frequency? 3) Where method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? 4) Were blank concentrations < MDL? 5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific flactors, in all associated field samples, greater than 10 times the concentration in the blank sample? 1) Were all COCs included in the LCS? 2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? 3) Were LCSs analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? 1) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS/MSD analyzed at the appropriate frequency? 4) Were MS/MSD RPDs within laboratory QC limits? 5) Does the detectability data document the laboratory yC limits? 7) Were MS/MSD analyzed at the appropriate frequency? 9) Were MS/MSD RPDs within laboratory QC limits? 1) Were may for the project/method specified analytes included in the Isaboratory				eted by calibration standards?					
Silvere sample detection limits reported for all analytes not detected? X									
6) Were all results for soil and sediment samples reported on a dry weight basis? 7) Were % moisture (or solids) reported for all soil and sediment samples? 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 9) If required for the project, TICs reported? 1) Were surrogates added prior to extraction? 2) Were surrogate added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits? 8									
7) Were % moisture (or solids) reported for all soil and sediment samples? X 8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? X N 9) If required for the project, TICs reported? X N N N N N N N N N					X				
8) Were bulk soils/solids samples for volatile analysis extracted with methanol per EPA Method 5035? 8) If required for the project, TICs reported? 81 O Surrogate Recovery Data 82 I) Were surrogates added prior to extraction? 9) Were surrogates added prior to extraction? 1) Were surrogates percent recoveries in all samples within the laboratory QC limits? 85 OI Test Reports/Summary Forms for Blank Samples 1) Were appropriate type(s) of blanks analyzed? 2) Were blanks analyzed at the appropriate frequency? 3) Where method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? 4) Were blank concentrations < MDL? 5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples, greater than 10 times the concentration in the blank sample? 86 OI Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS? 2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? 3) Were LCSs analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? 87 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytics included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS/MSD analyzed at the appropriate frequency? 3) Were manyltical duplicates analyzed for each matrix? 2) Were appropriate analytical duplicates analyzed for each matrix? 2) Were supportiate analytical duplicates analyzed for each matrix? 3) Were model and MSD, if applicable included in the laboratory QC limits? 4) Were MS/MSD and Matrix Spike included in the laboratory QC limits? 4) Were properior analytical duplicates analyzed f									
Positive project, TICs reported? National Programme National Progr									
R4 O Surrogate Recovery Data 1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits? R5 OI Test Reports/Summary Forms for Blank Samples 1) Were appropriate type(s) of blanks analyzed? 2) Were blanks analyzed at the appropriate frequency? 3) Where method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? 4) Were blank concentrations MDLP S) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples, greater than 10 times the concentration in the blank sample? R6 OI Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS? 2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? X 3) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? 7 Y 4) Were MS/MSD RPDs within laboratory QC limits? 8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were amalytical duplicates analyzed at the appropriate frequency? 3) Were MS/MSD RPDs within laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? 5) Were analytical duplicates analyzed the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? 8 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 3) Are unadjus				th methanol per EPA Method 5035?					
1) Were surrogates added prior to extraction? 2) Were surrogate percent recoveries in all samples within the laboratory QC limits? X X	D/I	0					Λ		
2) Were surrogate percent recoveries in all samples within the laboratory QC limits? R5 OI Test Reports/Summary Forms for Blank Samples 1) Were appropriate type(s) of blanks analyzed? 2) Were blanks analyzed at the appropriate frequency? 3) Where method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? 4) Were blank concentrations < MDL? S For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples, greater than 10 times the concentration in the blank sample? R6 OI Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS? 2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? X 3) Were LCSs analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? S) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD RPDs within laboratory QC limits? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQL)s: 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? C) Other Problems/Anomalies	174	0					X		
R5 OI Test Reports/Summary Forms for Blank Samples 1) Were appropriate type(s) of blanks analyzed? X 2) Were blanks analyzed at the appropriate frequency? X 3) Where method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? 4) Were blank concentrations < MDL? X 2 2 3 4 4 4 4 4 4 4 4 4				ratory OC limits?					
1) Were appropriate type(s) of blanks analyzed? 2) Were blanks analyzed at the appropriate frequency? 3) Where blanks analyzed at the appropriate frequency? 4) Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? 4) Were blank concentrations < MDL? 5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples, greater than 10 times the concentration in the blank sample? R6	R5	OI							
3) Where method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup procedures? 4) Were blank concentrations < MDL? 5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples, greater than 10 times the concentration in the blank sample? R6 OI Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS? 2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? X 3) Were LCSs analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? 3) Cheer Problems/Anomalies					X				
applicable, cleanup procedures? 4) Were blank concentrations < MDL? 5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples, greater than 10 times the concentration in the blank sample? R6 OI Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS? 2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? 3) Were LCSs analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed for each matrix? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? X Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X Do ther Problems/Anomalies			2) Were blanks analyzed at the appropriate frequency?		X				
applicable, cleanup procedures? 4) Were blank concentrations < MDL? 5) For analyte(s) detected in a blank sample, was the concentration, unadjusted for sample specific factors, in all associated field samples, greater than 10 times the concentration in the blank sample? R6 OI Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS? 2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? X 2) Were LCS analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? S) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? X 2) Were MS/MSD and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? X R7 R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? X P8 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? X 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X 3) Are unadjusted MQLs and DCSs included in the laboratory data package? X 10 Other Problems/Anomalies				s, including preparation and, if	v				
Simple Formula State S									
factors, in all associated field samples, greater than 10 times the concentration in the blank sample? R6 OI Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS? 2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? X 3) Were LCSs analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X SO OTHER Problems/Anomalies				1 10 10	X				
R6 OI Laboratory Control Samples (LCS): 1 Were all COCs included in the LCS? X							\mathbf{X}		
1) Were all COCs included in the LCS? 2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? 3) Were LCSs analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? 80 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? X SPACE OTHER ADDRESS AND ADDRESS Included in the laboratory data package? X SPACE O	D6	OI		oncentration in the brank sample?					
2) Was each LCS taken through the entire analytical procedure, including prep and cleanup steps? X 3) Were LCSs analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X R10 OI Other Problems/Anomalies	NO	OI			X				
3) Were LCSs analyzed at the required frequency? 4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? R10 OI Other Problems/Anomalies				cluding prep and cleanup steps?					
4) Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits? 5) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? K OI Other Problems/Anomalies			3) Were LCSs analyzed at the required frequency?		X				
S) Does the detectability data document the laboratory's capability to detect the COCs at the MDL used to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? X			4) Were LCS (and LCSD, if applicable) %Rs within the laboratory	QC limits?	X				
to calculate the SDLs? 6) Was the LCSD RPD within QC limits (if applicable)? R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? R10 OI Other Problems/Anomalies									
R7 OI Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS and MSD? 2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? R10 OI Other Problems/Anomalies									
1) Were the project/method specified analytes included in the MS and MSD? X					X				
2) Were MS/MSD analyzed at the appropriate frequency? 3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? R10 OI Other Problems/Anomalies	R 7	Ol		1MCD0	N/				
3) Were MS (and MSD, if applicable) %Rs within the laboratory QC limits? 4) Were MS/MSD RPDs within laboratory QC limits? R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? R10 OI Other Problems/Anomalies				and MSD?					
R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? X				OC limite?	Λ	v			D7 03
R8 OI Analytical Duplicate Data 1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? 3) Are unadjusted MQLs and DCSs included in the laboratory data package? R10 OI Other Problems/Anomalies				e mints:	X	Λ			K/-03
1) Were appropriate analytical duplicates analyzed for each matrix? 2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X	R8	OI	,		2.				
2) Were analytical duplicates analyzed at the appropriate frequency? 3) Were RPDs or relative standard deviations within the laboratory QC limits? R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X				?	X				
R9 OI Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X									
1) Are the MQLs for each method analyte included in the laboratory data package? 2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X 3) Are unadjusted MQLs and DCSs included in the laboratory data package? X R10 OI Other Problems/Anomalies			3) Were RPDs or relative standard deviations within the laboratory	QC limits?	X				
2) Do the MQLs correspond to the concentration of the lowest non-zero calibration standard? X 3) Are unadjusted MQLs and DCSs included in the laboratory data package? X R10 OI Other Problems/Anomalies	R9	OI							
3) Are unadjusted MQLs and DCSs included in the laboratory data package? X R10 OI Other Problems/Anomalies									
R10 OI Other Problems/Anomalies									
	D10	O.T.		package'?	X				
LILLARE SILKNOWN PROBLEMS SINOR SILES SPECIAL CONDITIONS NOTED IN THIS LIVE AND HV /	K10	OI		ais I DC and ED9	v				D10 01
2) Was applicable and available technology used to lower the SDL to minimize the matrix interference					X				R10-01
affects on the sample results?				o minimize the matrix interference	X				
3) Is the Jaharatary NELAC accredited under the Teyas Laboratary Accreditation Program for the				Accreditation Program for the					
analytes, matrices and methods associated with this laboratory data package?					X				

Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist (continued): Supporting	Data					
Proje	ct Na	ame: Fayette Q1 - CCR LRC I	Date: 2/8/2024					
Revie	wer	Name: Angie O'Donnell Labor	atory Work Order: 2402007					
Prep	Batc	h Number(s): See Prep Dates Report Run B	atch: See Analytical Dates Report					
# ¹	A ²	Description		Yes	No	NA ³	NR ⁴	ER#5
S1		Initial Calibration (ICAL)		103	110	1 1/2 1	111	LIK//
	-		1.4 - '41' OC1' '4 9	37				
		1) Were response factors and/or relative response factors for each at 2) Were percent RSDs or correlation coefficient criteria met?	nalyte within QC limits?	X				
		3) Was the number of standards recommended in the method used for	or all analytes?	X				
		4) Were all points generated between the lowest and highest standards		X				
		5) Are ICAL data available for all instruments used?	d used to calculate the curve:	X				
		6) Has the initial calibration curve been verified using an appropriat	e second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV		4				
~-	01	blank (CCB):	, and commany cancration					
		1) Was the CCV analyzed at the method-required frequency?		X				
		2) Were percent differences for each analyte within the method-requ	nired QC limits?	X				
		3) Was the ICAL curve verified for each analyte?	•	X				
		4) Was the absolute value of the analyte concentration in the inorgan	nic CCB < MDL?	X				
S3	О	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		X				
		2) Were ion abundance data within the method-required QC limits?		X				
S4	О	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-require	red QC limits?	X				
S5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral data) re		X				
		2) Were data associated with manual integrations flagged on the ray	/ data?	X				
S6	О	Dual Column Confirmation	2.60					
~=		1) Did dual column confirmation results meet the method-required (¿C?			X		
S7	О	Tentatively Identified Compounds (TICs):				***		
CO	T	1) If TICs were requested, were the mass spectra and TIC data subjective for the Company of the Land State of the Land S	ect to appropriate checks?			X		
S8	1	Interference Check Sample (ICS) Results:		v				
S9	ī	1) Were percent recoveries within method QC limits? Serial Dilutions, Post Digestion Spikes, and Method of Standard	Additions	X				
37	1							
		1) Were percent differences, recoveries, and the linearity within method?	the QC limits specified in the			X		
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		X				
		2) Is the MDL either adjusted or supported by the analysis of DCSs'	?	X				
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable proficient	cy tests or evaluation studies?	X				
S12	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtained	from other appropriate sources?	X				
S13	OI	Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification documen	ted?	X				
S14	OI	Demonstration of Analyst Competency (DOC)	41. 000					
		1) Was DOC conducted consistent with NELAC Chapter 5 – Apper		X				
015	C.T.	2) Is documentation of the analyst's competency up-to-date and on the state of the		X				
S15	OI	Verification/Validation Documentation for Methods (NELAC C	• '					
		1) Are all the methods used to generate the data documented applicable?	, verified, and validated, where	X				
S16	OI	Laboratory Standard Operating Procedures (SOPs):						
~-0	<u> </u>	1) Are laboratory SOPs current and on file for each method perform	ed?	X				
						1	1	

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 – June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director mature ____

02/09/24 Date

CLIENT: BBA Engineering
Project: Fayette Q1 - CCR

Lab Order: 2402007

CASE NARRATIVE

Date: 08-Feb-24

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method M2540C - Total Dissolved Solids Analysis Method E300 - Anions Analysis

Exception Report R1-01

The samples were received and log-in performed on 2/1/2024. A total of 9 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

Exception Report R7-03

For Anions Analysis, for Batch 113810, the recovery of Chloride for the Matrix Spike and Matrix Spike Duplicate (2402007-05 MS/MSD) was below the method control limits. These are flagged accordingly in the QC Summary report. This anion was within method control limits in the associated LCS. No further corrective action was taken.

Exception Report R10-01

Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

Date: 08-Feb-24

CLIENT: BBA Engineering **Project:** Fayette Q1 - CCR

Lab Order: 2402007

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2402007-01	CBL-301I		01/29/24 12:50 PM	02/01/2024
2402007-02	CBL-302I		01/29/24 02:53 PM	02/01/2024
2402007-03	CBL-306I		01/29/24 03:58 PM	02/01/2024
2402007-04	CBL-308I		01/30/24 02:45 PM	02/01/2024
2402007-05	CBL-340I		01/31/24 02:14 PM	02/01/2024
2402007-06	CBL-341I		01/29/24 02:35 PM	02/01/2024
2402007-07	EB-CCR		01/30/24 03:00 PM	02/01/2024
2402007-08	FB-CCR		01/30/24 03:10 PM	02/01/2024
2402007-09	DUP1-CCR		01/29/24	02/01/2024

Lab Order: 2402007

Client: BBA Engineering
Project: Fayette Q1 - CCR

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2402007-01A	CBL-301I	01/29/24 12:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
	CBL-301I	01/29/24 12:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
2402007-01B	CBL-301I	01/29/24 12:50 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-301I	01/29/24 12:50 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-301I	01/29/24 12:50 PM	Aqueous	E300	Anion Preparation	02/02/24 10:03 AM	113823
	CBL-301I	01/29/24 12:50 PM	Aqueous	M2540C	TDS Preparation	02/02/24 09:40 AM	113821
2402007-02A	CBL-302I	01/29/24 02:53 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
	CBL-302I	01/29/24 02:53 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
2402007-02B	CBL-302I	01/29/24 02:53 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-302I	01/29/24 02:53 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-302I	01/29/24 02:53 PM	Aqueous	E300	Anion Preparation	02/02/24 10:03 AM	113823
	CBL-302I	01/29/24 02:53 PM	Aqueous	M2540C	TDS Preparation	02/02/24 09:40 AM	113821
2402007-03A	CBL-306I	01/29/24 03:58 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
	CBL-306I	01/29/24 03:58 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
2402007-03B	CBL-306I	01/29/24 03:58 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-306I	01/29/24 03:58 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-306I	01/29/24 03:58 PM	Aqueous	M2540C	TDS Preparation	02/02/24 09:40 AM	113821
2402007-04A	CBL-308I	01/30/24 02:45 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
	CBL-308I	01/30/24 02:45 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
2402007-04B	CBL-308I	01/30/24 02:45 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-308I	01/30/24 02:45 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-308I	01/30/24 02:45 PM	Aqueous	E300	Anion Preparation	02/02/24 10:03 AM	113823
	CBL-308I	01/30/24 02:45 PM	Aqueous	M2540C	TDS Preparation	02/02/24 09:40 AM	113821
2402007-05A	CBL-340I	01/31/24 02:14 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
	CBL-340I	01/31/24 02:14 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
2402007-05B	CBL-340I	01/31/24 02:14 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-340I	01/31/24 02:14 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-340I	01/31/24 02:14 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810

Page 1 of 2

Lab Order: 2402007

Client: BBA Engineering
Project: Fayette Q1 - CCR

PREP DATES REPORT

ample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
102007-05B	CBL-340I	01/31/24 02:14 PM	Aqueous	M2540C	TDS Preparation	02/02/24 09:40 AM	113821
102007-06A	CBL-341I	01/29/24 02:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
	CBL-341I	01/29/24 02:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
102007-06B	CBL-341I	01/29/24 02:35 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-341I	01/29/24 02:35 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	CBL-341I	01/29/24 02:35 PM	Aqueous	E300	Anion Preparation	02/02/24 10:03 AM	113823
	CBL-341I	01/29/24 02:35 PM	Aqueous	M2540C	TDS Preparation	02/02/24 09:40 AM	113821
102007-07A	EB-CCR	01/30/24 03:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
02007-07B	EB-CCR	01/30/24 03:00 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	EB-CCR	01/30/24 03:00 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	EB-CCR	01/30/24 03:00 PM	Aqueous	M2540C	TDS Preparation	02/02/24 09:40 AM	113821
102007-08A	FB-CCR	01/30/24 03:10 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
02007-08B	FB-CCR	01/30/24 03:10 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	FB-CCR	01/30/24 03:10 PM	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	FB-CCR	01/30/24 03:10 PM	Aqueous	M2540C	TDS Preparation	02/02/24 09:40 AM	113821
02007-09A	DUP1-CCR	01/29/24	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
	DUP1-CCR	01/29/24	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	02/07/24 07:28 AM	113876
02007-09B	DUP1-CCR	01/29/24	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	DUP1-CCR	01/29/24	Aqueous	E300	Anion Preparation	02/01/24 01:53 PM	113810
	DUP1-CCR	01/29/24	Aqueous	M2540C	TDS Preparation	02/02/24 09:40 AM	113821

Lab Order: 2402007

Client: BBA Engineering
Project: Fayette Q1 - CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2402007-01A	CBL-301I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	50	02/07/24 04:06 PM	ICP-MS4_240207B
	CBL-301I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	1	02/07/24 03:11 PM	ICP-MS4_240207B
2402007-01B	CBL-301I	Aqueous	E300	Anions by IC method - Water	113810	10	02/01/24 08:12 PM	IC4_240201B
	CBL-301I	Aqueous	E300	Anions by IC method - Water	113810	1	02/02/24 01:54 AM	IC4_240201B
	CBL-301I	Aqueous	E300	Anions by IC method - Water	113823	100	02/02/24 03:11 PM	IC4_240202B
	CBL-301I	Aqueous	M2540C	Total Dissolved Solids	113821	1	02/02/24 02:00 PM	WC_240202B
2402007-02A	CBL-302I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	1	02/07/24 03:13 PM	ICP-MS4_240207B
	CBL-302I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	50	02/07/24 04:08 PM	ICP-MS4_240207B
2402007-02B	CBL-302I	Aqueous	E300	Anions by IC method - Water	113810	10	02/01/24 08:31 PM	IC4_240201B
	CBL-302I	Aqueous	E300	Anions by IC method - Water	113810	1	02/02/24 03:29 AM	IC4_240201B
	CBL-302I	Aqueous	E300	Anions by IC method - Water	113823	100	02/02/24 03:30 PM	IC4_240202B
	CBL-302I	Aqueous	M2540C	Total Dissolved Solids	113821	1	02/02/24 02:00 PM	WC_240202B
2402007-03A	CBL-306I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	1	02/07/24 03:15 PM	ICP-MS4_240207B
	CBL-306I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	10	02/07/24 04:10 PM	ICP-MS4_240207B
2402007-03B	CBL-306I	Aqueous	E300	Anions by IC method - Water	113810	10	02/01/24 08:50 PM	IC4_240201B
	CBL-306I	Aqueous	E300	Anions by IC method - Water	113810	1	02/02/24 03:48 AM	IC4_240201B
	CBL-306I	Aqueous	M2540C	Total Dissolved Solids	113821	1	02/02/24 02:00 PM	WC_240202B
2402007-04A	CBL-308I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	1	02/07/24 03:17 PM	ICP-MS4_240207B
	CBL-308I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	50	02/07/24 04:12 PM	ICP-MS4_240207B
2402007-04B	CBL-308I	Aqueous	E300	Anions by IC method - Water	113810	10	02/01/24 09:09 PM	IC4_240201B
	CBL-308I	Aqueous	E300	Anions by IC method - Water	113810	1	02/02/24 04:07 AM	IC4_240201B
	CBL-308I	Aqueous	E300	Anions by IC method - Water	113823	100	02/02/24 04:27 PM	IC4_240202B
	CBL-308I	Aqueous	M2540C	Total Dissolved Solids	113821	1	02/02/24 02:00 PM	WC_240202B
2402007-05A	CBL-340I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	50	02/07/24 04:14 PM	ICP-MS4_240207B
	CBL-340I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	1	02/07/24 03:19 PM	ICP-MS4_240207B
2402007-05B	CBL-340I	Aqueous	E300	Anions by IC method - Water	113810	100	02/01/24 06:37 PM	IC4_240201B
	CBL-340I	Aqueous	E300	Anions by IC method - Water	113810	10	02/01/24 09:28 PM	IC4_240201B
	CBL-340I	Aqueous	E300	Anions by IC method - Water	113810	1	02/02/24 04:26 AM	IC4_240201B

Page 1 of 2

Lab Order: 2402007

Client: BBA Engineering
Project: Fayette Q1 - CCR

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2402007-05B	CBL-340I	Aqueous	M2540C	Total Dissolved Solids	113821	1	02/02/24 02:00 PM	WC_240202B
2402007-06A	CBL-341I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	1	02/07/24 03:21 PM	ICP-MS4_240207B
	CBL-341I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	50	02/07/24 04:25 PM	ICP-MS4_240207B
2402007-06B	CBL-341I	Aqueous	E300	Anions by IC method - Water	113810	10	02/01/24 11:03 PM	IC4_240201B
	CBL-341I	Aqueous	E300	Anions by IC method - Water	113810	1	02/02/24 04:45 AM	IC4_240201B
	CBL-341I	Aqueous	E300	Anions by IC method - Water	113823	100	02/02/24 04:46 PM	IC4_240202B
	CBL-341I	Aqueous	M2540C	Total Dissolved Solids	113821	1	02/02/24 02:00 PM	WC_240202B
2402007-07A	EB-CCR	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	1	02/07/24 04:27 PM	ICP-MS4_240207B
2402007-07B	EB-CCR	Aqueous	E300	Anions by IC method - Water	113810	10	02/01/24 11:22 PM	IC4_240201B
	EB-CCR	Aqueous	E300	Anions by IC method - Water	113810	1	02/02/24 05:04 AM	IC4_240201B
	EB-CCR	Aqueous	M2540C	Total Dissolved Solids	113821	1	02/02/24 02:00 PM	WC_240202B
2402007-08A	FB-CCR	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	1	02/07/24 03:25 PM	ICP-MS4_240207B
2402007-08B	FB-CCR	Aqueous	E300	Anions by IC method - Water	113810	10	02/01/24 11:41 PM	IC4_240201B
	FB-CCR	Aqueous	E300	Anions by IC method - Water	113810	1	02/02/24 05:23 AM	IC4_240201B
	FB-CCR	Aqueous	M2540C	Total Dissolved Solids	113821	1	02/02/24 02:00 PM	WC_240202B
2402007-09A	DUP1-CCR	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	1	02/07/24 03:27 PM	ICP-MS4_240207B
	DUP1-CCR	Aqueous	SW6020B	Total Metals: ICP-MS - Water	113876	10	02/07/24 04:29 PM	ICP-MS4_240207B
2402007-09B	DUP1-CCR	Aqueous	E300	Anions by IC method - Water	113810	10	02/02/24	IC4_240201B
	DUP1-CCR	Aqueous	E300	Anions by IC method - Water	113810	1	02/02/24 05:42 AM	IC4_240201B
	DUP1-CCR	Aqueous	M2540C	Total Dissolved Solids	113821	1	02/02/24 02:00 PM	WC_240202B

CLIENT: BBA Engineering

Project: Fayette Q1 - CCR

Project No:

Lab Order: 2402007

Date: 08-Feb-24

Client Sample ID: CBL-301I

Lab ID: 2402007-01

Collection Date: 01/29/24 12:50 PM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed	
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP	
Boron	0.107	0.0100	0.0300	mg/L	1	02/07/24 03:11 PM	
Calcium	1050	5.00	15.0	mg/L	50	02/07/24 04:06 PM	
ANIONS BY IC METHOD - WATER		E30	0		Analyst: RA		
Chloride	2270	30.0	100	mg/L	100	02/02/24 03:11 PM	
Fluoride	<0.100	0.100	0.400	mg/L	1	02/02/24 01:54 AM	
Sulfate	475	10.0	30.0	mg/L	10	02/01/24 08:12 PM	
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS	
Total Dissolved Solids (Residue, Filterable)	4820	50.0	50.0	mg/L	1	02/02/24 02:00 PM	

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 9

CLIENT: BBA Engineering **Project:**

Fayette Q1 - CCR

Project No: Lab Order:

2402007

Client Sample ID: CBL-302I

Date:

Lab ID: 2402007-02

Collection Date: 01/29/24 02:53 PM

Matrix: AQUEOUS

08-Feb-24

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60:	20B		Analyst: SP	
Boron	0.160	0.0100	0.0300	mg/L	1	02/07/24 03:13 PM
Calcium	937	5.00	15.0	mg/L	50	02/07/24 04:08 PM
ANIONS BY IC METHOD - WATER		E300			Analyst: RA	
Chloride	1440	30.0	100	mg/L	100	02/02/24 03:30 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	02/02/24 03:29 AM
Sulfate	1330	10.0	30.0	mg/L	10	02/01/24 08:31 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	4950	50.0	50.0	mg/L	1	02/02/24 02:00 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 2 of 9

CLIENT: BBA Engineering **Project:**

Fayette Q1 - CCR

Project No:

Collection Date: 01/29/24 03:58 PM Lab Order: 2402007 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.133	0.0100	0.0300	mg/L	1	02/07/24 03:15 PM
Calcium	186	1.00	3.00	mg/L	10	02/07/24 04:10 PM
ANIONS BY IC METHOD - WATER	E300				Analyst: RA	
Chloride	153	3.00	10.0	mg/L	10	02/01/24 08:50 PM
Fluoride	1.49	0.100	0.400	mg/L	1	02/02/24 03:48 AM
Sulfate	266	10.0	30.0	mg/L	10	02/01/24 08:50 PM
TOTAL DISSOLVED SOLIDS		M254	0C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	1170	50.0	50.0	mg/L	1	02/02/24 02:00 PM

Date:

Client Sample ID: CBL-306I

Lab ID: 2402007-03

08-Feb-24

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 3 of 9

CLIENT: BBA Engineering

Project: Fayette Q1 - CCR

Project No:

Collection Date: 01/30/24 02:45 PM

Lab Order: 2402007 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.150	0.0100	0.0300	mg/L	1	02/07/24 03:17 PM
Calcium	714	5.00	15.0	mg/L	50	02/07/24 04:12 PM
ANIONS BY IC METHOD - WATER	E300				Analyst: RA	
Chloride	1790	30.0	100	mg/L	100	02/02/24 04:27 PM
Fluoride	1.26	0.100	0.400	mg/L	1	02/02/24 04:07 AM
Sulfate	1360	10.0	30.0	mg/L	10	02/01/24 09:09 PM
TOTAL DISSOLVED SOLIDS		M254	IOC			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	5410	50.0	50.0	mg/L	1	02/02/24 02:00 PM

Date:

Client Sample ID: CBL-308I

Lab ID: 2402007-04

08-Feb-24

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 4 of 9

CLIENT: BBA Engineering **Project:**

Fayette Q1 - CCR

Project No:

Collection Date: 01/31/24 02:14 PM Lab Order: 2402007 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed	
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP	
Boron	0.178	0.0100	0.0300	mg/L	1	02/07/24 03:19 PM	
Calcium	607	5.00	15.0	mg/L	50	02/07/24 04:14 PM	
ANIONS BY IC METHOD - WATER		E30	0		Analyst: RA		
Chloride	2210	30.0	100	mg/L	100	02/01/24 06:37 PM	
Fluoride	0.605	0.100	0.400	mg/L	1	02/02/24 04:26 AM	
Sulfate	705	10.0	30.0	mg/L	10	02/01/24 09:28 PM	
TOTAL DISSOLVED SOLIDS		M254	10C			Analyst: JS	
Total Dissolved Solids (Residue, Filterable)	5090	50.0	50.0	mg/L	1	02/02/24 02:00 PM	

Date:

Client Sample ID: CBL-340I

Lab ID: 2402007-05

08-Feb-24

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 5 of 9

CLIENT: BBA Engineering **Project:**

Fayette Q1 - CCR

Project No: Lab Order: **Lab ID:** 2402007-06

Collection Date: 01/29/24 02:35 PM

08-Feb-24

Date:

Client Sample ID: CBL-341I

2402007 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed		
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP		
Boron	0.133	0.0100	0.0300	mg/L	1	02/07/24 03:21 PM		
Calcium	875	5.00	15.0	mg/L	50	02/07/24 04:25 PM		
ANIONS BY IC METHOD - WATER		E30	0		Analyst: RA			
Chloride	1700	30.0	100	mg/L	100	02/02/24 04:46 PM		
Fluoride	<0.100	0.100	0.400	mg/L	1	02/02/24 04:45 AM		
Sulfate	346	10.0	30.0	mg/L	10	02/01/24 11:03 PM		
TOTAL DISSOLVED SOLIDS		M254	10C			Analyst: JS		
Total Dissolved Solids (Residue, Filterable)	3990	50.0	50.0	mg/L	1	02/02/24 02:00 PM		

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 6 of 9

CLIENT: BBA Engineering Client Sample ID: EB-CCR

Project: Fayette Q1 - CCR Lab ID: 2402007-07

Project No: Collection Date: 01/30/24 03:00 PM

Lab Order: 2402007 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.0162	0.0100	0.0300	J	mg/L	1	02/07/24 04:27 PM
Calcium	0.310	0.100	0.300		mg/L	1	02/07/24 04:27 PM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: RA
Chloride	< 0.300	0.300	1.00		mg/L	1	02/02/24 05:04 AM
Fluoride	< 0.100	0.100	0.400		mg/L	1	02/02/24 05:04 AM
Sulfate	<1.00	1.00	3.00		mg/L	1	02/02/24 05:04 AM
TOTAL DISSOLVED SOLIDS		M254	IOC				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	18.0	10.0	10.0		mg/L	1	02/02/24 02:00 PM

Date:

08-Feb-24

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 7 of 9

CLIENT: BBA Engineering

Project: Fayette Q1 - CCR

Project No:

Lab Order: 2402007 08-Feb-24

Client Sample ID: FB-CCR

Date:

Lab ID: 2402007-08

Collection Date: 01/30/24 03:10 PM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.0377	0.0100	0.0300	mg/L	1	02/07/24 03:25 PM
Calcium	<0.100	0.100	0.300	mg/L	1	02/07/24 03:25 PM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: RA
Chloride	< 0.300	0.300	1.00	mg/L	1	02/02/24 05:23 AM
Fluoride	< 0.100	0.100	0.400	mg/L	1	02/02/24 05:23 AM
Sulfate	<1.00	1.00	3.00	mg/L	1	02/02/24 05:23 AM
TOTAL DISSOLVED SOLIDS		M254	10C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	<10.0	10.0	10.0	mg/L	1	02/02/24 02:00 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 8 of 9

CLIENT: BBA Engineering **Project:**

Fayette Q1 - CCR

Project No:

Lab Order: 2402007

08-Feb-24

Client Sample ID: DUP1-CCR

Date:

Lab ID: 2402007-09

Collection Date: 01/29/24

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed		
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP		
Boron	0.125	0.0100	0.0300	mg/L	1	02/07/24 03:27 PM		
Calcium	182	1.00	3.00	mg/L	10	02/07/24 04:29 PM		
ANIONS BY IC METHOD - WATER		E30	00		Analyst: RA			
Chloride	145	3.00	10.0	mg/L	10	02/02/24		
Fluoride	1.45	0.100	0.400	mg/L	1	02/02/24 05:42 AM		
Sulfate	257	10.0	30.0	mg/L	10	02/02/24		
TOTAL DISSOLVED SOLIDS		M254	IOC			Analyst: JS		
Total Dissolved Solids (Residue, Filterable)	1170	50.0	50.0	mg/L	1	02/02/24 02:00 PM		

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 9 of 9

CLIENT: BBA Engineering

Work Order: 2402007

Project:

ANALYTICAL QC SUMMARY REPORT

Date: 08-Feb-24

Fayette Q1 - CCR RunID: ICP-MS4_231207B

Sample ID: DCS2-113134	Batch ID:	113134		TestNo	: SW	6020B		Units:	mg/L	-
SampType: DCS2	Run ID:	ICP-MS	4_231207B	Analysi	s Date: 12/7	7/2023 10:16	6:00 AM	Prep Date:	12/6	/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit Qual
Calcium		0.289	0.300	0.300	0	96.3	70	130	0	0
Sample ID: DCS4-113134	Batch ID:	113134		TestNo	: SW	6020B		Units:	mg/L	-
SampType: DCS4	Run ID:	ICP-MS	4_231207B	Analysi	s Date: 12/7	7/2023 10:21	:00 AM	Prep Date:	12/6	/2023
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit Qual
Boron		0.0303	0.0300	0.0300	0	101	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 1 of 9

R

Work Order: 2402007

ANALYTICAL QC SUMMARY REPORT

Project: Fayette Q1 - CCR RunID: ICP-MS4_240207B

The QC data in batch 113876 applies to the following samples: 2402007-01A, 2402007-02A, 2402007-03A, 2402007-04A, 2402007-05A, 2402007-05A, 2402007-05A, 2402007-09A

, , ,	,									
Sample ID: MB-113876	Batch ID:	113876		TestNo	: SW	/6020B	ι	Jnits:	mg/L	
SampType: MBLK	Run ID:	ICP-MS	4_240207B	Analys	is Date: 2/7	/2024 2:59:00	PM F	Prep Date:	2/7/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit H	HighLimit	%RPD RPDLimit	Qual
Boron	<	0.0100	0.0300							
Calcium		<0.100	0.300							

Sample I	D: LCS-113876	Batch ID:	113876		TestNo:	s	W6020B		Units:	mg/L	
SampTy	oe: LCS	Run ID:	ICP-MS4	_240207B	Analysis	s Date: 2	/7/2024 3:01:00	PM	Prep Date:	2/7/2024	
Analyte		l	Result	RL	SPK value	Ref Va	l %REC	LowLimit	HighLimit	%RPD RPD	Limit Qual
Boron			0.194	0.0300	0.200	0	96.8	80	120		
Calcium			5.22	0.300	5.00	0	104	80	120		

Sample ID: LCSD-113876	Batch ID:	113876		TestNo:	S	W6020B	Units:	mg/L	-
SampType: LCSD	Run ID:	ICP-MS4_	240207B	Analysis	s Date: 2	/7/2024 3:03:00 PM	Prep Date	2/7/2	2024
Analyte		Result	RL	SPK value	Ref Va	I %REC Low	Limit HighLimit	%RPD	RPDLimit Qual
Boron		0.202	0.0300	0.200	0	101 8	0 120	4.45	15
Calcium		5.20	0.300	5.00	0	104 8	0 120	0.482	15

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

d Detection Limit Page 2 of 9

Work Order: 2402007

Project: Fayette Q1 - CCR

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS4_240207B

Sample ID: ICV-24020	7 Batch ID	R13128	31	TestNo:	SW	6020B		Units:	mg/L	
SampType: ICV	Run ID:	ICP-MS	64_240207B	Analysis	s Date: 2/7/	2024 11:55:0	00 AM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual
Boron		0.0958	0.0300	0.100	0	95.8	90	110		
Calcium		2.50	0.300	2.50	0	100	90	110		
Sample ID: LCVL-2402	207 Batch ID	: R13128	31	TestNo:	SW	6020B		Units:	mg/L	
SampType: LCVL	Run ID:	ICP-MS	64_240207B	Analysis	s Date: 2/7/	2024 12:05:0	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual
Boron		0.0192	0.0300	0.0200	0	95.9	80	120		
Calcium		0.0870	0.300	0.100	0	87.0	80	120		
Sample ID: CCV1-240	207 Batch ID	: R13128	31	TestNo:	SW	6020B		Units:	mg/L	
SampType: CCV	Run ID:	ICP-MS	S4_240207B	Analysis	s Date: 2/7/	2024 2:34:00	0 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual
Boron		0.199	0.0300	0.200	0	99.3	90	110		
Calcium		5.02	0.300	5.00	0	100	90	110		
Sample ID: CCV2-2402	207 Batch ID	: R13128	31	TestNo:	SW	6020B		Units:	mg/L	
SampType: CCV	Run ID:	ICP-MS	S4_240207B	Analysis	s Date: 2/7/	2024 3:44:00	0 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual
Boron		0.194	0.0300	0.200	0	96.8	90	110		
Calcium		5.03	0.300	5.00	0	101	90	110		
Sample ID: CCV3-240	207 Batch ID	: R13128	31	TestNo:	SW	6020B		Units:	mg/L	
SampType: CCV	Run ID:	ICP-MS	S4_240207B	Analysis	s Date: 2/7/	2024 4:17:00	0 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RP	DLimit Qual
Boron		0.202	0.0300	0.200	0	101	90	110		
DOTOIT		0.202	0.0300	0.200						
Calcium		5.05	0.300	5.00	0	101	90	110		
	207 Batch ID		0.300			101 6020B	90	110 Units:	mg/L	
Calcium	207 Batch ID Run ID:	5.05 : R1312 8	0.300	5.00 TestNo:	SW				•	
Calcium Sample ID: CCV4-240		5.05 : R1312 8	0.300	5.00 TestNo:	SW	6020B	O PM	Units:	:	DLimit Qual
Calcium Sample ID: CCV4-240: SampType: CCV		5.05 : R13128 ICP-MS	0.300 31 S4_240207B	5.00 TestNo: Analysis	SW (s Date: 2/7/ 2	6020B 2024 4:33:00	O PM	Units: Prep Date	:	DLimit Qual

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Page 3 of 9

N Parameter not NELAP certified

CLIENT:

BBA Engineering

Work Order:

2402007

Project:

Fayette Q1 - CCR

ANALYTICAL QC SUMMARY REPORT

RunID: IC4_240125A

Sample ID: DCS2-113705	Batch ID:	113705		TestNo	E30	0		Units:	mg/	L
SampType: DCS2	Run ID:	IC4_240	125A	Analys	is Date: 1/25	/2024 6:22	47 PM	Prep Date	: 1/25	5/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
Chloride		0.496	1.00	0.5000	0	99.3	70	130	0	0
Fluoride		0.176	0.400	0.2000	0	87.9	70	130	0	0
Sulfate		1.26	3.00	1.500	0	84.1	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 4 of 9

Work Order: 2402007

ANALYTICAL QC SUMMARY REPORT

Project: Fayette Q1 - CCR RunID: IC4_240201B

The QC data in batch 113810 applies to the following samples: 2402007-01B, 2402007-02B, 2402007-03B, 2402007-04B, 2402007-05B, 2402007-06B, 2402007-07B, 2402007-07B, 2402007-09B

	7-07B, 2402007-08E			трісз. 240	2007-015, 2402	001 02B, 2-	+02007 001	, Z+0Z00	7-040, 24020	707-00В,	2402007	
Sample ID: N	/IB-113810	Batch ID:	113810		TestNo:	E300	0		Units:	mg/L		
SampType: N	MBLK	Run ID:	IC4_2402	01B	Analysis	Date: 2/1/2	2024 10:34:	23 AM	Prep Date:	2/1/20	24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁹	%RPD R	PDLimit	Qual
Chloride			<0.300	1.00								
Fluoride			<0.100	0.400								
Sulfate			<1.00	3.00								
Sample ID: L	CS-113810	Batch ID:	113810		TestNo:	E300	0		Units:	mg/L		
SampType: L	.cs	Run ID:	IC4_2402	01B	Analysis	Date: 2/1/2	2024 10:53:	23 AM	Prep Date:	2/1/20	24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁹	%RPD R	PDLimit	Qual
Chloride			9.40	1.00	10.00	0	94.0	90	110			
Fluoride			3.68	0.400	4.000	0	92.0	90	110			
Sulfate			29.3	3.00	30.00	0	97.6	90	110			
Sample ID: L	CSD-113810	Batch ID:	113810		TestNo:	E300	0		Units:	mg/L		
SampType: L	.CSD	Run ID:	IC4_2402	01B	Analysis Date: 2/1/2024 11:12:23 AM			23 AM	Prep Date:	2/1/20	24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁹	%RPD R	PDLimit	Qual
Chloride			9.41	1.00	10.00	0	94.1	90	110	0.073	20	
Fluoride			3.69	0.400	4.000	0	92.2	90	110	0.176	20	
Sulfate			29.3	3.00	30.00	0	97.5	90	110	0.111	20	
Sample ID: 2	2402007-05BMS	Batch ID:	113810		TestNo:	E300	0		Units:	mg/L		
SampType: N	MS	Run ID:	IC4_2402	01B	Analysis	Date: 2/1/2	2024 6:56:2	0 PM	Prep Date:	2/1/20	24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁹	%RPD R	PDLimit	Qual
Chloride			3880	100	2000	2211	83.5	90	110			S
Fluoride			1950	40.0	2000	0	97.4	90	110			
Sulfate			2550	300	2000	669.7	94.0	90	110			
Sample ID: 2	402007-05BMSD	Batch ID:	113810		TestNo:	E300	0		Units:	mg/L		
SampType: N	MSD	Run ID:	IC4_2402	01B	Analysis	Date: 2/1/2	2024 7:15:2	0 PM	Prep Date:	2/1/20	24	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁹	%RPD R	PDLimit	Qual
Chloride			3880	100	2000	2211	83.4	90	110	0.039	20	S
Fluoride			1950	40.0	2000	0	97.5	90	110	0.033	20	
			2550	300	2000		94.0	90			20	

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

28

Page 5 of 9

Work Order: 2402007

IC4_240201B **RunID:** Project: Fayette Q1 - CCR

	1 ayette Q1	CCIC							<u> </u>		
Sample ID:	ICV-240201	Batch ID:	R131200		TestNo:	E300			Units:	mg/	L
SampType:	ICV	Run ID:	IC4_24020	1B	Analysis	s Date: 2/1/20	24 9:56:2	3 AM	Prep Date:	•	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Chloride			24.2	1.00	25.00	0	96.7	90	110		
Fluoride			9.45	0.400	10.00	0	94.5	90	110		
Sulfate			75.1	3.00	75.00	0	100	90	110		
Sample ID:	CCV1-240201	Batch ID:	R131200		TestNo:	E300			Units:	mg/	L
SampType:	ccv	Run ID:	IC4_24020	1B	Analysis	Date: 2/1/20	24 10:25:	20 PM	Prep Date:	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Chloride			9.49	1.00	10.00	0	94.9	90	110		
Fluoride			3.76	0.400	4.000	0	94.0	90	110		
Sulfate			29.5	3.00	30.00	0	98.3	90	110		
Sample ID:	CCV2-240201	Batch ID:	R131200		TestNo:	E300			Units:	mg/	L
SampType:	ccv	Run ID:	IC4_24020	1B	Analysis	s Date: 2/2/20	24 2:51:2	0 AM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Chloride			9.49	1.00	10.00	0	94.9	90	110		
Fluoride			3.78	0.400	4.000	0	94.5	90	110		
Sulfate			29.5	3.00	30.00	0	98.3	90	110		
Sample ID:	CCV3-240201	Batch ID:	R131200		TestNo:	E300			Units:	mg/	L
SampType:	ccv	Run ID:	IC4_24020	1B	Analysis	Date: 2/2/20	24 7:17:1	9 AM	Prep Date:	:	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
Chloride			9.45	1.00	10.00	0	94.5	90	110		
Fluoride			3.78	0.400	4.000	0	94.6	90	110		
Sulfate			29.5	3.00	30.00	0	98.4	90	110		

Qualifiers:	В	
-------------	---	--

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits Parameter not NELAP certified

Page 6 of 9

ANALYTICAL QC SUMMARY REPORT

Work Order: 2402007

ANALYTICAL QC SUMMARY REPORT

Project: Fayette Q1 - CCR RunID: IC4_240202B

= = ·j · · · · ·	(_			
The QC data in batch 113823 applies to the following samples: 2402007-01B, 2402007-02B, 2402007-04B, 2402007-06B											
Sample ID: MB-113823	Batch ID:	113823		TestNo:	E300			Units:	mg/L		
SampType: MBLK	Run ID:	IC4_24	0202B	Analysis	s Date: 2/2/20	24 11:47:	12 AM	Prep Date:	2/2/2024		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDL	imit Qual	
Chloride		<0.300	1.00								
Sample ID: LCS-113823	Batch ID:	113823		TestNo:	E300			Units:	mg/L		
SampType: LCS	Run ID:	IC4_24	0202B	Analysis	s Date: 2/2/20	24 12:06:	12 PM	Prep Date:	2/2/2024		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDL	imit Qual	
Chloride		9.59	1.00	10.00	0	95.9	90	110			
Sample ID: LCSD-113823	Batch ID:	113823		TestNo:	E300			Units:	mg/L		
SampType: LCSD	Run ID:	IC4_24	0202B	Analysis	s Date: 2/2/20	24 12:25:	12 PM	Prep Date:	2/2/2024		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDL	imit Qual	
Chloride		9.60	1.00	10.00	0	96.0	90	110	0.113 20)	
Sample ID: 2402007-02BMS	Batch ID:	113823		TestNo:	E300			Units:	mg/L		
SampType: MS	Run ID:	IC4_24	0202B	Analysis	s Date: 2/2/20	24 3:49:0	5 PM	Prep Date:	2/2/2024		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDL	imit Qual	
Chloride		3300	100	2000	1443	93.0	90	110			
Sample ID: 2402007-02BMSE	Batch ID:	113823		TestNo:	E300			Units:	mg/L		
SampType: MSD	Run ID:	IC4_24	0202B	Analysis	s Date: 2/2/20	24 4:08:0	5 PM	Prep Date:	2/2/2024		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD RPDL	imit Qual	
Chloride		3310	100	2000	1443	93.1	90	110	0.064 20)	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 7 of 9

R

Work Order: 2402007

Chloride

ANALYTICAL QC SUMMARY REPORT

Project: Fayette Q1 - CCR RunID: IC4_240202B

1.00

9.64

Sample ID: ICV-240202	Batch ID:	R131213		TestNo:	E300			Units:	mg/L
SampType: ICV	Run ID:	IC4_240202	В	Analysis	Date: 2/2/20	24 11:09:1	12 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Chloride		24.3	1.00	25.00	0	97.3	90	110	
Sample ID: CCV1-240202	Batch ID:	R131213		TestNo:	E300			Units:	mg/L
SampType: CCV	Run ID:	IC4_240202	В	Analysis	Date: 2/2/20	24 6:59:05	5 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual

10.00

0

96.4

90

110

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

31

Page 8 of 9

Total Dissolved Solids (Residue, Filtera

J

Work Order: 2402007

ANALYTICAL QC SUMMARY REPORT

5

Page 9 of 9

4.55

Project: Fayette Q1 - CCR RunID: WC_240202B

The QC data in batch 113821 applies to the following samples: 2402007-01B, 2402007-02B, 2402007-03B, 2402007-04B, 2402007-05B, 2402007-06B, 2402007-07B, 2402007-07B, 2402007-09B

06B, 2402007	7-07B, 2402007-08B	3, 2402007-	09B		,			•	,		
Sample ID: N	/IB-113821	Batch ID:	113821		TestNo:	M254	0C		Units:	mg/L	
SampType: N	MBLK	Run ID:	WC_240202	В	Analysis	Date: 2/2/20	24 2:00:00	PM (Prep Date:	2/2/2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPI	DLimit Qual
Total Dissolve	ed Solids (Residue,	Filtera	<10.0	10.0							
Sample ID: L	-CS-113821	Batch ID:	113821		TestNo:	M254	0C		Units:	mg/L	
SampType: L	.cs	Run ID:	WC_240202	В	Analysis	Date: 2/2/20	24 2:00:00) PM	Prep Date:	2/2/2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPI	DLimit Qual
Total Dissolve	ed Solids (Residue,	Filtera	743	10.0	745.6	0	99.7	90	113		
Sample ID: 2	402007-01B-DUP	Batch ID:	113821		TestNo:	M254	0C		Units:	mg/L	
SampType: [DUP	Run ID:	WC_240202	В	Analysis	Date: 2/2/20	24 2:00:00) PM	Prep Date:	2/2/2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPI	DLimit Qual
Total Dissolve	ed Solids (Residue,	Filtera	4860	50.0	0	4815				0.930	5
Sample ID: 2	402007-02B-DUP	Batch ID:	113821		TestNo:	M254	0C		Units:	mg/L	
SampType: [DUP	Run ID:	WC_240202	В	Analysis	Date: 2/2/20	24 2:00:00	PM (Prep Date:	2/2/2024	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPI	Limit Qual

0

4945

50.0

4730

Qualifiers: B Analyte detected in the associated Method Blank DF Dilution Factor

Analyte detected between MDL and RL MDL Method Detection Limit

ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits

Analyte detected between SDL and RL N Parameter not NELAP certified

Date: 08-Feb-24

CLIENT: BBA Engineering

Work Order: 2402007

Project: Fayette Q1 - CCR

TestNo:	E300	MDL	MQL
Analyte		mg/L	mg/L
Chloride		0.300	1.00
Fluoride		0.100	0.400
Sulfate		1.00	3.00
TestNo:	SW6020B	MDL	MQL
Analyte		mg/L	mg/L
Boron		0.0100	0.0300
Calcium		0.100	0.300
TestNo:	M2540C	MDL	MQL
Analyte		mg/L	mg/L
Total Dis	solved Solids (Residue, Filt	10.0	10.0

Qualifiers: MQL -Method Quantitation Limit as defined by TRRP

MDL -Method Detection Limit as defined by TRRP

April 18, 2024

Charlie Macon BBA Engineering 165 N. Lampasas St. Bertram, TX 78605

TEL: (512) 585-7180

FAX: Order No.: 2404054

RE: Fayette Power Project Q1

Dear Charlie Macon:

DHL Analytical, Inc. received 3 sample(s) on 4/5/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-23-29

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2404054	8
WorkOrderSampleSummary 2404054	9
PrepDatesReport 2404054	10
AnalyticalDatesReport 2404054	11
Analytical Report 2404054	12
AnalyticalQCSummaryReport 2404054	13
MQLSummaryReport 2404054	16

2300 Double Creek Dr. Round Rock, TX 78664

Phone 512.388.8222

CHAIN-OF-CUSTODY

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

CLIENT: BBA Engineering ADDRESS: 165 N. Lampasas St. Berram, IX PHONE: 512-821-4059 EMAIL: SMACON BBAENG DATA REPORTED TO: CMACON BBAENG INCERING. C ADDITIONAL REPORT COPIES TO:						DATE: 4-5-24							LAB USE ONLY																			
ADDRESS: 165 N.	lamp	15a	s St.	Berl	TaM/	X	PC	#:													DHI	L W	ORK	OR	DEF	₹#:	241	040	15 ^C	1		
PHONE: 512-820-	1059	EM/	AIL: 5	macon	OBB)	Englice	shg.	رون ۱۴۲) T1(ار ۵	TIC	NI C)R N	ΔΝΛ	Ē٠	Fa	Me	. †	te	Pa	wie	<u>, </u>	P	ر د و	ø (†	Ć	1,				
DATA REPORTED TO: (CMaa	n@	BB 1	4 Engin	eerin	9.000	ı uc	JJ L C		<i></i>		, N C	/1\ 1\.	~IVI	۲.)		-	,			, .	J		,		-				
ADDITIONAL REPORT CO	PIES TO	D :				7	CLII	ENT	PRO	DJEC	CT#	ł									COL	LEC	TOI	₹:	5	an	ne		M	960	1	
Authorize 5% surcharge		W=\	WATE	R	SE=SE	DIMENT	ا	PRES	ERV	/ATI	ON			- 1						LS 🗆			1	- q	1	ll						
for TRRP report?	Lab	L=LI	QUID		P=PAI	NT					X		[09]			ŀ		T 827	□ 628 IONIA	META			ERB	111	ASE							
☐ Yes ☐ No	Use	S=S0	OIL		SL=SL	UDGE	S.	Q 4	ı	etat	RVE	ES	00 82	Ĕ _	.	0		P PES	8270 AMN	DISS.			[Ę	L&GRI	CA						
	Only	SO=	SOLID		,		ine	H ₃ PO ₄		Zn Acetate 🗆	ESE	[XS	METH	8015	524.1	C 625.	PAH	<u> </u>		0.8		Ä K		RA 8	ō	OIST						
Field Sample I.D.	DHL Lab#	1	ection ate	Collection Time	Matrix	Container Type	빌	HCL CI	H.SO.	l		ANALYSES	BTEX MTBE [METHOD 8260]	GRO 8015 DRO	VOC 8260 □ VOC 624.1 □	SVOC 8270 □ SVOC 625.1 □	РАН 8270 □ НОЦО РАН □	PEST 8270 □ 625.1 □ O-P PEST 8270 □	PCB 8082 □ 608.3 □ PCB 8270 □ 625.1 □ HERB 8321 □ T PHOS □ AMMONIA □	METALS 6020 □ 200.8 □ DISS. METALS □	RCRA 8 🗆 TX11 🗆	PH□ HEX CHROM□ ALKALINITY□ COD□	TCLP-SVOC U VOC PEST HERB	TCLP-METALS □ RCRA 8 □ TX-11 □ Pb □	RCI 🗆 IGN 🗆 DGAS	TDS □ TSS □ % MOIST □ CYANIDE □	Baron) NOTE	S
CBL -302I	01	4-5	- 24	1105	W	pL	1	\ \	<u>(</u>		X																X		H	oths	<i>M</i>	
CBL-302I(N)	02	Ĺ		1105		• 1	1				χ																X	$oxed{oxed}$		old-	Need	Politer
CBL-302 I(F)	03	L		1105	1	4		>	1		X															Ш	X		LH	hld	-00	11107
•			7				Ш		_	ļ	Ш			\perp	_	Ш		_					\perp	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		Ш	1	\bot				
	<u> </u>	<u> </u>					Ш		┸					_		Ш	_	4	_				\perp				\dashv	4	_			
	ļ	ļ			ļ		Ш	_	1				_	_	-	Ш	_	4			\perp		\bot	\bot			\dashv		4			
		ļ			ļ		\sqcup	_	\bot	-	\sqcup		_	\bot	\bot	Ш	_	4	_	_	\perp	_	1	_			\dashv	4	4			
	ļ	<u> </u>			ļ		$\vdash \vdash$	_	+	+-	\vdash		_	+	+	Н	\dashv	+		-	\vdash	+	+	+-	-	-	\dashv	_	_			
	<u> </u>	-					\vdash	-	+	-	\vdash	-	_	\dashv	+	$\vdash\vdash$	-	\dashv	_	-	-		+	+-	┼		\dashv	+	+			
		<u> </u>					\vdash	+	+		\vdash		+	+	+	Н	+	+	+	\vdash		-	+	+	\vdash		\dashv	+	+-			
		 					\vdash	+	+	╫	Н	-	_	+	╫	\vdash		+		+	+	_	+	╁	\vdash	\vdash	\dashv	+	+			
	<u> </u>	 					H	+	+	╁	Н	ŀ	+	+	╁	\vdash	+	+	-	╁	+	+	+	╁	\vdash	\vdash	\dashv	+	+			
	<u> </u>				<u> </u>		H	+	╁	+	H	lŀ	_	+	+	H	+	\dashv	+	+	\vdash	+	+	+	1		\dashv	+	+			
		†					H	+	\dagger	+		l	\dashv	+	+	H	+	十				十	+	╁			\top	+	+			
							,	\top	\top	T	T			十	T	H	十	\top	\top		H	\top	1	1			\top	\top	1			
Relinguished By: (Sign)	0/10	≫ \	4-	DATE/TIME	@14	Recei	red by	Ju	Ju	<u>.</u>			RN A					- 1	AB U			1P (°	C):	5		٥		T	HER	MO #:	8 /	,
Relinquished By: (Sign)		_		DATE/TIME		Receiv	ed by	<i>'</i> :			RL	JSH-:	1 DA	Y□	RUS	H-2 [DAYE] ⊏	F >6°	C, AR	E SA	MPL	ES O	N IC	E AN	ון סו	JST C	OLLE	ECTE	D? Y	ES/NO	
															DAY																NOT U	
Relinquished By: (Sign)				DATE/TIME		Recei	ed by	<i>'</i> :					RMAI	└ X	0	THEF		- 1	CARRI	ER:	□ LS	0 🗆	FED	EX [□ UF	PS [] CO	JRIEF	R 🗹	HAND	DELIVER	ED
<u></u>			<u> </u>								DL	JE D	ATE _	-			[1			
Æ, DI	DHL COC REV 4 MAR 2023																															

3

		Sample	Receipt Chec	klist		
Client Name: BBA En	gineering			Date Recei	ived: 4/5/2024	
Work Order Number:	2404054			Received b	y: KAO	
Checklist completed b	y: Signature	4/5/2024 Date Carrier name:	Hand Delivered	Reviewed b	py: Sij	4/5/2024 Date
		Carrier name.	riana Benverea			
Shipping container/cod	oler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact o	n shipping container/coole	er?	Yes	No 🗌	Not Present	
Custody seals intact o	n sample bottles?		Yes	No 🗌	Not Present 🗹	
Chain of custody prese	ent?		Yes 🗹	No 🗌		
Chain of custody signe	ed when relinquished and	received?	Yes 🗹	No 🗌		
Chain of custody agree	es with sample labels?		Yes 🗹	No 🗌		
Samples in proper cor	tainer/bottle?		Yes 🗸	No 🗌		
Sample containers into	act?		Yes 🗸	No 🗌		
Sufficient sample volu	me for indicated test?		Yes 🗸	No 🗌		
All samples received v	vithin holding time?		Yes 🗹	No 🗌		
Water - VOA vials hav	e zero headspace?		Yes	No 🗌	No VOA vials submitte	ed 🗹 NA 🗌
Water - pH<2 acceptal	ble upon receipt?		Yes 🗹	No 🗌	NA LOT#	11837
			Adjusted?	0	Checked by	1.A-
Water - ph>9 (S) or ph	>10 (CN) acceptable upor	n receipt?	Yes Adjusted?	No 🗌	NA LOT#	
Container/Temp Blank	temperature in compliance	æ?	Yes 🗹	No 🗆	_	
Cooler#	1					
Temp °C	5.1					
Seal Intact	NP					
Any No response must	t be detailed in the comme	ents section below.				
Client contacted:		Date contacted:		Per	rson contacted:	
Contacted by:		Regarding:				The second secon
Comments:						
Corrective Action:						

		tory Name: DHL Analytical, Inc.						
		tory Review Checklist: Reportable Data me: Fayette Power Project Q1 LRC D	Pate: 4/18/2024					
– –								
			ntory Work Order: 2404054					
•			atch: See Analytical Dates Report					
#1	A^2	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
D1	O.T.	Chain-of-Custody (C-O-C)						7.1.01
R1	OI	1) Did samples meet the laboratory's standard conditions of sample		X		T 7		R1-01
D2	OI	2) Were all departures from standard conditions described in an exc	ception report?			X		
R2	OI	Sample and Quality Control (QC) Identification 1) Are all field sample ID numbers cross-referenced to the laborator	ry ID numbers?	X				
		2) Are all laboratory ID numbers cross-referenced to the correspondence		X				
R3	OI	Test Reports	ang Qe aaa.	7.				
		1) Were all samples prepared and analyzed within holding times?		X				
		2) Other than those results < MQL, were all other raw values brack	eted by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?		X				
		4) Were all analyte identifications checked by a peer or supervisor?		X				
		5) Were sample detection limits reported for all analytes not detect		X				
		6) Were all results for soil and sediment samples reported on a dry				X		
		7) Were % moisture (or solids) reported for all soil and sediment so				X		
		8) Were bulk soils/solids samples for volatile analysis extracted wi	th methanol per EPA Method 5035?			X		
R4	0	9) If required for the project, TICs reported? Surrogate Recovery Data				Λ		
N4	0	1) Were surrogates added prior to extraction?				X		
		2) Were surrogate percent recoveries in all samples within the labo	ratory OC limits?			X		
R5	OI	Test Reports/Summary Forms for Blank Samples						
		1) Were appropriate type(s) of blanks analyzed?		X				
		2) Were blanks analyzed at the appropriate frequency?		X				
		3) Where method blanks taken through the entire analytical process	s, including preparation and, if	X				
		applicable, cleanup procedures?						
		4) Were blank concentrations < MDL?		X				
		5) For analyte(s) detected in a blank sample, was the concentration				X		
D/	OI	factors, in all associated field samples, greater than 10 times the co	oncentration in the blank sample?					
R6	OI	Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS?		X				
		2) Was each LCS taken through the entire analytical procedure, inc	luding prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?	rading prop and creamap scops.	X				
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory	OC limits?	X				
		5) Does the detectability data document the laboratory's capability						
		to calculate the SDLs?		X				
		6) Was the LCSD RPD within QC limits (if applicable)?		X				
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data	1) (0)					
		1) Were the project/method specified analytes included in the MS a	and MSD?	X				
		2) Were MS/MSD analyzed at the appropriate frequency?	C 1::4-9	X				
		3) Were MS (and MSD, if applicable) %Rs within the laboratory Q 4) Were MS/MSD RPDs within laboratory QC limits?	C limits?	X				
R8	OI	Analytical Duplicate Data		Λ				
No	OI	1) Were appropriate analytical duplicates analyzed for each matrix)			X		
		2) Were analytical duplicates analyzed at the appropriate frequency				X		
		3) Were RPDs or relative standard deviations within the laboratory				X		
R9	OI	Method Quantitation Limits (MQLs):						
		1) Are the MQLs for each method analyte included in the laborator	y data package?	X				
		2) Do the MQLs correspond to the concentration of the lowest non-	zero calibration standard?	X				
		3) Are unadjusted MQLs and DCSs included in the laboratory data	package?	X				
R10	OI	Other Problems/Anomalies						
		1) Are all known problems/anomalies/special conditions noted in the		X				
		2) Was applicable and available technology used to lower the SDL affects on the sample results?	to minimize the matrix interference	X				
		affects on the sample results? 3) Is the laboratory NELAC-accredited under the Texas Laboratory	Accreditation Program for the					
		analytes, matrices and methods associated with this laboratory data		X				
		1 ,, manifest and monifold abboolated with this interfacely date	r					

		tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist (continued): Supporting						
Proje	ct Na	ame: Fayette Power Project Q1	Date: 4/18/2024					
Revie	wer	Name: Angie O'Donnell Labor	atory Work Order: 2404054					
Prep	Batc	h Number(s): See Prep Dates Report Run F	Batch: See Analytical Dates Report					
# ¹	\mathbf{A}^2	Description	, ,	Yes	No	NA ³	NR^4	ER#5
S1		Initial Calibration (ICAL)		100	110	1112	1120	DIC.
		· · · · ·	1-4i41-i OC 1:i4-9	v				
		1) Were response factors and/or relative response factors for each a 2) Were percent RSDs or correlation coefficient criteria met?	naryte within QC limits?	X				
		3) Was the number of standards recommended in the method used f	For all analytes?	X				
		4) Were all points generated between the lowest and highest standards		X				
		5) Are ICAL data available for all instruments used?	ta used to calculate the carve.	X				
		6) Has the initial calibration curve been verified using an appropriate	te second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV						
		blank (CCB):	,					
		1) Was the CCV analyzed at the method-required frequency?		X				
		2) Were percent differences for each analyte within the method-req	uired QC limits?	X				
		3) Was the ICAL curve verified for each analyte?		X				
		4) Was the absolute value of the analyte concentration in the inorga	nic CCB < MDL?	X				
S3	О	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		X				
		2) Were ion abundance data within the method-required QC limits?		X				
S4	О	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-requi	red QC limits?	X				
S5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral data) r		X				
~ -		2) Were data associated with manual integrations flagged on the ray	X					
S6	О	Dual Column Confirmation	0.60			***		
0.5	_	1) Did dual column confirmation results meet the method-required	QC?	_		X		
S7	0	Tentatively Identified Compounds (TICs):				37		
S8	т	1) If TICs were requested, were the mass spectra and TIC data subj Interference Check Sample (ICS) Results:	ect to appropriate checks?			X		
50	1	1) Were percent recoveries within method QC limits?		X				
S9	ī	Serial Dilutions, Post Digestion Spikes, and Method of Standard	1 Additions	Λ				
57	1							
		1) Were percent differences, recoveries, and the linearity within method?	n the QC limits specified in the	X				
S10	OI	Method Detection Limit (MDL) Studies						
510		1) Was a MDL study performed for each reported analyte?		X				
		2) Is the MDL either adjusted or supported by the analysis of DCSs	?	X				
S11	OI	Proficiency Test Reports:		7.				
		1) Was the lab's performance acceptable on the applicable proficien	cv tests or evaluation studies?	X				
S12	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtained	from other appropriate sources?	X				
S13	OI	Compound/Analyte Identification Procedures	• • •					
		1) Are the procedures for compound/analyte identification document	nted?	X				
S14	OI	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5 – Appen		X				
		2) Is documentation of the analyst's competency up-to-date and on		X				
S15	OI	Verification/Validation Documentation for Methods (NELAC C	hapter 5)					
		1) Are all the methods used to generate the data documented applicable?	l, verified, and validated, where	X				
S16	OI	Laboratory Standard Operating Procedures (SOPs):						
		1) Are laboratory SOPs current and on file for each method perform	ned?	X				
					1			

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 – June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director $\begin{array}{ccc}
 & 04/18/2 \\
 & \text{Date} \\
\end{array}$

CLIENT: BBA Engineering

Project: Fayette Power Project Q1 CASE NARRATIVE

Date: 18-Apr-24

Lab Order: 2404054

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis

Exception Report R1-01

The samples were received and log-in performed on 4/5/2024. A total of 3 samples were received and 1 was analyzed; two samples remained on-hold per the client. The samples arrived in good condition and were properly packaged.

Date: 18-Apr-24

CLIENT: BBA Engineering

Project: Fayette Power Project Q1 Work Order Sample Summary

Lab Order: 2404054

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2404054-01	CBL-302I		04/05/24 11:05 AM	04/05/2024
2404054-02	CBL-302I(N)		04/05/24 11:05 AM	04/05/2024
2404054-03	CBL-302I(F)		04/05/24 11:05 AM	04/05/2024

Lab Order: 2404054

Client: BBA Engineering

Project: Fayette Power Project Q1

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2404054-01A	CBL-302I	04/05/24 11:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	04/08/24 07:12 AM	114841
	CBL-302I	04/05/24 11:05 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	04/08/24 07:12 AM	114841

Lab Order: 2404054

Client: BBA Engineering

Project: Fayette Power Project Q1

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2404054-01A	CBL-302I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	114841	1	04/09/24 01:51 PM	ICP-MS5_240409B
	CBL-302I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	114841	1	04/09/24 03:22 PM	ICP-MS4_240409B

CLIENT: BBA Engineering Client Sample ID: CBL-302I

Project: Fayette Power Project Q1 **Lab ID:** 2404054-01

Project No: 23630 **Collection Date:** 04/05/24 11:05 AM

Lab Order: 2404054 Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.163	0.0100	0.0300		mg/L	1	04/09/24 03:22 PM

Date:

18-Apr-24

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 1

CLIENT: BBA Engineering

Fayette Power Project Q1

Work Order: 2404054

Project:

ANALYTICAL QC SUMMARY REPORT

Date: 18-Apr-24

Page 1 of 3

RunID: ICP-MS4_240304A

Sample ID: DCS4-114267	Batch ID:			TestNo		V6020B	00 484	Units:	mg/	
SampType: DCS4 Analyte	Run ID:	Result	8 4_240304A RL	SPK value	Ref Val	%REC		Prep Date t HighLimit		RPDLimit Qual
Boron		0 0299	0.0300	0.0300	0	99.8	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

 $R \quad \ RPD \ outside \ accepted \ control \ \ limits$

S Spike Recovery outside control limits

N Parameter not NELAP certified

Work Order: 2404054

ANALYTICAL QC SUMMARY REPORT

Project: Fayette Power Project Q1

RunID: ICP-MS4_240409B

a in batch 114841 app	olles to the	following sa	mples: 2404	4054-01A						
MB-114841	Batch ID:	114841		TestNo:	swe	6020B		Units:	mg/L	
MBLK	Run ID:	ICP-MS4	_240409B	Analysis	Date: 4/9/2	2024 2:21:00) PM	Prep Date:	4/8/202	4
		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
	<	<0.0100	0.0300							
LCS-114841	Batch ID:	114841		TestNo:	SWe	6020B		Units:	mg/L	
LCS	Run ID:	ICP-MS4	_240409B	Analysis	Date: 4/9/2	2024 2:23:00	PM	Prep Date:	4/8/202	4
		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
		0.196	0.0300	0.200	0	98.2	80	120		
LCSD-114841	Batch ID:	114841		TestNo:	SWe	6020B		Units:	mg/L	
LCSD	Run ID:	ICP-MS4	_240409B	Analysis	Date: 4/9/2	2024 2:25:00	PM	Prep Date:	4/8/202	4
		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
		0.196	0.0300	0.200	0	97.8	80	120	0.441	15
2404040-08A SD	Batch ID:	114841		TestNo:	swe	6020B		Units:	mg/L	
SD	Run ID:	ICP-MS4	_240409B	Analysis	Date: 4/9/2	2024 2:31:00) PM	Prep Date:	4/8/202	4
		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
		0.249	0.150	0	0.239				4.12	20
2404040-08A PDS	Batch ID:	114841		TestNo:	SWe	6020B		Units:	mg/L	
PDS	Run ID:	ICP-MS4	_240409B	Analysis	Date: 4/9/2	2024 2:50:00) PM	Prep Date:	4/8/202	4
		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD RP	DLimit Qual
		0.439	0.0300	0.200	0.239	99.7	75	125		
2404040-08A MS	Batch ID:	114841		TestNo:	swe	6020B		Units:	mg/L	
MS	Run ID:	ICP-MS4	_240409B	Analysis	Date: 4/9/2	2024 2:52:00	PM	Prep Date:	4/8/202	4
			D I	ODK	Dof Vol	%REC	Lowl imi	it Highlimit 0	ARPD RP	DLimit Qual
		Result	RL	SPK value	Ref Val	/OINEC	LOWLIIII	it HighLinnit 7	OIN DIN	
		Result 0.452	0.0300	0.200	0.239	106	75	125		
2404040-08A MSD	Batch ID:				0.239				mg/L	
2404040-08A MSD MSD		0.452	0.0300	0.200 TestNo:	0.239	106	75	125		
	Batch ID: Run ID:	0.452	0.0300	0.200 TestNo:	0.239	106 6020B	75) PM	125 Units:	mg/L 4/8/202	4
	MB-114841 MBLK LCS-114841 LCS LCSD-114841 LCSD 2404040-08A SD SD 2404040-08A PDS PDS	MB-114841 Batch ID: MBLK Run ID: LCS-114841 Batch ID: Run ID: LCSD Run ID: 2404040-08A SD Batch ID: SD Run ID: 2404040-08A PDS Batch ID: Run ID:	MB-114841 Batch ID: 114841 MBLK Run ID: ICP-MS4 Result <0.0100 LCS-114841 Batch ID: 114841 LCS Run ID: ICP-MS4 Result 0.196 LCSD-114841 Batch ID: 114841 LCSD Run ID: ICP-MS4 Result 0.196 2404040-08A SD Batch ID: 114841 SD Run ID: ICP-MS4 Result 0.249 2404040-08A PDS Batch ID: 114841 PDS Run ID: ICP-MS4 Result 0.249 2404040-08A PDS Batch ID: 114841 Run ID: ICP-MS4 Result 0.249 2404040-08A PDS Batch ID: 114841 Run ID: ICP-MS4 Result 0.439	MB-114841 Batch ID: 114841 MBLK Run ID: ICP-MS4_240409B Result RL <0.0100 0.0300 LCS-114841 Batch ID: 114841 LCS Run ID: ICP-MS4_240409B Result RL 0.196 0.0300 LCSD Run ID: ICP-MS4_240409B Result RL 0.196 0.0300 2404040-08A SD Batch ID: 114841 SD Run ID: ICP-MS4_240409B Result RL 0.249 0.150 2404040-08A PDS Batch ID: 114841 PDS Result RL Result RL 0.439 0.0300 2404040-08A MS Batch ID: 114841	MB-114841 Batch ID: 114841 TestNo: MBLK Run ID: ICP-MS4_240409B Analysis Result RL SPK value <0.0100	MB-114841 Batch ID: 114841 TestNo: SW0 MBLK Run ID: ICP-MS4_240409B Analysis Date: 4/9/: Result RL SPK value Ref Val <0.0100	MB-114841 Batch ID: 114841 TestNo: SW6020B MBLK Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:21:00 Result RL SPK value Ref Val %REC <0.0100 0.0300 TestNo: SW6020B LCS-114841 Batch ID: 114841 TestNo: SW6020B Result RL SPK value Ref Val %REC 0.196 0.0300 0.200 0 98.2 LCSD-114841 Batch ID: 114841 TestNo: SW6020B LCSD Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:25:00 Result RL SPK value Ref Val %REC 0.196 0.0300 0.200 0 97.8 2404040-08A SD Batch ID: 114841 TestNo: SW6020B SD Result RL SPK value Ref Val %REC 0.249 0.150 0 0.239 2404040-08A PDS Batch ID:<	MB-114841 Batch ID: 114841 TestNo: SW6020B MBLK Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:21:00 PM Result RL SPK value Ref Val %REC LowLim <0.0100	MB-114841 Batch ID: 114841 TestNo: SW6020B Units: MBLK Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:21:00 PM Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit % < 0.0100	MB-114841 Batch ID: 114841 TestNo: SW6020B Units: mg/L MBLK Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:21:00 PM Prep Date: 4/8/202 Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RP LCS-114841 Batch ID: 114841 TestNo: SW6020B Units: mg/L LCS Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:23:00 PM Prep Date: 4/8/202 Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RP LCSD-114841 Batch ID: 114841 TestNo: SW6020B Units: mg/L LCSD Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:25:00 PM Prep Date: 4/8/202 LCSD Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RP RP LCSD Result RL SPK value Ref Val %REC Lo

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Page 2 of 3

Work Order: 2404054

ANALYTICAL QC SUMMARY REPORT

Project: Fayette Power Project Q1

RunID: ICP-MS4_240409B

Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.0950 0.0300 0.100 0 95.0 90 12 Sample ID: LCVL-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: LCVL Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 10:40:00 AM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.0237 0.0300 0.0200 0 119 80 12 SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 12:49:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.196 0.0300 0.200 0 97.9 90 17 SampLe ID: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID:	
Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.0950 0.0300 0.100 0 95.0 90 12 Sample ID: LCVL-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: LCVL Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 10:40:00 AM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.0237 0.0300 0.0200 0 119 80 12 SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 12:49:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.196 0.0300 0.200 0 97.9 90 17 SampLe ID: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID:	mg/L
Boron	Date:
Sample ID: LCVL-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: LCVL Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 10:40:00 AM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.0237 0.0300 0.0200 0 119 80 12 Sample ID: CCV2-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 12:49:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:58:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 97.9 90 17 SampType: CCV Run ID:	imit %RPD RPDLimit Qua
SampType: LCVL Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 10:40:00 AM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.0237 0.0300 0.0200 0 119 80 12 Sample ID: CCV2-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 12:49:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.196 0.0300 0.200 0 97.9 90 17 SampType: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:58:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203	0
Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.0237 0.0300 0.0200 0 119 80 12 Sample ID: CCV2-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 12:49:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.196 0.0300 0.200 0 97.9 90 1° Sample ID: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 101 90 1° Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	mg/L
Boron 0.0237 0.0300 0.0200 0 119 80 12 Sample ID: CCV2-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 12:49:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.196 0.0300 0.200 0 97.9 90 1° Sample ID: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:58:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 101 90 1° Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	Date:
Sample ID: CCV2-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 12:49:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.196 0.0300 0.200 0 97.9 90 12 Sample ID: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:58:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 101 90 12 Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	imit %RPD RPDLimit Qua
SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 12:49:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.196 0.0300 0.200 0 97.9 90 17 Sample ID: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:58:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 101 90 17 Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	0
Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.196 0.0300 0.200 0 97.9 90 17 Sample ID: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:58:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 101 90 17 Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	mg/L
Boron 0.196 0.0300 0.200 0 97.9 90 17 Sample ID: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:58:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 101 90 17 Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	Date:
Sample ID: CCV3-240409 Batch ID: R132417 TestNo: SW6020B Units SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:58:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 101 90 17 Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	imit %RPD RPDLimitQua
SampType: CCV Run ID: ICP-MS4_240409B Analysis Date: 4/9/2024 2:58:00 PM Prep Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 101 90 17 Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	0
Analyte Result RL SPK value Ref Val %REC LowLimit High Boron 0.203 0.0300 0.200 0 101 90 12 Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	mg/L
Boron 0.203 0.0300 0.200 0 101 90 17 Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	Date:
Sample ID: CCV4-240409 Batch ID: R132417 TestNo: SW6020B Units	imit %RPD RPDLimit Qua
	0
SampType: CCV Pup ID: ICD MCA 240400D Applyeic Date: 4/0/2024 2:27:00 DM Prop	mg/L
Piep	Date:
Analyte Result RL SPK value Ref Val %REC LowLimit High	imit %RPD RPDLimit Qua
Boron 0.209 0.0300 0.200 0 104 90 1	0

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Detection Limit Page 3 of 3

Date: 18-Apr-24

CLIENT: BBA Engineering

Work Order: 2404054

Project:

Fayette Power Project Q1

MQL SUMMARY REPORT

TestNo: SW6020B	MDL	MQL
Analyte	mg/L	mg/L
Boron	0.0100	0.0300

DATA USABILITY SUMMARY - LCRA Analytical Reports 2402007 and 2404054

Bullock, Bennett & Associates, LLC has reviewed the analytical data packages to be included in Appendix D of the Coal Combustion Residual Landfill 2024 Annual Groundwater Monitoring Report (Annual Groundwater Report) that was produced by DHL Analytical, Inc. for the analysis of groundwater samples collected in January 2024 and April 2024 at the Fayette Power Project (FPP) site. The Data were reviewed for conformance to the groundwater sampling and analysis requirements of 40 CFR § 257.93/30 TAC 352.931 and adherence to project objectives.

Objectives of the Data: To provide current data on concentrations of COCs in groundwater at the site for purposes of comparing Combustion Byproducts Landfill (CBL) compliance sample data to Appendix III Control Limits. To accomplish the stated data objectives, all field and laboratory procedures were performed in accordance with industry-established protocol, and the FPP Sampling and Analysis Plan. Appropriate quality assurance/quality control (QA/QC) measures were utilized. As described within the body of the Annual Groundwater Report, field QA/QC protocols integrated into this project followed industry standards and involved, among other factors:

- Use of sampling equipment decontamination protocol;
- Proper sample handling, preservation, and shipping procedures; and
- Maintenance of the sample chain of custody.

Also, as presented in the individual laboratory data packages, laboratory QA/QC procedures integrated into this project followed industry standards and involved, among others:

- Maintenance of sample custody;
- Application of laboratory cross references to field sample identifications and to specific QC samples;
- Use of laboratory control samples (LCSs);
- Use of matrix spike/matrix duplicate spikes (MS/MSDs);
- Use of appropriate method and method reporting limit (MRL);
- Reporting of non-detect results as less than the value of the MRL;
- Use of surrogate recoveries;
- Calculation of relative percent differences (RPDs);
- Use of method and preparation blanks; and
- The application of data qualifiers.

Data Reviewed: The data reviewed consisted of laboratory submittals and field data as follows:

- Project Objectives (i.e., recoveries and relative percent differences);
- Analytical Results, including, as applicable, data qualifiers;
- Documentation of preservation and holding times;
- Field and laboratory equipment calibrations;
- Laboratory blanks:
- Internal Laboratory Control Standards and Surrogate Recoveries;
- Laboratory Control Samples;
- Matrix Spike/Matrix Spike Duplicates;
- Field Precision as determined by duplicate samples collected in the field; and
- Field Procedures.

The results of the supporting quality control analyses for each of these QC factors were summarized in Quality Control narratives provided by the laboratory, and field/laboratory-completed chain of custody forms, the field forms, and the standard operational field procedures, and groundwater sampling procedures. A review of each of these was included in this Data Usability Summary.

Based on the Data Usability Review, the groundwater data are usable for their intended purpose. All samples were collected in the field using industry-standard operating procedures (SOPs), including decontamination protocol, sample preservation, and chain of custody.

Also, as presented in detail in the attached laboratory data packages, all appropriate QA/QC protocol were accomplished by the analytical laboratory. Where applicable, data have been appropriately qualified in the laboratory reports and the data, therefore, have been used accordingly.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Issues were identified as follows:

- January 2024 sampling event (Report 2402007)
 - Exception Report R7-03:
 For Anions Analysis, for Batch 113810, the recovery of Chloride for the Matrix Spike and Matrix Spike Duplicate (2402007-05 MS/MSD) was below the method control limits. These are flagged accordingly in the QC Summary report. This anion was within method control limits in the associated LCS. No further corrective action was taken.
 - Exception Report R10-01: Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.
- April 2024 sampling event (Report 2404054)
 - o (No Exception Reports)

All exceptions were documented and described in the Quality Control narratives and no conditions with regard to laboratory control samples, matrix spike/matrix spike duplicates, sample preservation and holding times, or equipment calibrations were identified that would cause any of the data not to be useable.

August 02, 2024

Charlie Macon BBA Engineering 165 N. Lampasas St. Bertram, TX 78605

TEL: (512) 585-7180

FAX: Order No.: 2407275

RE: Fayette CCR Program

Dear Charlie Macon:

DHL Analytical, Inc. received 9 sample(s) on 7/25/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211 - TX-C24-00120

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2407275	9
WorkOrderSampleSummary 2407275	10
PrepDatesReport 2407275	11
AnalyticalDatesReport 2407275	14
Analytical Report 2407275	17
AnalyticalQCSummaryReport 2407275	26
MQLSummaryReport 2407275	38

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

Web: www.dhlanalytical.com

CHAIN-OF-CUSTODY

Email: login@dhlanalytical.com

Page 1 of 1

CLIENT: BBA Engineerin	ng				DA	ΑΤЕ	: [7-2	25-2	24						LA	ВU	SE (ONL	Υ.					
ADDRESS: 165 N. Lampas	as St. B	ertram, TX 7	8605		PC) #:	Ī				-2-	1					DH	łL W	VOF	RKOI	RDE	R#	24	072	275	2
PHONE: (512) 925-2549	EMA	AIL: cbennet	t@bbaengin	eering.com	PF	ROJI	ECT	LO	CATI	ON	OR N	IAM	E:	Fay	ette	CCR	Pro	gra	m							Prod Technological relations
DATA REPORTED TO: Cra	ig Benn	ett			CLIENT PROJECT #: 24713 -							-2	-2-1						1							
ADD'L REPORT COPIES TO: CHARLE MACON								CTOR:			70	JOHN BRAYTON]				
Authorize 5% surcharge for TRRP report? ☐ Yes ☐ No	# of Containers	500HDPE	ANIONS,TDS	500HDPEHNO3	METALS																но по постороди по пода					
Field Sample I.D.	DHL Lab #	Collection Date	Collection Time	Matrix	ners	E	DS.	NO3	5															FIELD N	NOTE	S
CBL-340I	01	7-23-24	0950	AQUEOUS	2	>	1	>	1															NA. 17 P. 18	BALL AND DESCRIPTION N	
CBL-301I	02	7-23-24	0900	AQUEOUS	2	>	1	>	1																	
CBL-302I	03	7-22-24	1540	AQUEOUS	2	>	1	>	1																	
CBL-306I	04	7-23-24	0800	AQUEOUS	2	>	1	>	1																	
CBL-308I	0.2	7-22-24	1635	AQUEOUS	2	>	1	>	1																	
CBL-341I	06	7-22-24	1440	AQUEOUS	2	>	1	>	1																	
Equipment Blank EB-CCR		7-23-24	1005	AQUEOUS	2	>	1	>	1																	
Field Blank FB-CCR	08	7-23-24	1020	AQUEOUS	2	>	1	>	1												\bot					
Duplicate DVP-1-CCR	09	7-22-24		AQUEOUS	2	>	1	>	1					_					\perp		4	_	4			
		/			┼	<u> </u>	_	-	\vdash	\dashv	- -	-		-	+				_	_	+	_				
					+	-	-			+	+-	+		\dashv	-		\vdash	\dashv			+	_	_			
					+	 	-		\vdash	-	-	+		\dashv	+	_		\dashv	\dashv		+		 	-		
					T				\Box		_				\top		Н		\dashv	\dashv	十	\dashv	1			
		DATE/1																								
Relinquished By: (Sign)	Received By:	X						IND T			L R	AB U	SE OI	ILY TEM	P (°C	:) _!	1.C) O(HERN	IO#:	78		No. You're water and the street of the stree			
Relincuished By: (Sign)	Received By:		RI	USH	-1 D	AY [RUS	☐ H-3 [RUSH Day [i-2 D □	AY [c	USTO	DDY S								CTED? YE	- 🛮 N				
Relinquished By: (Sign)	Received By:		ח		ORM DATI		X	OT	HER			ARRI LS		FE	DEX	: [_] UI	PS	co	OURIER	Z han	ID DEL	IVERED			
DHI	DISPO	SAL @ \$10.0	0 each			; D		JA 11					_	-					-					/ 4(D)		
							-	3															O IVE	7(0)		2023

2024 Second Semia	000110	LEVO	nt	$\overline{}$	$\overline{}$	=	$\equiv \equiv$	1		1	<u> </u>					1.0	Analyte Summary List
ZUZ4 SECONO SEMI	ariilua	ı ⊏ve	HL							_							maryte Summary LISt
	Arsenic	Boron	Calcium	Chloride	Chromium	Cobalt	Fluoride	Manganese	Mercury	Molybdenum	Nickel	Selenium	Sulfate	TDS	Field pH		
CCR Program																	
CBL-340I																2	2 metals, 3 major ions, TDS
CBL-301I																	2 metals, 3 major ions, TDS
CBL-302I																	metals, 3 major ions, TDS
CBL-306I																	2 metals, 3 major ions, TDS
CBL-308I																2	2 metals, 3 major ions, TDS
CBL-341I																2	2 metals, 3 major ions, TDS
Equipment Blank																2	2 metals, 3 major ions, TDS
Field Blank																2	2 metals, 3 major ions, TDS
Duplicate																2	2 metals, 3 major ions, TDS
TPDES Program																	
MW-500																	metals, Mercury, 1 major ion
CBL-401																	metals, Mercury, 1 major ion
CBL-120																	metals, Mercury, 1 major ion
CBL-300M																	metals, Mercury, 1 major ion
CBL-301I																	metals, Mercury, 1 major ion
CBL-306I																	metals, Mercury, 1 major ion
CBL-308I																	metals, Mercury, 1 major ion
RP-1				—												[6	metals, Mercury, 1 major ion
RP-2																	metals, Mercury, 1 major ion
RP-67R																	6 metals, Mercury, 1 major ion
RP-70																	6 metals, Mercury, 1 major ion
Equipment Blank Field Blank																	metals, Mercury, 1 major ion
Duplicate																	metals, Mercury, 1 major ion metals, Mercury, 1 major ion
Duplicate																/	metals, Mercury, 1 major ion
TRRP Program																	
AP-508																2	2 metals
AP-510																2	? metals
AP-512																2	? metals
AP-513																2	? metals
AP-405																2	? metals
AP-406																	2 metals
AP-407																	metal
AP-509																	2 metals
AP-511																	2 metals
AP-514																	2 metals
Equipment Blank																	3 metals
Field Blank																	3 metals
Duplicate																3	3 metals

Sample Receipt Checklist Client Name: BBA Engineering Date Received: 7/25/2024 Work Order Number: 2407275 Received by: SRM Checklist completed by: 7/25/2024 Reviewed by: 7/25/2024 Date Date Carrier name: Hand Delivered Shipping container/cooler in good condition? Yes 🗸 No 🗌 Not Present Custody seals intact on shipping container/cooler? Yes No 🗌 Not Present 🗹 Custody seals intact on sample bottles? Yes No 🗌 Not Present 🗹 Chain of custody present? Yes 🗸 No 🗌 Chain of custody signed when relinquished and received? Yes 🗸 No 🗌 Chain of custody agrees with sample labels? Yes 🗹 No 🗌 Samples in proper container/bottle? Yes 🗹 No 🗌 Yes 🗸 Sample containers intact? No 🗆 Sufficient sample volume for indicated test? Yes 🗹 No 🗌 All samples received within holding time? Yes 🗸 No 🗌 Yes 🗌 Water - VOA vials have zero headspace? No 🗌 No VOA vials submitted NA 🗌 Water - pH<2 acceptable upon receipt? Yes 🗹 No 🗌 NA 🗌 LOT# Adjusted? 10 Checked by Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes No 🗌 NA 🗹 LOT# Adjusted? Checked by Container/Temp Blank temperature in compliance? Yes 🗸 No 🗌 Cooler# Temp °C 1.0 NP Seal Intact Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Contacted by: Regarding: Comments: Corrective Action:

		ory Name: DHL Analytical, Inc.						
		me: Fayette CCR Program LRC	Date: 8/2/2024					
		<u> </u>	ratory Work Order: 2407275					
•			Batch: See Analytical Dates Report			3 7 4 3	2724	TD #5
#1	A^2	Description Description		Yes	No	NA ³	NR*	ER# ⁵
R1	OI	Chain-of-Custody (C-O-C)	1	v				D1 01
Kı	OI	 Did samples meet the laboratory's standard conditions of samp Were all departures from standard conditions described in an extension of the standard conditions. 		X		X		R1-01
R2	OI	Sample and Quality Control (QC) Identification	ecption report:			Λ		
		1) Are all field sample ID numbers cross-referenced to the laborat	ory ID numbers?	X				
		2) Are all laboratory ID numbers cross-referenced to the correspon		X				
R3	OI	Test Reports						
		1) Were all samples prepared and analyzed within holding times?		X				
		2) Other than those results < MQL, were all other raw values brac	keted by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?4) Were all analyte identifications checked by a peer or supervisor	-n	X				
		5) Were sample detection limits reported for all analytes not detect		X				
		6) Were all results for soil and sediment samples reported on a dry		Λ		X		
		7) Were % moisture (or solids) reported for all soil and sediment s				X		
		8) Were bulk soils/solids samples for volatile analysis extracted w				X		
		9) If required for the project, TICs reported?				X		
R4	O	Surrogate Recovery Data						
		1) Were surrogates added prior to extraction?	001: 11.9			X		
D.5	OI	2) Were surrogate percent recoveries in all samples within the lab	oratory QC limits?			X		
R5	OI	Test Reports/Summary Forms for Blank Samples 1) Were appropriate type(s) of blanks analyzed?		X				
		2) Were blanks analyzed at the appropriate frequency?		X				
		3) Where method blanks taken through the entire analytical process	ss, including preparation and, if					
		applicable, cleanup procedures?	, 31 1	X				
		4) Were blank concentrations < MDL?		X				
		5) For analyte(s) detected in a blank sample, was the concentration				X		
D.C	OI	factors, in all associated field samples, greater than 10 times the o	concentration in the blank sample?					
R6	OI	Laboratory Control Samples (LCS): 1) Were all COCs included in the LCS?		X				
		2) Was each LCS taken through the entire analytical procedure, in	cluding prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?	g prop and creating stops:	X				
		4) Were LCS (and LCSD, if applicable) %Rs within the laborator	y QC limits?	X				
		5) Does the detectability data document the laboratory's capability		X				
		to calculate the SDLs?						
D.5	OI	6) Was the LCSD RPD within QC limits (if applicable)?		X				
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS	and MCD2	v				
		2) Were MS/MSD analyzed at the appropriate frequency?	and MSD:	X				
		3) Were MS (and MSD, if applicable) %Rs within the laboratory	OC limits?	X				
		4) Were MS/MSD RPDs within laboratory QC limits?	Xe illinov	X				
R8	OI	Analytical Duplicate Data						
		1) Were appropriate analytical duplicates analyzed for each matrix	x?	X				
		2) Were analytical duplicates analyzed at the appropriate frequence		X				
DO	0.1	3) Were RPDs or relative standard deviations within the laborator	y QC limits?	X				
R9	OI	Method Quantitation Limits (MQLs):	1-419	v				
		 Are the MQLs for each method analyte included in the laborate Do the MQLs correspond to the concentration of the lowest not 		X				
		3) Are unadjusted MQLs and DCSs included in the laboratory dat		X				
R10	OI	Other Problems/Anomalies	a parimge.	41				
		1) Are all known problems/anomalies/special conditions noted in	this LRC and ER?	X				R10-01
		2) Was applicable and available technology used to lower the SDI affects on the sample results?		X				
		3) Is the laboratory NELAC-accredited under the Texas Laborator	ry Accreditation Program for the	v				
		analytes, matrices and methods associated with this laboratory dat		X				

Lab	ora	tory Name: DHL Analytical, Inc.						
Lab	ora	tory Review Checklist (continued): Supporting						
Proje	ct Na	ame: Fayette CCR Program LRC	Date: 8/2/2024					
Revie	wer	Name: Angie O'Donnell Labor	atory Work Order: 2407275					
rep	Batc	h Number(s): See Prep Dates Report Run F	Batch: See Analytical Dates Report					
#1	A^2	Description	, , , , , , , , , , , , , , , , , , ,	Yes	No	NA ³	NR^4	ER#5
<u>S1</u>		Initial Calibration (ICAL)		1 05	110	11/1	111	DIV.
	01	, f	1	**				
		1) Were response factors and/or relative response factors for each a	nalyte within QC limits?	X				
		2) Were percent RSDs or correlation coefficient criteria met?	Com all amalystas?	X				
		3) Was the number of standards recommended in the method used f 4) Were all points generated between the lowest and highest standards.		X				
		5) Are ICAL data available for all instruments used?	id used to calculate the curve?	X				
		6) Has the initial calibration curve been verified using an appropriate	te second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV		71				
_		blank (CCB):) and continuing canoration					
		1) Was the CCV analyzed at the method-required frequency?		X				
		2) Were percent differences for each analyte within the method-req	uired OC limits?	X				
		3) Was the ICAL curve verified for each analyte?		X				
		4) Was the absolute value of the analyte concentration in the inorga	nic CCB < MDL?	X				
S3	О	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		X				
		Were ion abundance data within the method-required QC limits?						
S4	О	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-requi	red QC limits?	X				
S5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral data) r	eviewed by an analyst?	X				
		2) Were data associated with manual integrations flagged on the rav	w data?	X				
S6	О	Dual Column Confirmation						
		1) Did dual column confirmation results meet the method-required	QC?			X		
S7	О	Tentatively Identified Compounds (TICs):						
		1) If TICs were requested, were the mass spectra and TIC data subj	ect to appropriate checks?			X		
<u>S8</u>	I	Interference Check Sample (ICS) Results:						
~ ~	_	1) Were percent recoveries within method QC limits?		X				
S9	I	Serial Dilutions, Post Digestion Spikes, and Method of Standard						
		1) Were percent differences, recoveries, and the linearity within method?	n the QC limits specified in the			X		
510	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		X				
		2) Is the MDL either adjusted or supported by the analysis of DCSs	?	X				
811	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable proficien	cy tests or evaluation studies?	X				
312	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtained	d from other appropriate sources?	X				
813	OI	Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification document	nted?	X				
514	OI	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5 – Apper		X				
		2) Is documentation of the analyst's competency up-to-date and on		X				
815	OI	Verification/Validation Documentation for Methods (NELAC C						
		1) Are all the methods used to generate the data documented applicable?	d, verified, and validated, where	X				
816	OI	Laboratory Standard Operating Procedures (SOPs):						
		1) Are laboratory SOPs current and on file for each method perform	ned?	X				
		1			1			

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- Test reports/summary forms for blank samples;
- Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MOLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 – June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

> Name: John DuPont Official Title: General Manager

Dr. Derhsing Luu Official Title: Technical Director

Signature 8/2/2024
Date

CLIENT: BBA Engineering

Project: Fayette CCR Program

Lab Order: 2407275

CASE NARRATIVE

Date: 02-Aug-24

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis Method M2540C - Total Dissolved Solids Analysis Method E300 - Anions Analysis

Exception Report R1-01

The samples were received and log-in performed on 7/25/2024. A total of 9 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

Exception Report R10-01

Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

Date: 02-Aug-24

CLIENT: BBA Engineering
Project: Fayette CCR Program

Lab Order: 2407275

Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
2407275-01	CBL-340I		07/23/24 09:50 AM	07/25/2024
2407275-02	CBL-301I		07/23/24 09:00 AM	07/25/2024
2407275-03	CBL-302I		07/22/24 03:40 PM	07/25/2024
2407275-04	CBL-306I		07/23/24 08:00 AM	07/25/2024
2407275-05	CBL-308I		07/22/24 04:35 PM	07/25/2024
2407275-06	CBL-341I		07/22/24 02:40 PM	07/25/2024
2407275-07	EB-CCR		07/23/24 10:05 AM	07/25/2024
2407275-08	FB-CCR		07/23/24 10:20 AM	07/25/2024
2407275-09	DUP-1-CCR		07/22/24	07/25/2024

Lab Order: 2407275

Client: BBA Engineering
Project: Fayette CCR Program

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2407275-01A	CBL-340I	07/23/24 09:50 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-340I	07/23/24 09:50 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-340I	07/23/24 09:50 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
2407275-01B	CBL-340I	07/23/24 09:50 AM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-340I	07/23/24 09:50 AM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-340I	07/23/24 09:50 AM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-340I	07/23/24 09:50 AM	Aqueous	M2540C	TDS Preparation	07/26/24 10:35 AM	116437
2407275-02A	CBL-301I	07/23/24 09:00 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-301I	07/23/24 09:00 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-301I	07/23/24 09:00 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
2407275-02B	CBL-301I	07/23/24 09:00 AM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-301I	07/23/24 09:00 AM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-301I	07/23/24 09:00 AM	Aqueous	E300	Anion Preparation	08/01/24 09:00 AM	116527
	CBL-301I	07/23/24 09:00 AM	Aqueous	M2540C	TDS Preparation	07/26/24 10:35 AM	116437
2407275-03A	CBL-302I	07/22/24 03:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-302I	07/22/24 03:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-302I	07/22/24 03:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
2407275-03B	CBL-302I	07/22/24 03:40 PM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-302I	07/22/24 03:40 PM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-302I	07/22/24 03:40 PM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-302I	07/22/24 03:40 PM	Aqueous	M2540C	TDS Preparation	07/26/24 10:35 AM	116437
2407275-04A	CBL-306I	07/23/24 08:00 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-306I	07/23/24 08:00 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-306I	07/23/24 08:00 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
2407275-04B	CBL-306I	07/23/24 08:00 AM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-306I	07/23/24 08:00 AM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-306I	07/23/24 08:00 AM	Aqueous	M2540C	TDS Preparation	07/26/24 10:35 AM	116437
2407275-05A	CBL-308I	07/22/24 04:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428

Page 1 of 3

Lab Order: 2407275

Client: BBA Engineering
Project: Fayette CCR Program

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2407275-05A	CBL-308I	07/22/24 04:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-308I	07/22/24 04:35 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
2407275-05B	CBL-308I	07/22/24 04:35 PM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-308I	07/22/24 04:35 PM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-308I	07/22/24 04:35 PM	Aqueous	E300	Anion Preparation	08/01/24 09:00 AM	116527
	CBL-308I	07/22/24 04:35 PM	Aqueous	M2540C	TDS Preparation	07/26/24 10:35 AM	116437
2407275-06A	CBL-341I	07/22/24 02:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-341I	07/22/24 02:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	CBL-341I	07/22/24 02:40 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
2407275-06B	CBL-341I	07/22/24 02:40 PM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-341I	07/22/24 02:40 PM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-341I	07/22/24 02:40 PM	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	CBL-341I	07/22/24 02:40 PM	Aqueous	M2540C	TDS Preparation	07/26/24 10:35 AM	116437
2407275-07A	EB-CCR	07/23/24 10:05 AM	Equip Blank	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	EB-CCR	07/23/24 10:05 AM	Equip Blank	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
2407275-07B	EB-CCR	07/23/24 10:05 AM	Equip Blank	E300	Anion Preparation	07/30/24 11:11 AM	116480
	EB-CCR	07/23/24 10:05 AM	Equip Blank	E300	Anion Preparation	07/30/24 11:11 AM	116480
	EB-CCR	07/23/24 10:05 AM	Equip Blank	M2540C	TDS Preparation	07/26/24 10:35 AM	116437
2407275-08A	FB-CCR	07/23/24 10:20 AM	Field Blank	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	FB-CCR	07/23/24 10:20 AM	Field Blank	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
2407275-08B	FB-CCR	07/23/24 10:20 AM	Field Blank	E300	Anion Preparation	07/30/24 11:11 AM	116480
	FB-CCR	07/23/24 10:20 AM	Field Blank	E300	Anion Preparation	07/30/24 11:11 AM	116480
	FB-CCR	07/23/24 10:20 AM	Field Blank	M2540C	TDS Preparation	07/26/24 10:35 AM	116437
407275-09A	DUP-1-CCR	07/22/24	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	DUP-1-CCR	07/22/24	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
	DUP-1-CCR	07/22/24	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/26/24 07:05 AM	116428
2407275-09B	DUP-1-CCR	07/22/24	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	DUP-1-CCR	07/22/24	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480

Page 2 of 3

Lab Order: 2407275

Client: BBA Engineering

Project: Fayette CCR Program

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2407275-09B	DUP-1-CCR	07/22/24	Aqueous	E300	Anion Preparation	07/30/24 11:11 AM	116480
	DUP-1-CCR	07/22/24	Aqueous	M2540C	TDS Preparation	07/26/24 10:35 AM	116437

Lab Order: 2407275

Client: BBA Engineering
Project: Fayette CCR Program

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2407275-01A	CBL-340I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 12:10 PM	ICP-MS5_240729B
	CBL-340I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	50	07/29/24 01:28 PM	ICP-MS5_240729B
	CBL-340I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 01:57 PM	ICP-MS4_240729D
2407275-01B	CBL-340I	Aqueous	E300	Anions by IC method - Water	116480	100	07/30/24 11:50 PM	IC2_240730A
	CBL-340I	Aqueous	E300	Anions by IC method - Water	116480	10	07/31/24 03:08 AM	IC2_240730A
	CBL-340I	Aqueous	E300	Anions by IC method - Water	116480	1	07/31/24 09:26 AM	IC2_240730A
	CBL-340I	Aqueous	M2540C	Total Dissolved Solids	116437	1	07/26/24 04:45 PM	WC_240726A
2407275-02A	CBL-301I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 01:59 PM	ICP-MS4_240729D
	CBL-301I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 12:12 PM	ICP-MS5_240729B
	CBL-301I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	50	07/29/24 01:30 PM	ICP-MS5_240729B
2407275-02B	CBL-301I	Aqueous	E300	Anions by IC method - Water	116480	10	07/31/24 03:26 AM	IC2_240730A
	CBL-301I	Aqueous	E300	Anions by IC method - Water	116480	1	07/31/24 09:44 AM	IC2_240730A
	CBL-301I	Aqueous	E300	Anions by IC method - Water	116527	100	08/01/24 05:07 PM	IC2_240801B
	CBL-301I	Aqueous	M2540C	Total Dissolved Solids	116437	1	07/26/24 04:45 PM	WC_240726A
2407275-03A	CBL-302I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	50	07/29/24 01:33 PM	ICP-MS5_240729B
	CBL-302I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 02:01 PM	ICP-MS4_240729D
	CBL-302I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 12:15 PM	ICP-MS5_240729B
2407275-03B	CBL-302I	Aqueous	E300	Anions by IC method - Water	116480	100	07/31/24 12:08 AM	IC2_240730A
	CBL-302I	Aqueous	E300	Anions by IC method - Water	116480	10	07/31/24 04:56 AM	IC2_240730A
	CBL-302I	Aqueous	E300	Anions by IC method - Water	116480	1	07/31/24 10:02 AM	IC2_240730A
	CBL-302I	Aqueous	M2540C	Total Dissolved Solids	116437	1	07/26/24 04:45 PM	WC_240726A
2407275-04A	CBL-306I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 02:03 PM	ICP-MS4_240729D
	CBL-306I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 12:17 PM	ICP-MS5_240729B
	CBL-306I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	10	07/29/24 01:35 PM	ICP-MS5_240729B
2407275-04B	CBL-306I	Aqueous	E300	Anions by IC method - Water	116480	10	07/31/24 05:14 AM	IC2_240730A
	CBL-306I	Aqueous	E300	Anions by IC method - Water	116480	1	07/31/24 10:20 AM	IC2_240730A
	CBL-306I	Aqueous	M2540C	Total Dissolved Solids	116437	1	07/26/24 04:45 PM	WC_240726A
2407275-05A	CBL-308I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 12:20 PM	ICP-MS5_240729B

Page 1 of 3

Lab Order: 2407275

Client: BBA Engineering
Project: Fayette CCR Program

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2407275-05A	CBL-308I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	50	07/29/24 01:38 PM	ICP-MS5_240729B
	CBL-308I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 02:05 PM	ICP-MS4_240729D
2407275-05B	CBL-308I	Aqueous	E300	Anions by IC method - Water	116480	10	07/31/24 05:32 AM	IC2_240730A
	CBL-308I	Aqueous	E300	Anions by IC method - Water	116480	1	07/31/24 10:38 AM	IC2_240730A
	CBL-308I	Aqueous	E300	Anions by IC method - Water	116527	100	08/01/24 05:25 PM	IC2_240801B
	CBL-308I	Aqueous	M2540C	Total Dissolved Solids	116437	1	07/26/24 04:45 PM	WC_240726A
2407275-06A	CBL-341I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 02:07 PM	ICP-MS4_240729D
	CBL-341I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 12:23 PM	ICP-MS5_240729B
	CBL-341I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	50	07/29/24 01:41 PM	ICP-MS5_240729B
2407275-06B	CBL-341I	Aqueous	E300	Anions by IC method - Water	116480	100	07/31/24 12:26 AM	IC2_240730A
	CBL-341I	Aqueous	E300	Anions by IC method - Water	116480	10	07/31/24 05:50 AM	IC2_240730A
	CBL-341I	Aqueous	E300	Anions by IC method - Water	116480	1	07/31/24 10:56 AM	IC2_240730A
	CBL-341I	Aqueous	M2540C	Total Dissolved Solids	116437	1	07/26/24 04:45 PM	WC_240726A
2407275-07A	EB-CCR	Equip Blank	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 12:25 PM	ICP-MS5_240729B
	EB-CCR	Equip Blank	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 02:09 PM	ICP-MS4_240729D
2407275-07B	EB-CCR	Equip Blank	E300	Anions by IC method - Water	116480	10	07/31/24 06:08 AM	IC2_240730A
	EB-CCR	Equip Blank	E300	Anions by IC method - Water	116480	1	07/31/24 11:14 AM	IC2_240730A
	EB-CCR	Equip Blank	M2540C	Total Dissolved Solids	116437	1	07/26/24 04:45 PM	WC_240726A
2407275-08A	FB-CCR	Field Blank	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 02:11 PM	ICP-MS4_240729D
	FB-CCR	Field Blank	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 12:28 PM	ICP-MS5_240729B
2407275-08B	FB-CCR	Field Blank	E300	Anions by IC method - Water	116480	10	07/31/24 06:26 AM	IC2_240730A
	FB-CCR	Field Blank	E300	Anions by IC method - Water	116480	1	07/31/24 11:32 AM	IC2_240730A
	FB-CCR	Field Blank	M2540C	Total Dissolved Solids	116437	1	07/26/24 04:45 PM	WC_240726A
2407275-09A	DUP-1-CCR	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 02:13 PM	ICP-MS4_240729D
	DUP-1-CCR	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	1	07/29/24 12:30 PM	ICP-MS5_240729B
	DUP-1-CCR	Aqueous	SW6020B	Total Metals: ICP-MS - Water	116428	50	07/29/24 01:43 PM	ICP-MS5_240729B
2407275-09B	DUP-1-CCR	Aqueous	E300	Anions by IC method - Water	116480	100	07/31/24 12:44 AM	IC2_240730A
	DUP-1-CCR	Aqueous	E300	Anions by IC method - Water	116480	10	07/31/24 06:44 AM	IC2_240730A

Page 2 of 3

Lab Order: 2407275

Client: BBA Engineering

Project: Fayette CCR Program

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
2407275-09B	DUP-1-CCR	Aqueous	E300	Anions by IC method - Water	116480	1	07/31/24 11:50 AM	IC2_240730A
	DUP-1-CCR	Aqueous	M2540C	Total Dissolved Solids	116437	1	07/26/24 04:45 PM	WC_240726A

CLIENT: BBA Engineering

Project: Fayette CCR Program

Project No: 24713-2-1 **Lab Order:** 2407275

2407275

Date: 02-Aug-24

Client Sample ID: CBL-340I

Lab ID: 2407275-01

Collection Date: 07/23/24 09:50 AM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.181	0.0100	0.0300	mg/L	1	07/29/24 01:57 PM
Calcium	560	5.00	15.0	mg/L	50	07/29/24 01:28 PM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: KES
Chloride	2480	30.0	100	mg/L	100	07/30/24 11:50 PM
Fluoride	0.521	0.100	0.400	mg/L	1	07/31/24 09:26 AM
Sulfate	780	10.0	30.0	mg/L	10	07/31/24 03:08 AM
TOTAL DISSOLVED SOLIDS		M254	IOC			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	5320	50.0	50.0	mg/L	1	07/26/24 04:45 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT: BBA Engineering

Project: Fayette CCR Program

Project No: 24713-2-1

Lab Order: 2407275

Date: 02-Aug-24

Client Sample ID: CBL-301I

Lab ID: 2407275-02

Collection Date: 07/23/24 09:00 AM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.0820	0.0100	0.0300	mg/L	1	07/29/24 01:59 PM
Calcium	912	5.00	15.0	mg/L	50	07/29/24 01:30 PM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: KES
Chloride	2350	30.0	100	mg/L	100	08/01/24 05:07 PM
Fluoride	<0.100	0.100	0.400	mg/L	1	07/31/24 09:44 AM
Sulfate	454	10.0	30.0	mg/L	10	07/31/24 03:26 AM
TOTAL DISSOLVED SOLIDS		M254	IOC			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	4580	50.0	50.0	mg/L	1	07/26/24 04:45 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT: BBA Engineering

Project: Fayette CCR Program

Project No: 24713-2-1

Lab Order: 2407275

Date: 02-Aug-24

Client Sample ID: CBL-302I

Lab ID: 2407275-03

Collection Date: 07/22/24 03:40 PM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.137	0.0100	0.0300		mg/L	1	07/29/24 02:01 PM
Calcium	845	5.00	15.0		mg/L	50	07/29/24 01:33 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: KES
Chloride	1650	30.0	100		mg/L	100	07/31/24 12:08 AM
Fluoride	0.101	0.100	0.400	J	mg/L	1	07/31/24 10:02 AM
Sulfate	1370	10.0	30.0		mg/L	10	07/31/24 04:56 AM
TOTAL DISSOLVED SOLIDS		M254	10C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	4840	50.0	50.0		mg/L	1	07/26/24 04:45 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

CLIENT: BBA Engineering

Project: Fayette CCR Program

Project No: 24713-2-1

Lab Order: 2407275

Date: 02-Aug-24

Client Sample ID: CBL-306I

Lab ID: 2407275-04

Collection Date: 07/23/24 08:00 AM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.134 0.0100 0.0300 mg/L		1	07/29/24 02:03 PM		
Calcium	115	1.00	3.00	mg/L	10	07/29/24 01:35 PM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: KES
Chloride	10.2	0.300	1.00	mg/L	1	07/31/24 10:20 AM
Fluoride	0.823	0.100	0.400	mg/L	1	07/31/24 10:20 AM
Sulfate	70.7	1.00	3.00	mg/L	1	07/31/24 10:20 AM
TOTAL DISSOLVED SOLIDS		M254	IOC			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	691	10.0	10.0	mg/L	1	07/26/24 04:45 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 4 of 9

CLIENT: BBA Engineering

Project: Fayette CCR Program

Project No: 24713-2-1

Lab Order: 2407275

Date: 02-Aug-24

Client Sample ID: CBL-308I

Lab ID: 2407275-05

Collection Date: 07/22/24 04:35 PM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW6020B			Analyst: SP	
Boron	0.139	0.0100	0.0300	mg/L	1	07/29/24 02:05 PM
Calcium	683	5.00	15.0	mg/L	50	07/29/24 01:38 PM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: KES
Chloride	2250	30.0	100	mg/L	100	08/01/24 05:25 PM
Fluoride	0.864	0.100	0.400	mg/L	1	07/31/24 10:38 AM
Sulfate	1430	10.0	30.0	mg/L	10	07/31/24 05:32 AM
TOTAL DISSOLVED SOLIDS		M254	IOC			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	5810	50.0	50.0	mg/L	1	07/26/24 04:45 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 5 of 9

CLIENT: BBA Engineering

Project: Fayette CCR Program

Project No: 24713-2-1

Lab Order: 2407275

Date: 02-Aug-24

Client Sample ID: CBL-341I

Lab ID: 2407275-06

Collection Date: 07/22/24 02:40 PM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP
Boron	0.119	0.0100	0.0300	mg/L	1	07/29/24 02:07 PM
Calcium	801	5.00	15.0	mg/L	50	07/29/24 01:41 PM
ANIONS BY IC METHOD - WATER		E30	0			Analyst: KES
Chloride	1960	30.0	100	mg/L	100	07/31/24 12:26 AM
Fluoride	<0.100	0.100	0.400	mg/L	1	07/31/24 10:56 AM
Sulfate	367	10.0	30.0	mg/L	10	07/31/24 05:50 AM
TOTAL DISSOLVED SOLIDS		M254	10C			Analyst: JS
Total Dissolved Solids (Residue, Filterable)	3700	50.0	50.0	mg/L	1	07/26/24 04:45 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 6 of 9

CLIENT: BBA Engineering

Project: Fayette CCR Program

Project No: 24713-2-1 **Lab Order:** 2407275

Client Sample ID: EB-CCR

Date:

Lab ID: 2407275-07

Collection Date: 07/23/24 10:05 AM

Matrix: EQUIP BLANK

02-Aug-24

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.0213	0.0100	0.0300	J	mg/L	1	07/29/24 02:09 PM
Calcium	2.11	0.100	0.300		mg/L	1	07/29/24 12:25 PM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: KES
Chloride	0.500	0.300	1.00	J	mg/L	1	07/31/24 11:14 AM
Fluoride	<0.100	0.100	0.400		mg/L	1	07/31/24 11:14 AM
Sulfate	<1.00	1.00	3.00		mg/L	1	07/31/24 11:14 AM
TOTAL DISSOLVED SOLIDS		M254	IOC				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	11.0	10.0	10.0		mg/L	1	07/26/24 04:45 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 7 of 9

CLIENT: BBA Engineering

Project: Fayette CCR Program

Project No: 24713-2-1 **Lab Order:** 2407275

Client Sample ID: FB-CCR

Date:

Lab ID: 2407275-08

Collection Date: 07/23/24 10:20 AM

Matrix: FIELD BLANK

02-Aug-24

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER		SW60	20B				Analyst: SP
Boron	0.0203	0.0100	0.0300	J	mg/L	1	07/29/24 02:11 PM
Calcium	1.42	0.100	0.300		mg/L	1	07/29/24 12:28 PM
ANIONS BY IC METHOD - WATER		E30	0				Analyst: KES
Chloride	< 0.300	0.300	1.00		mg/L	1	07/31/24 11:32 AM
Fluoride	< 0.100	0.100	0.400		mg/L	1	07/31/24 11:32 AM
Sulfate	<1.00	1.00	3.00		mg/L	1	07/31/24 11:32 AM
TOTAL DISSOLVED SOLIDS		M254	10C				Analyst: JS
Total Dissolved Solids (Residue, Filterable)	<10.0	10.0	10.0		mg/L	1	07/26/24 04:45 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 8 of 9

CLIENT: BBA Engineering **Project:**

Fayette CCR Program

Project No: 24713-2-1 Lab Order: 2407275

Client Sample ID: DUP-1-CCR

02-Aug-24

Lab ID: 2407275-09

Collection Date: 07/22/24

Date:

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed	
TOTAL METALS: ICP-MS - WATER		SW60	20B			Analyst: SP		
Boron	0.144	0.144 0.0100 0.0300 mg/L		1	07/29/24 02:13 PM			
Calcium	873	5.00	15.0		mg/L	50	07/29/24 01:43 PM	
ANIONS BY IC METHOD - WATER		E30	0				Analyst: KES	
Chloride	1620	30.0	100		mg/L	100	07/31/24 12:44 AM	
Fluoride	0.106	0.100	0.400	J	mg/L	1	07/31/24 11:50 AM	
Sulfate	1360	10.0	30.0		mg/L	10	07/31/24 06:44 AM	
TOTAL DISSOLVED SOLIDS		M254	10C				Analyst: JS	
Total Dissolved Solids (Residue, Filterable)	4870	50.0	50.0		mg/L	1	07/26/24 04:45 PM	

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 9 of 9

CLIENT: BBA Engineering

Work Order: 2407275

Project:

ANALYTICAL QC SUMMARY REPORT

Date: 02-Aug-24

Fayette CCR Program RunID: ICP-MS4_240606B

Sample ID: DCS4-115670 SampType: DCS4	Batch ID: Run ID:		4_240606B	TestNo Analys		N6020B 6/2024 9:57:00) AM	Units: Prep Date	mg/	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qu
Boron	(0 0298	0.0300	0.0300	0	99.4	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 1 of 12

CLIENT: BBA Engineering ANALYTICAL QC SUMMARY REPORT

Work Order: 2407275

RunID: ICP-MS4_240729D **Project:** Fayette CCR Program

The QC data in batch 116428 applies to the following samples: 2407275-01A, 2407275-02A, 2407275-03A, 2407275-04A, 2407275-05A, 2407275-06A, 2407275-07A, 2407275-08A, 2407275-09A

	13 017, 2401213 007	•							
Sample ID:	MB-116428	Batch ID:	116428		TestNo:	SV	V6020B	Units:	mg/L
SampType:	MBLK	Run ID:	ICP-MS4_	240729D	Analysis	Date: 7/2	29/2024 1:43:00 P	M Prep Date:	7/26/2024
Analyte			Result	RL	SPK value	Ref Val	%REC Lov	vLimit HighLimit %	RPD RPDLimit Qual
Boron		<	<0.0100	0.0300					
Sample ID:	LCS-116428	Batch ID:	116428		TestNo:	SV	V6020B	Units:	mg/L
SampType:	LCS	Run ID:	ICP-MS4_	240729D	Analysis	Date: 7/2	29/2024 1:45:00 P	M Prep Date:	7/26/2024
Analyte			Result	RL	SPK value	Ref Val	%REC Lov	vLimit HighLimit %	RPD RPDLimit Qual
Boron			0.206	0.0300	0.200	0	103	80 120	
Sample ID:	LCSD-116428	Batch ID:	116428		TestNo:	SV	V6020B	Units:	mg/L
SampType:	LCSD	Run ID:	ICP-MS4_	240729D	Analysis	Date: 7/2	29/2024 1:46:00 P	M Prep Date:	7/26/2024
Analyte			Result	RL	SPK value	Ref Val	%REC Lov	vLimit HighLimit %	RPD RPDLimit Qual
Boron			0.218	0.0300	0.200	0	109	80 120	5.59 15

Qualifiers: Analyte detected in the associated Method Blank В

> Analyte detected between MDL and RL J

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits S Spike Recovery outside control limits

Parameter not NELAP certified

Page 2 of 12

CLIENT: BBA Engineering

Work Order: 2407275

ANALYTICAL QC SUMMARY REPORT

Project: Fayette CCR Program RunID: ICP-MS4_240729D

Sample ID: ICV-240729	Batch ID	R134316		TestNo:	SW	6020B		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS4_	240729D	Analysis	Date: 7/2 9	9/2024 9:55:0	00 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.0958	0.0300	0.100	0	95.8	90	110	
Sample ID: LCVL-240729	Batch ID	R134316		TestNo:	SW	6020B		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS4_	240729D	Analysis	Date: 7/2 9	9/2024 10:09	:00 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.0201	0.0300	0.0200	0	100	80	120	
Sample ID: CCV4-240729	Batch ID	R134316		TestNo:	SW	6020B		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS4_	240729D	Analysis	Date: 7/2 9	9/2024 12:23	:00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Boron		0.204	0.0300	0.200	0	102	90	110	
Sample ID: CCV5-240729	Batch ID	R134316		TestNo:	SW	6020B		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS4_	240729D	Analysis	Date: 7/2 9	9/2024 2:23:0	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Page 3 of 12

CLIENT: BBA Engineering ANALYTICAL QC SUMMARY REPORT

Work Order: 2407275

ICP-MS5_240606A **RunID: Project:** Fayette CCR Program

Sample ID: DCS2-115670 SampType: DCS2	Batch ID: Run ID:		5_240606A	TestNo Analys		W6020B 6/2024 10:20:0	O AM	Units: Prep Date	mg/l	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qua
Calcium		0.301	0.300	0.300	0	100	70	130	0	0

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Page 4 of 12

CLIENT: BBA Engineering

Work Order: 2407275

Calcium

ANALYTICAL QC SUMMARY REPORT **RunID:** ICP-MS5_240729B

Project: Fayette CCR Program

The QC data in batch 116428 applies to the following samples: 2407275-01A, 2407275-02A, 2407275-03A, 2407275-04A, 2407275-05A, 2407275-06A, 2407275-07A, 2407275-08A, 2407275-09A

Sample ID: MB-116428 SampType: MBLK	Batch ID: Run ID:	116428 ICP-MS5_	240729B	TestNo: Analysis	SW 6 S Date: 7/29	6020B /2024 11:54	I:00 AM	Units: Prep Date:	mg/L 7/26/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Calcium		<0.100	0.300						
Sample ID: LCS-116428	Batch ID:	116428		TestNo:	swe	6020B		Units:	mg/L
SampType: LCS	Run ID:	ICP-MS5_	240729B	Analysis	s Date: 7/29	/2024 11:57	':00 AM	Prep Date:	7/26/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual
Calcium		4.82	0.300	5.00	0	96.4	80	120	
Sample ID: LCSD-116428	Batch ID:	116428		TestNo:	swe	6020B		Units:	mg/L
SampType: LCSD	Run ID:	ICP-MS5_	240729B	Analysis	s Date: 7/29	/2024 11:59	0:00 AM	Prep Date:	7/26/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD RPDLimit Qual

5.00

Qualifiers: Analyte detected in the associated Method Blank В

> Analyte detected between MDL and RL J

Not Detected at the Method Detection Limit ND

4.87

0.300

Reporting Limit

Analyte detected between SDL and RL

Dilution Factor DF

MDL Method Detection Limit

R RPD outside accepted control limits S Spike Recovery outside control limits

97.4

N Parameter not NELAP certified Page 5 of 12

1.03

120

15

CLIENT: BBA Engineering

Work Order: 2407275

ICP-MS5_240729B **RunID: Project:** Fayette CCR Program

ANALYTICAL QC SUMMARY REPORT

Sample ID: ICV-240729	Batch ID:	R134315	TestNo:	SW6	020B		Units:	mg/L
SampType: ICV	Run ID:	CP-MS5_240729B	Analysis	s Date: 7/29/	2024 9:44:	00 AM	Prep Date:	
Analyte	Re	esult RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Calcium	2	.49 0.300	2.50	0	99.8	90	110	
Sample ID: LCVL-240729	Batch ID:	R134315	TestNo:	SW6	020B		Units:	mg/L
SampType: LCVL	Run ID:	CP-MS5_240729B	Analysis	s Date: 7/29/	2024 9:51:	00 AM	Prep Date:	
Analyte	Re	esult RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Calcium	0.0	0.300	0.100	0	83.1	80	120	
Sample ID: CCV3-240729	Batch ID:	R134315	TestNo:	SW6	020B		Units:	mg/L
SampType: CCV	Run ID:	CP-MS5_240729B	Analysis	s Date: 7/29/	2024 11:45	:00 AM	Prep Date:	
Analyte	Re	esult RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Calcium	4	.89 0.300	5.00	0	97.8	90	110	
Sample ID: CCV4-240729	Batch ID:	R134315	TestNo:	SW6	020B		Units:	mg/L
SampType: CCV	Run ID:	CP-MS5_240729B	Analysis	s Date: 7/29/	2024 12:45	:00 PM	Prep Date:	
Analyte	Re	esult RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Calcium	4	.90 0.300	5.00	0	98.0	90	110	
Sample ID: CCV5-240729	Batch ID: I	R134315	TestNo:	SW6	020B		Units:	mg/L
SampType: CCV	Run ID:	CP-MS5_240729B	Analysis	s Date: 7/29/	2024 1:15:	00 PM	Prep Date:	
Analyte	Re	esult RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Calcium	4	.82 0.300	5.00	0	96.5	90	110	
Sample ID: CCV6-240729	Batch ID:	R134315	TestNo:	SW6	020B		Units:	mg/L
SampType: CCV	Run ID:	CP-MS5_240729B	Analysis	s Date: 7/29/	2024 1:59:	00 PM	Prep Date:	
Analyte	Re	esult RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Calcium	4	.81 0.300	5.00	0	96.2	90	110	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits Parameter not NELAP certified

Page 6 of 12

CLIENT: BBA Engineering ANALYTICAL QC SUMMARY REPORT

Work Order: 2407275

Fayette CCR Program **RunID:** IC2_240724B **Project:**

Sample ID: DCS2-116389	Batch ID:	116389		TestNo	: E30	00		Units:	mg/l	L
SampType: DCS2	Run ID:	IC2_24	0724B	Analys	s Date: 7/2 4	4/2024 2:09:	35 PM	Prep Date	7/24	1/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimit Qual
Chloride		0.532	1.00	0.5000	0	106	70	130	0	0
Fluoride		0.244	0.400	0.2000	0	122	70	130	0	0
Sulfate		1.69	3.00	1.500	0	112	70	130	0	0

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAP certified

Page 7 of 12

CLIENT: BBA Engineering

Work Order: 2407275

ANALYTICAL QC SUMMARY REPORT

Project: Fayette CCR Program RunID: IC2_240730A

The QC data in batch 116480 applies to the following samples: 2407275-01B, 2407275-02B, 2407275-03B, 2407275-04B, 2407275-05B, 2407275-06B, 2407275-07B, 2407275-

oeb, 2407275-07B, 2407275-08			sampies: 240	7275-01B, 2407	275-U2B, 2	2407275-03B	, 240727	5-04B, 24072	:75-05B,	2407275-
Sample ID: MB-116480	Batch ID:	116480		TestNo:	E30	00		Units:	mg/L	
SampType: MBLK	Run ID:	IC2_24	0730A	Analysis	Date: 7/30	0/2024 10:38	:15 PM	Prep Date:	7/30/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Chloride		<0.300	1.00							
Fluoride		<0.100	0.400							
Sulfate		<1.00	3.00							
Sample ID: LCS-116480	Batch ID:	116480		TestNo:	E30	00		Units:	mg/L	
SampType: LCS	Run ID:	IC2_24	0730A	Analysis	Date: 7/3 0	0/2024 10:56	:15 PM	Prep Date:	7/30/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Chloride		10.2	1.00	10.00	0	102	90	110		
Fluoride		4.31	0.400	4.000	0	108	90	110		
Sulfate		30.8	3.00	30.00	0	103	90	110		
Sample ID: LCSD-116480	Batch ID:	116480		TestNo:	E30	00		Units:	mg/L	
SampType: LCSD	Run ID:	IC2_24	0730A	Analysis	Date: 7/3 0	0/2024 11:14	:16 PM	Prep Date:	7/30/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Chloride		10.3	1.00	10.00	0	103	90	110	0.180	20
Fluoride		4.32	0.400	4.000	0	108	90	110	0.371	20
Sulfate		31.0	3.00	30.00	0	103	90	110	0.521	20
Sample ID: 2407275-09BMS	Batch ID:	116480		TestNo:	E30	00		Units:	mg/L	
SampType: MS	Run ID:	IC2_24	0730A	Analysis	Date: 7/3	1/2024 1:02:	16 AM	Prep Date:	7/30/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Chloride		3430	100	2000	1623	90.4	90	110		
Fluoride		2070	40.0	2000	0	103	90	110		
Sulfate		3230	300	2000	1342	94.5	90	110		
Sample ID: 2407275-09BMSD	Batch ID:	116480		TestNo:	E30	00		Units:	mg/L	
SampType: MSD	Run ID:	IC2_24	0730A	Analysis	Date: 7/3	1/2024 1:20:	16 AM	Prep Date:	7/30/2	024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD R	PDLimit Qua
Chloride		3430	100	2000	1623	90.4	90	110	0.024	20
Fluoride		2070	40.0	2000	0	104	90	110	0.253	20
Sulfate		3240	300	2000	1342	94.7	90	110	0.175	20

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 8 of 12

S Spike Recovery outside control limits

N Parameter not NELAP certified

CLIENT: BBA Engineering

Work Order: 2407275

ANALYTICAL QC SUMMARY REPORT

Project: Fayette CCR Program RunID: IC2_240730A

Sample ID:	ICV-240730	Batch ID:	R134341		TestNo	E30	0		Units:	mg/L
SampType:	ICV	Run ID:	IC2_2407	'30A	Analysi	s Date: 7/30	/2024 10:39	9:18 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			25.0	1.00	25.00	0	100	90	110	
Fluoride			10.4	0.400	10.00	0	104	90	110	
Sulfate			76.5	3.00	75.00	0	102	90	110	
Sample ID:	CCV2-240730	Batch ID:	R134341		TestNo	E30	0		Units:	mg/L
SampType:	ccv	Run ID:	IC2_2407	'30A	Analysi	s Date: 7/30	/2024 10:02	2:15 PM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			10.3	1.00	10.00	0	103	90	110	
Fluoride			4.38	0.400	4.000	0	109	90	110	
Sulfate			31.4	3.00	30.00	0	105	90	110	
Sample ID:	CCV3-240730	Batch ID:	R134341		TestNo	E30	0		Units:	mg/L
SampType:	ccv	Run ID:	IC2_2407	'30A	Analysi	s Date: 7/31	/2024 4:20:	15 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			10.1	1.00	10.00	0	101	90	110	
Fluoride			4.27	0.400	4.000	0	107	90	110	
Sulfate			30.5	3.00	30.00	0	102	90	110	
Sample ID:	CCV4-240730	Batch ID:	R134341		TestNo	E300	0		Units:	mg/L
SampType:	CCV	Run ID:	IC2_2407	'30A	Analysi	s Date: 7/31	/2024 8:32:	16 AM	Prep Date	:
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride			10.2	1.00	10.00	0	102	90	110	
Fluoride			4.30	0.400	4.000	0	108	90	110	
Sulfate			30.7	3.00	30.00	0	102	90	110	
Sample ID:	CCV5-240730	Batch ID:	R134341		TestNo	E30	0		Units:	mg/L
SampType:	CCV	Run ID:	IC2_2407	'30A	Analysi	s Date: 7/31	/2024 12:44	1:15 PM	Prep Date	:
			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Analyte										
Analyte Chloride			10.1	1.00	10.00	0	101	90	110	
,			10.1 4.27	1.00 0.400	10.00 4.000	0	101 107	90 90	110 110	

Qualifiers: B

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 9 of 12

ANALYTICAL QC SUMMARY REPORT

CLIENT: BBA Engineering Work Order: 2407275

Project: Fayette CCR Program RunID: IC2_240801B

110 jecti 1 ayette	cert i rogiu									
The QC data in batch 116527	applies to the	following s	amples: 240	7275-02B, 2407	7275-05B					
Sample ID: MB-116527	Batch ID:	116527		TestNo:	E30	0		Units:	mg/L	
SampType: MBLK	Run ID:	IC2_240	801B	Analysis	s Date: 8/1/2	2024 12:52:	44 PM	Prep Date:	8/1/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLimit	t Qual
Chloride		<0.300	1.00							
Sample ID: LCS-116527	Batch ID:	116527		TestNo:	E30	0		Units:	mg/L	
SampType: LCS	Run ID:	IC2_240	801B	Analysis	s Date: 8/1/2	2024 1:10:4	4 PM	Prep Date:	8/1/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLimit	t Qual
Chloride		10.3	1.00	10.00	0	103	90	110		
Sample ID: LCSD-116527	Batch ID:	116527		TestNo:	E30	0		Units:	mg/L	
SampType: LCSD	Run ID:	IC2_240	801B	Analysis	s Date: 8/1/2	2024 1:28:4	4 PM	Prep Date:	8/1/2024	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD RPDLimit	t Qual
Chloride		10.3	1.00	10.00	0	103	90	110	0.635 20	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 10 of 12

CLIENT: BBA Engineering

Work Order: 2407275

ANALYTICAL QC SUMMARY REPORT

Project: Fayette CCR Program RunID: IC2_240801B

Sample ID: ICV-240801	Batch ID:	R13441	6	TestNo	E30	0		Units:	mg/L	
SampType: ICV	Run ID:	IC2_240	0801B	Analysi	s Date: 8/1/ 2	2024 10:26:	10 AM	Prep Date	: :	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLin	nit Qual
Chloride		26.1	1.00	25.00	0	104	90	110		
Sample ID: CCV1-240801	Batch ID:	R13441	6	TestNo	E30	0		Units:	mg/L	
SampType: CCV	Run ID:	IC2_240	0801B	Analysi	s Date: 8/1/2	2024 11:20:	10 AM	Prep Date	e:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLin	nit Qual
Chloride		10.2	1.00	10.00	0	102	90	110		
Sample ID: CCV1-240801	Batch ID:	R13441	6	TestNo	E30	0		Units:	mg/L	
SampType: CCV	Run ID:	IC2_240)801B	Analysi	s Date: 8/1/ 2	2024 9:19:1	6 PM	Prep Date):	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLin	nit Qual
Chloride		10.1	1.00	10.00	0	101	90	110		

Qualifiers: B

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limitsS Spike Recovery outside control limits

N Parameter not NELAP certified

Page 11 of 12

CLIENT: BBA Engineering

Work Order: 2407275

ANALYTICAL QC SUMMARY REPORT

Project: Fayette CCR Program RunID: WC_240726A

The QC data in batch 116437 applies to the following samples: 2407275-01B, 2407275-02B, 2407275-03B, 2407275-04B, 2407275-05B, 2407275-06B, 2407275-07B, 2407275-08B, 2407275-

06B, 2407275-07B, 2407275-08B, 2407275-09B Sample ID: MB-116437 Batch ID: TestNo: M2540C Units: 116437 mg/L SampType: MBLK Run ID: WC 240726A Analysis Date: 7/26/2024 4:45:00 PM Prep Date: 7/26/2024 Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte Total Dissolved Solids (Residue, Filtera <10.0 10.0 Sample ID: LCS-116437 Batch ID: 116437 TestNo: M2540C Units: mg/L Run ID: Analysis Date: 7/26/2024 4:45:00 PM Prep Date: SampType: LCS WC_240726A 7/26/2024 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 745.6 0 Total Dissolved Solids (Residue, Filtera 738 10.0 99.0 90 113 Sample ID: 2407275-01B-DUP Batch ID: 116437 TestNo: M2540C Units: mg/L SampType: DUP Run ID: WC_240726A Analysis Date: 7/26/2024 4:45:00 PM Prep Date: 7/26/2024 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 1.90 Total Dissolved Solids (Residue, Filtera 5220 50.0 0 5320 5 Sample ID: 2407275-02B-DUP Batch ID: 116437 TestNo: M2540C Units: mg/L SampType: DUP Run ID: WC_240726A Analysis Date: 7/26/2024 4:45:00 PM Prep Date: 7/26/2024

Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Dissolved Solids (Residue, Filtera 4510 50.0 0 4580 1.54 5

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Page 12 of 12

Date: 02-Aug-24

CLIENT: BBA Engineering

Work Order: 2407275

Project: Fayette CCR Program

MQL SUMMARY REPORT

TestNo:	E300	MDL	MQL
Analyte		mg/L	mg/L
Chloride		0.300	1.00
Fluoride		0.100	0.400
Sulfate		1.00	3.00
TestNo:	SW6020B	MDL	MQL
Analyte		mg/L	mg/L
Boron		0.0100	0.0300
Calcium		0.100	0.300
TestNo:	M2540C	MDL	MQL
Analyte		mg/L	mg/L
Total Dis	solved Solids (Residue, Filt	10.0	10.0

October 09, 2024

Charlie Macon

BBA Engineering

165 N. Lampasas St.

Bertram, TX 78605

TEL: (512) 585-7180

FAX: Order No.: 2410023

RE: LCRA - FPP

Dear Charlie Macon:

DHL Analytical, Inc. received 1 sample(s) on 10/2/2024 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAP except where noted in the Case Narrative. All non-NELAP methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

Joel Grice

Executive VP of Environmental

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211 - TX-C24-00120

Table of Contents

Miscellaneous Documents	3
CaseNarrative 2410023	8
WorkOrderSampleSummary 2410023	9
PrepDatesReport 2410023	10
AnalyticalDatesReport 2410023	11
Analytical Report 2410023	12
AnalyticalQCSummaryReport 2410023	13
MQLSummaryReport 2410023	16

2300 Double Creek Dr. Round Rock, TX 78664 Phone 512.388.8222

CHAIN-OF-CUSTODY

PAGE

Web: www.dhlanalytical.com Email: login@dhlanalytical.com

CLIENT: BBA						DΑ	TE:)(7-1	-2	24										LAB	USI		NLY						13 5°77		1
ADDRESS: 165 N. LA	MPA.	MS S	T BE	REAM	nik	P	TE:)#:		2	4	11	3	-2	ξ~	1						DHL	WC	ORK	ORI	DER	#:	L	-4	100	23		
PHONE:		EMAIL:			•		OJE									<u></u>	RI	٦ -	I	[P	0											1
DATA REPORTED TO: C	HARI	UE M	ACON			ـــــ											· ~	1														
ADDITIONAL REPORT COI	PIES TO					CL	ENT	PR	OJE	CT	#	24	7 L	<u>3</u> -	-2	-1					COL	LEC	TOR		DH	M	E	PP	140	N		
Authorize 5% surcharge		W=WATE			DIMENT		PRE	SER			B		9	li			٦	5.10	0	LS.				8		$_{\Pi}$						
for TRRP report?	Lub	L=LIQUID		P=PAI							<u>ا</u>	[092	LD 100					29 0	MON	. MET			HERB	11	EASE	NIDE						
☐ Yes ☐ No		S=SOIL		SL=SL	UDGE	ers	H₃PO₄			cetal	Z Z	2 g	유	_	<u> </u>	15	ءِ ا ۽	B 8270	AM	SSIG		VALIN	□TS:	χL□	IL&GR	S						
	Only	SO=SOLID		1		aju	H ₃		1	4 2	Z 2	MET	1006	2 8015	624.1	00 62	4 C	2 2	HOS	200.8			C PP	RCRA 8	s 🗆 o	AOIST						
	DHL	Collection	Collection		Container	# of Containers			4 [NaOH Zn Acetate	ONPRESERVE	ABE	TPH 1005 ☐ TPH 1006 ☐ HOLD 1006 ☐	GRO 8015 ☐ DRO 8015 ☐	VOC 8260 □ VOC 624.1 □	S 🗆	PAH 8270 🗆 HOLD PAH 🗆	PCB 8082	HERB 8321 □ T PHOS □ AMMONIA □	METALS 6020 🗆 200.8 🗅 DISS. METALS 🗅	RCRA 8 🗆 TX11	ANIONS 300 🗆 9056 🗆	TCLP-SVOC □ VOC □ PEST □ HERB □	TCLP-METALS □ RCRA 8 □ TX-11 □ Pb □	RCI 🗆 IGN 🗆 DGAS 🗆 OIL&GREASE 🗆	TDS ☐ TSS ☐ % MOIST ☐ CYANIDE ☐	BORON					
Field Sample I.D.	Lab #	Date	Time	Matrix	Туре	of (HCL		H ₂ SO ₄			٥	1005	0 8015	C 8260)C 827	18270	8082	1B 832	TALS 6	8 8 8	ONS 3	P-SVO	P-MET	II IGN	ST 🗆	ğ					
00. 00.	- 1		1000		ρ	_	Ι :	<u> </u>	<u>Ε 2</u>	ž	2		Ē	ğ	Š	Ĭ,	¥ 8		불	Σ	ğ :	E A	뒫	고	Z.	Ĕ	89	<u> </u>		ELD NO		
CBL-34/I	01	10-1-24	135U	W	<u> </u>	2		X -	+	╬	4	-	1	\vdash	-	+	╬		-	\dashv	+	-	 		4	-	λ	+		ASE !		
						\vdash	+	+	-	+	-	-				\dashv	+	+	\vdash	\dashv	+	-	+		\dashv	4	+	+	118	om	E A/	P
V4 10 10 00 00 V4							+	+	+	+	-	_	H	Н	\dashv	+	+	+	\vdash	\dashv	+	+			\dashv	\dashv	+	+	THIN	D TH Born	66	
							-	+	+	+	1		\vdash	H	\dashv	+	+	╁	\vdash	\dashv	+	+	+		\vdash	\dashv	\dashv	+	0055	BLE	AND	WI IZ
						\vdash	\dashv	+	+	+	1		\vdash	H		\dashv	+	+	\vdash	_	+	+	+	H		\dashv		十	17077	17LC	MILLER	70
							1	+	十	\dagger	1		T	\Box		\dashv	\top	\dagger			\dashv		T	H		7	_	+				1
								1	\top	┪	7		T	П		十	\top	T				1	T			┪	1	1	+			1
											1			П				T				1	T					T	1			1
																							T					T			***************************************	1
]
									\perp	\perp				Ш									$oldsymbol{ol}}}}}}}}}}}}}}}}}$					┸				
							\perp	4	\perp	1	4			Ш		\perp	\perp	┸	Ш		_	\perp	_					_				_
							\perp	4	_	4	_		lacksquare	\sqcup		\dashv	_	_	-	_	4	4	┺			_	_					_
						_	\vdash	4	+	+	-	-	\vdash	\sqcup		+	4	+	1	_	_		1			_		+	—			4
Relinquished By: (Sign)		1	DATE/TIME	1	Recei	ed h	V.			+			<u> </u>			TIDA		+-										ᆜ	<u></u>			_
Musika William		10.		075	Receiv M /	\mathcal{L}	W	J	h	l		TURN CALL						1	B US CEIV			P (°C):	1.0) 07			TF	HERMO	r#: 7ε	}	
Relinquished By: (Sign)		10	DATE/TIME		Recei			<u> </u>		٦,	RUSI	H-1 [DAYE	□R	USH	I-2 D	AYE										JST C	OLLE	CTED?			1
()												R	USH	l-3 D																r ⊠ NC		
Relinquished By: (Sign)			DATE/TIME		Recei	ed b	y:			٦	N	ORM	AL\	X	ОТ	HER		- 1	RRIE	R: [] LSC		FEDE	ΧC] UP	s 🗆	cou	IRIER	: 🖪 HA	ND DELI	VERED	
										10	UE	DAT	E 🕯	•]														1

DHL Analytical, Inc.

Sample Receipt Checklist Client Name: BBA Engineering Date Received: 10/2/2024 Work Order Number: 2410023 Received by: KAO 10/2/2024 Checklist completed by: 10/2/2024 Reviewed by: Date Date Signature Carrier name: Hand Delivered Shipping container/cooler in good condition? Yes 🗸 No 🗌 Not Present No 🗌 Not Present 🗹 Custody seals intact on shipping container/cooler? Yes 🗌 No 🗌 Not Present Custody seals intact on sample bottles? Chain of custody present? No 🗌 Yes Chain of custody signed when relinquished and received? Yes 🗸 No 🗌 Yes 🗹 No 🗌 Chain of custody agrees with sample labels? Yes 🗸 No 🗌 Samples in proper container/bottle? No 🗌 Sample containers intact? **V** Yes Sufficient sample volume for indicated test? Yes 🗸 No 🗌 Yes 🗹 No 🗌 All samples received within holding time? Yes 🗌 No 🗌 No VOA vials submitted NA 🗌 Water - VOA vials have zero headspace? Yes 🗸 No 🗌 NA 🗌 LOT# Water - pH<2 acceptable upon receipt? Checked by Adjusted? NA 🗹 Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt? Yes 🗌 No 🗌 LOT# Adjusted? Checked by Yes 🗸 No 🗌 Container/Temp Blank temperature in compliance? Cooler# 1 Temp °C 1.0 Seal Intact NP Any No response must be detailed in the comments section below. Client contacted: Date contacted: Person contacted: Regarding: Contacted by: Comments:

Corrective Action:

Lab	orat	ory Name: DHL Analytical, Inc.						
		tory Review Checklist: Reportable Data me: LCRA - FPP LRC D	Pate: 10/9/2024					
			ntory Work Order: 2410023					
			atch: See Analytical Dates Report			2	41	
#1	A^2	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
D1	O.I.	Chain-of-Custody (C-O-C)	. 1 111					D1 01
R1	OI	1) Did samples meet the laboratory's standard conditions of sample		X		X 7		R1-01
R2	OI	2) Were all departures from standard conditions described in an exc Sample and Quality Control (QC) Identification	ception report?			X		
N2	OI	1) Are all field sample ID numbers cross-referenced to the laborato	ry ID numbers?	X				
		2) Are all laboratory ID numbers cross-referenced to the correspondence		X				
R3	OI	Test Reports						
		1) Were all samples prepared and analyzed within holding times?		X				
		2) Other than those results < MQL, were all other raw values brack	eted by calibration standards?	X				
		3) Were calculations checked by a peer or supervisor?		X				
		4) Were all analyte identifications checked by a peer or supervisor?		X				
		5) Were sample detection limits reported for all analytes not detect		X		***		
		6) Were all results for soil and sediment samples reported on a dry				X		
		7) Were % moisture (or solids) reported for all soil and sediment sa 8) Were bulk soils/solids samples for volatile analysis extracted with				X		
		9) If required for the project, TICs reported?	in methanor per EFA Method 3033?			X		
R4	О	Surrogate Recovery Data				71		
11.		1) Were surrogates added prior to extraction?				X		
		2) Were surrogate percent recoveries in all samples within the labor	ratory QC limits?			X		
R5	OI	Test Reports/Summary Forms for Blank Samples	•					
		1) Were appropriate type(s) of blanks analyzed?		X				
		2) Were blanks analyzed at the appropriate frequency?		X				
		3) Where method blanks taken through the entire analytical process	s, including preparation and, if	X				
		applicable, cleanup procedures?						
		4) Were blank concentrations < MDL?	1:	X				
		5) For analyte(s) detected in a blank sample, was the concentration factors, in all associated field samples, greater than 10 times the co				X		
R6	OI	Laboratory Control Samples (LCS):	meentration in the orank sample:					
110		1) Were all COCs included in the LCS?		X				
		2) Was each LCS taken through the entire analytical procedure, inc	luding prep and cleanup steps?	X				
		3) Were LCSs analyzed at the required frequency?		X				
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory		X				
		5) Does the detectability data document the laboratory's capability	to detect the COCs at the MDL used	X				
		to calculate the SDLs?						
D.5	O.I.	6) Was the LCSD RPD within QC limits (if applicable)?		X				
R 7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data 1) Were the project/method specified analytes included in the MS a	nd MSD?			X		
		2) Were MS/MSD analyzed at the appropriate frequency?	iid MOD:			X		
		3) Were MS (and MSD, if applicable) %Rs within the laboratory Q	C limits?			X		
		4) Were MS/MSD RPDs within laboratory QC limits?	e immes.			X		
R8	OI	Analytical Duplicate Data						
		1) Were appropriate analytical duplicates analyzed for each matrix	?			X		
		2) Were analytical duplicates analyzed at the appropriate frequency				X		
		3) Were RPDs or relative standard deviations within the laboratory	QC limits?			X		
R9	OI	Method Quantitation Limits (MQLs):						
		1) Are the MQLs for each method analyte included in the laborator		X				
		2) Do the MQLs correspond to the concentration of the lowest non-		X				
R10	OI	3) Are unadjusted MQLs and DCSs included in the laboratory data Other Problems/Anomalies	раскаде!	X				
KIU	OI	1) Are all known problems/anomalies/special conditions noted in the	ais LRC and FR?	X				R10-01
		2) Was applicable and available technology used to lower the SDL						1410-01
		affects on the sample results?	to manife the manife interference	X				
		3) Is the laboratory NELAC-accredited under the Texas Laboratory	Accreditation Program for the	X				
		analytes, matrices and methods associated with this laboratory data	package?	Λ				

Lab	ora	tory Name: DHL Analytical, Inc.						
		tory Review Checklist (continued): Supporting						
Proje	ct Na	ame: LCRA - FPP LRC	Date: 10/9/2024					
Revie	wer	Name: Angie O'Donnell Labor	ratory Work Order: 2410023					
rep	Batc	h Number(s): See Prep Dates Report Run F	Batch: See Analytical Dates Report					
# ¹	A ²	Description	Jacob Paragorous Bures Respect	Yes	No	NA ³	NR^4	ER#
π S1		Initial Calibration (ICAL)		103	110	IVA	IVIX	LINπ
51	Oi	, f						
		1) Were response factors and/or relative response factors for each a	nalyte within QC limits?	X				
		2) Were percent RSDs or correlation coefficient criteria met?	C111-49	X				
		3) Was the number of standards recommended in the method used f		X				
		4) Were all points generated between the lowest and highest standars. 5) Are ICAL data available for all instruments used?	rd used to calculate the curve?	X				
	6) Has the initial calibration curve been verified using an appropriate second source standard?		ta second source standard?	X				
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV		Λ				
32	Oi	blank (CCB):) and Continuing Canbration					
	1) Was the CCV analyzed at the method-required frequency?			X				
		2) Were percent differences for each analyte within the method-req	uired OC limits?	X				
		3) Was the ICAL curve verified for each analyte?	unea Qe imira.	X				
		4) Was the absolute value of the analyte concentration in the inorga	nic CCB < MDL?	X				
S3	О	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		X				
		2) Were ion abundance data within the method-required QC limits?		X				
S4	О	Internal Standards (IS):						
		1) Were IS area counts and retention times within the method-requi	red QC limits?	X				
S5	OI	Raw Data (NELAC Section 5.5.10)						
		1) Were the raw data (for example, chromatograms, spectral data) r	eviewed by an analyst?	X				
		2) Were data associated with manual integrations flagged on the ray	w data?	X				
S6	О	Dual Column Confirmation						
		1) Did dual column confirmation results meet the method-required	QC?			X		
S7	О	Tentatively Identified Compounds (TICs):						
		1) If TICs were requested, were the mass spectra and TIC data subj	ect to appropriate checks?			X		
<u>S8</u>	I	Interference Check Sample (ICS) Results:						
~ ~	_	1) Were percent recoveries within method QC limits?		X				
S9	I	Serial Dilutions, Post Digestion Spikes, and Method of Standard	d Additions					
		1) Were percent differences, recoveries, and the linearity within method?	n the QC limits specified in the			X		
510	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?		X				
		2) Is the MDL either adjusted or supported by the analysis of DCSs	?	X				
311	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable proficien	cy tests or evaluation studies?	X				
512	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtained	d from other appropriate sources?	X				
513	OI	Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification document	nted?	X				
514	OI	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5 – Apper		X				
14 =	67	2) Is documentation of the analyst's competency up-to-date and on		X				
S15	OI	Verification/Validation Documentation for Methods (NELAC C						
		1) Are all the methods used to generate the data documented applicable?	d, verified, and validated, where	X				
516	OI	Laboratory Standard Operating Procedures (SOPs):						
_		1) Are laboratory SOPs current and on file for each method perform	ned?	X				

¹ Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

² O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

³ NA = Not applicable.

⁴ NR = Not Reviewed.

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- Test reports/summary forms for blank samples;
- Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MOLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on May 30 - June 2, 2023. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

> Joel Grice Name: Official Title: Executive VP

> > of Environmental

10/09/2024 Date

Name: Don Winston Official Title: Technical Director

DHL Analytical, Inc.

CLIENT: BBA Engineering Project: LCRA - FPP

Lab Order: 2410023

CASE NARRATIVE

Date: 09-Oct-24

Samples were analyzed using the methods outlined in the following references:

Method SW6020B - Metals Analysis

Exception Report R1-01

The samples were received and log-in performed on 10/2/2024. A total of 1 sample was received and analyzed. The sample arrived in good condition and was properly packaged.

Exception Report R10-01

Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

DHL Analytical, Inc.

Date: 09-Oct-24

CLIENT: BBA Engineering
Project: LCRA - FPP

Lab Order: 2410023

Work Order Sample Summary

Lab Smp ID Client Sample ID Tag Number Date Collected Date Recved

2410023-01 CBL-341I

10/01/24 01:50 PM 10/02/2024

Lab Order: 2410023

Client: BBA Engineering

Project: LCRA - FPP

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
2410023-01A	CBL-341I	10/01/24 01:50 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	10/03/24 07:22 AM	117436

Test Number Test Name

Lab Order: 2410023

Sample ID

Client: BBA Engineering

Client Sample ID

Matrix

Project: LCRA - FPP

ANALYTICAL DATES REPORT

Dilution

Analysis Date

Run ID

Batch ID

2410023-01A	CBL-341I	Aqueous	SW6020B	Total Metals: ICP-MS - Water	117436	1	10/03/24 03:14 PM	ICP-MS5_241003B

DHL Analytical, Inc.

CLIENT: BBA Engineering

Project: LCRA - FPP

Project No: 24713-2-1

Lab Order: 2410023

Date:

09-Oct-24

Client Sample ID: CBL-341I

Lab ID: 2410023-01

Collection Date: 10/01/24 01:50 PM

Matrix: AQUEOUS

Analyses	Result	SDL	RL	Qual	Units	DF	Date Analyzed
TOTAL METALS: ICP-MS - WATER Boron	0.136	SW60 : 0.0100	20B 0.0300		mg/L	1	Analyst: CMC 10/03/24 03:14 PM

Qualifiers: ND - Not Detected at the SDL

J - Analyte detected between SDL and RL

B - Analyte detected in the associated Method Blank

DF- Dilution Factor

N - Parameter not NELAP certified

See Final Page of Report for MQLs and MDLs

S - Spike Recovery outside control limits

C - Sample Result or QC discussed in Case Narrative

RL - Reporting Limit (MQL adjusted for moisture and sample size)

SDL - Sample Detection Limit

E - TPH pattern not Gas or Diesel Range Pattern

Page 1 of 1

DHL Analytical, Inc.

CLIENT: BBA Engineering

Work Order: 2410023
Project: LCRA - FPP

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS5_240909A

Date: 09-Oct-24

Sample ID: DCS4-117075 SampType: DCS4	Batch ID: Run ID:		5_240909A	TestNo Analys		V6020B 9/2024 10:17:0	00 AM	Units: Prep Date	mg/l	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Boron	(0.0292	0.0300	0.0300	0	97.2	70	130	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAP certified

Page 1 of 3

CLIENT: BBA Engineering

Work Order: 2410023

Project: LCRA - FPP RunID: ICP-MS5_241003B

ANALYTICAL QC SUMMARY REPORT

The QC data in batch 117436 ap	plies to the	following sa	mples: 241	0023-01A					
Sample ID: MB-117436	Batch ID:	117436		TestNo:	SV	V6020B		Units:	mg/L
SampType: MBLK	Run ID:	ICP-MS5	_241003B	Analysis	Date: 10	/3/2024 2:44:0	0 PM	Prep Date:	10/3/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	6RPD RPDLimit Qual
Boron	•	<0.0100	0.0300						
Sample ID: LCS-117436	Batch ID:	117436		TestNo:	SV	V6020B		Units:	mg/L
SampType: LCS	Run ID:	ICP-MS5	_241003B	Analysis	Date: 10	/3/2024 2:47:0	0 PM	Prep Date:	10/3/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	6RPD RPDLimit Qual
Boron		0.192	0.0300	0.200	0	95.8	80	120	
Sample ID: LCSD-117436	Batch ID:	117436		TestNo:	SV	V6020B		Units:	mg/L
SampType: LCSD	Run ID:	ICP-MS5	_241003B	Analysis	Date: 10	/3/2024 2:49:0	0 PM	Prep Date:	10/3/2024
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	6RPD RPDLimit Qual
Boron		0.199	0.0300	0.200	0	99.4	80	120	3.73 15

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limitsN Parameter not NELAP certified

Page 2 of 3

CLIENT: BBA Engineering

Work Order: 2410023 Project: LCRA - FPP

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS5_241003B

Sample ID: ICV-241003	Batch ID:	R135514		TestNo:	SW6	020B		Units:	mg/L
SampType: ICV	Run ID:	ICP-MS5_	241003B	Analysis	Date: 10/3/	/2024 10:12	:00 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Boron		0.0951	0.0300	0.100	0	95.1	90	110	
Sample ID: LCVL-241003	Batch ID:	R135514		TestNo:	SW6	020B		Units:	mg/L
SampType: LCVL	Run ID:	ICP-MS5_	241003B	Analysis	Date: 10/3/	/2024 10:20	:00 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Boron		0.0204	0.0300	0.0200	0	102	80	120	
Sample ID: CCV3-241003	Batch ID:	R135514		TestNo:	SW6	020B		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS5_	241003B	Analysis	Date: 10/3/	/2024 2:39:0	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Boron		0.188	0.0300	0.200	0	94.0	90	110	
Sample ID: CCV4-241003	Batch ID:	R135514		TestNo:	SW6	020B		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS5_	241003B	Analysis	Date: 10/3/	/2024 3:31:0	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAP certified} \end{array}$

Page 3 of 3

DHL Analytical, Inc.

Date: 09-Oct-24

CLIENT: BBA Engineering

Work Order: 2410023 Project: LCRA - FPP MQL SUMMARY REPORT

TestNo: SW6020B	MDL	MQL
Analyte	mg/L	mg/L
Boron	0.0100	0.0300

DATA USABILITY SUMMARY - LCRA Analytical Reports 2407275 and 2410023

Bullock, Bennett & Associates, LLC has reviewed the analytical data packages to be included in Appendix D of the Coal Combustion Residual Landfill 2024 Annual Groundwater Monitoring Report (Annual Groundwater Report) that was produced by DHL Analytical, Inc. for the analysis of groundwater samples collected in July 2024 and October 2024 at the Fayette Power Project (FPP) site. The Data were reviewed for conformance to the groundwater sampling and analysis requirements of 40 CFR § 257.93/30 TAC 352.931 and adherence to project objectives.

Objectives of the Data: To provide current data on concentrations of COCs in groundwater at the site for purposes of comparing Combustion Byproducts Landfill (CBL) compliance sample data to Appendix III Control Limits. To accomplish the stated data objectives, all field and laboratory procedures were performed in accordance with industry-established protocol, and the FPP Sampling and Analysis Plan. Appropriate quality assurance/quality control (QA/QC) measures were utilized. As described within the body of the Annual Groundwater Report, field QA/QC protocols integrated into this project followed industry standards and involved, among other factors:

- Use of sampling equipment decontamination protocol;
- Proper sample handling, preservation, and shipping procedures; and
- Maintenance of the sample chain of custody.

Also, as presented in the individual laboratory data packages, laboratory QA/QC procedures integrated into this project followed industry standards and involved, among others:

- Maintenance of sample custody;
- Application of laboratory cross references to field sample identifications and to specific QC samples;
- Use of laboratory control samples (LCSs);
- Use of matrix spike/matrix duplicate spikes (MS/MSDs);
- Use of appropriate method and method reporting limit (MRL);
- Reporting of non-detect results as less than the value of the MRL;
- Use of surrogate recoveries;
- Calculation of relative percent differences (RPDs);
- Use of method and preparation blanks; and
- The application of data qualifiers.

Data Reviewed: The data reviewed consisted of laboratory submittals and field data as follows:

- Project Objectives (i.e., recoveries and relative percent differences);
- Analytical Results, including, as applicable, data qualifiers;
- Documentation of preservation and holding times;
- Field and laboratory equipment calibrations;
- Laboratory blanks:
- Internal Laboratory Control Standards and Surrogate Recoveries;
- Laboratory Control Samples;
- Matrix Spike/Matrix Spike Duplicates;
- Field Precision as determined by duplicate samples collected in the field; and
- Field Procedures.

The results of the supporting quality control analyses for each of these QC factors were summarized in Quality Control narratives provided by the laboratory, and field/laboratory-completed chain of custody forms, the field forms, and the standard operational field procedures, and groundwater sampling procedures. A review of each of these was included in this Data Usability Summary.

Based on the Data Usability Review, the groundwater data are usable for their intended purpose. All samples were collected in the field using industry-standard operating procedures (SOPs), including decontamination protocol, sample preservation, and chain of custody.

Also, as presented in detail in the attached laboratory data packages, all appropriate QA/QC protocol were accomplished by the analytical laboratory. Where applicable, data have been appropriately qualified in the laboratory reports and the data, therefore, have been used accordingly.

Exception Reports, including Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Issues were identified as follows:

- July 2024 sampling event (Report 2407275)
 - o Exception Report R1-01

The samples were received and log-in performed on 7/25/2024. A total of 9 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

- Exception Report R10-01
 Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.
- October 2024 sampling event (Report 2410023)
 - Exception Report R1-01

The samples were received and log-in performed on 10/2/2024. A total of 1 sample was received and analyzed. The sample arrived in good condition and were properly packaged.

Exception Report R10-01
 Per project specification, MS/MSD/Duplicates are from this workorder or project samples only.

All exceptions were documented and described in the Quality Control narratives and no conditions with regard to laboratory control samples, matrix spike/matrix spike duplicates, sample preservation and holding times, or equipment calibrations were identified that would cause any of the data not to be useable.

Alterr	APPENDIX E nate Source Demonstration – First Semiannual Monitoring Event 2024

From: <u>Daniela Ortiz De Montellano</u>

To: Kate McCarthy

Cc: Charly Fritz; Danielle Lesikar; Martin Torres; Colin Donovan; Patti Hershey; Earl Lott

Subject: FW: ASD response - Lower Colorado River Authority - Registration No. CCR101 - ID Nos. 272140088 and

29948707

Date: Thursday, August 15, 2024 12:21:59 PM

CAUTION - EXTERNAL EMAIL Phishing? **Click the fish** in Outlook

Acceptance of Alternative Source Demonstration (ASD) Lower Colorado River Authority (LCRA) – La Grange, Fayette County Coal Combustion Residuals (CCR) Registration No. CCR101 Industrial Solid Waste Registration No. 31575 EPA Identification No. TXD083566547 Communication ID Nos. 272140088 and 29948707; RN100226844/CN600253637

Dear Ms. McCarthy:

The Industrial and Hazardous Waste Permits Section of the Texas Commission on Environmental Quality (TCEQ) reviewed the ASD dated July 17, 2024, prepared in response to a Statistically Significant Increase for boron at the Combustion Byproducts Landfill (CBL), groundwater monitoring well CBL-302I, at Fayette Power Project that was initially reported to the TCEQ on April 30, 2024.

Based on the information provided in the ASD report and in the meeting held on July 31, 2024, the TCEQ determined that the ASD justification is satisfactory. LCRA will provide an addendum to the September 14, 2023, notice of deficiency response to update the Background Evaluation Report and Statisical Analysis Plan (SAP) to document the updated Dixon test analysis. Additionally, include the ASD as an attachment to the SAP, see 30 TAC 352.281(b) under registration application contents, and provide additional information as discussed in the July 31, 2024, meeting.

If you have any questions, please contact me at (512) 239-2210 or by email.

Sincerely,

Daniela Ortiz de Montellano, Work Leader Industrial and Hazardous Waste Permits Section Waste Permits Division TCEQ

July 17, 2024

Daniela Ortiz de Montellano, Project Manager Industrial and Hazardous Waste Permits Section Waste Permits Division Texas Commission on Environmental Quality

RE: Alternate Source Demonstration – First Semi-Annual Monitoring Event 2024 Lower Colorado River Authority Fayette Power Project – La Grange, Fayette County Coal Combustion Residuals (CCR) Registration No. CCR101 Industrial Solid Waste Registration No. 31575 RN100226844/CN600253637

Dear Ms. Ortiz de Montellano,

Please find attached an Alternate Source Demonstration (ASD) prepared in response to what was initially thought to be a Statistically Significant Increase (SSI) for boron at the Fayette Power Project (FPP) located in La Grange, Fayette County, Texas. In accordance with the requirements of 30 TAC §352.941(b), the Lower Colorado River Authority (LCRA), the operator and part owner of the Combustion Byproducts Landfill (CBL) at FPP, provided notice of the SSI of an Appendix III constituent to the Texas Commission on Environmental Quality (TCEQ) in a letter dated April 30, 2024.

The attached ASD documents that the CBL was not the source of a SSI of boron in monitoring well CBL-302I during the First Semi-Annual 2024 Coal Combustion Residual (CCR) Detection Monitoring Program groundwater sampling event.

LCRA would like to meet with the TCEQ to discuss the statistical methodology and conclusions presented in the ASD. At your earliest convenience, please contact me to arrange a mutually agreeable day and time.

We look forward to discussing this with you further.

Sincerely,

Kate McCarthy, P.G.

Senior Environmental Coordinator

ate M Carthy

Enclosures: Correspondence Cover Sheet

Alternate Source Demonstration - First Semiannual Monitoring Event 2024

Texas Commission on Environmental Quality Waste Permits Division Correspondence Cover Sheet

Date: <u>7/172024</u> Facility Name: <u>Fayette Power Project</u> Permit or Registration No.: <u>31575</u>	Nature of Correspondence: Initial/New Response/Revision to TCEQ Tracking No.: (from subject line of TCEQ letter
Affix this cover sheet to the front of your submission to for type of correspondence. Contact WPD at (512) 239	-2335 if you have questions regarding this form.
Table 1 - Municipal Solid \ Applications	Reports and Notifications
New Notice of Intent	Alternative Daily Cover Report
Notice of Intent Revision	Closure Report
☐ New Permit (including Subchapter T)	Compost Report
☐ New Registration (including Subchapter T)	Groundwater Alternate Source Demonstration
Major Amendment	Groundwater Corrective Action
Minor Amendment	Groundwater Monitoring Report
Limited Scope Major Amendment	Groundwater Background Evaluation
Notice Modification	Landfill Gas Corrective Action
Non-Notice Modification	Landfill Gas Monitoring
☐ Transfer/Name Change Modification	Liner Evaluation Report
☐ Temporary Authorization	Soil Boring Plan
☐ Voluntary Revocation	Special Waste Request
☐ Subchapter T Disturbance Non-Enclosed Structure	Other:
Other:	
Table 2 - Industrial & Hazardo	ous Waste Correspondence
Applications	Reports and Responses
New	☐ Annual/Biennial Site Activity Report
Renewal	☐ CPT Plan/Result
Post-Closure Order	Closure Certification/Report
☐ Major Amendment	Construction Certification/Report
☐ Minor Amendment	☐ CPT Plan/Result
CCR Registration	Extension Request
CCR Registration Major Amendment	Groundwater Monitoring Report
CCR Registration Minor Amendment	☐ Interim Status Change
☐ Class 3 Modification	☐ Interim Status Closure Plan
Class 2 Modification	☐ Soil Core Monitoring Report
Class 1 ED Modification	☐ Treatability Study
Class 1 Modification	☐ Trial Burn Plan/Result
Endorsement	Unsaturated Zone Monitoring Report
Temporary Authorization	Waste Minimization Report
Voluntary Revocation	☐ Other: Alternate Source Demonstration
335.6 Notification	
Other:	

Bullock, Bennett & Associates, LLC

www.bbaengineering.com 165 N. Lampasas St. • Bertram, Texas 78605 • (512) 355-9198

July 17, 2024

Sent Via email

Ms. Daniela Ortiz De Montellano Project Manager Texas Commission on Environmental Quality (TCEQ) Industrial & Hazardous Waste Permits, MC-130 P.O. Box 13087, Austin, TX 78711-3087

Re: Alternate Source Demonstration–First Semiannual Monitoring Event 2024 LCRA Fayette Power Project – Combustion Byproducts Landfill (CCR-101) Fayette County, Texas

1.0 INTRODUCTION

This Alternate Source Demonstration (ASD) documents that the Combustion Byproducts Landfill (CBL) was not the source of an initial statistically significant increase (SSI) of boron in monitoring well CBL-302I during the First Semi-Annual 2024 Coal Combustion Residual (CCR) Detection Monitoring Program groundwater sampling event. The Groundwater Monitoring Program (GWMP) is being implemented by LCRA as required by 40 CFR §257.94(e)(2) of the federal CCR Rule. The Texas Commission on Environmental Quality (TCEQ) has adopted portions of the federal CCR Rule under 30 Texas Administrative Code (TAC) Chapter 352 (Texas CCR Rule), which became effective on July 28, 2021. 30 TAC §352.941 of the Texas CCR Rule incorporates by reference the federal CCR program requirements under 40 CFR §257.94. Pursuant to 30 TAC §352.941(c)(1), a notification was submitted to the Executive Director on April 30, 2024, indicating an intent to pursue an ASD for this initial SSI. This ASD is being submitted to the Executive Director pursuant to 30 TAC §352.941(c)(2) and will be included as an attachment to the 2024 Annual Groundwater Monitoring and Corrective Action Report for the CBL.

2.0 CBL CCR MONITORING WELL NETWORK

The CBL and its CCR groundwater monitoring well network is shown on Figure 1. The CBL currently consists of two active cells, Cell 1 and Cell 2D. The CBL monitoring well network consists of five wells, each screened in the uppermost groundwater-bearing unit (GWBU), also referred to as the Intermediate Sand GWBU. The five wells are all located hydraulically downgradient of active CBL cells, and are listed, as follows:

- CBL-301I
- CBL-302I
- CBL-306I
- CBL-308I

Ms. Daniela Ortiz De Montellano TCEQ July 17, 2024 Page 2 of 8

CBL-341I

Since implementation of the CCR rules beginning in 2017, the CBL GWMP has been evaluated under the Detection Monitoring Program, which involves gauging depth to groundwater and collection of groundwater samples for laboratory analyses, on a semi-annual basis. Per the CCR Rules, the groundwater samples are analyzed for the following "Appendix III" constituents:

- Boron
- Calcium
- Chloride
- Fluoride
- pH
- Sulfate
- Total Dissolved Solids (TDS)

To statistically evaluate each Appendix III constituent for evidence of an SSI, in each of the five monitoring wells, the laboratory results are compared semi-annually using Intrawell Control Limits (ICLs). The ICLs are developed for each constituent, within each well, using the statistical analytical program DUMPStat, (DUMPStat, 2003). The most recent Background Evaluation Report (BER) (LCRA, 2023a) and Statistical Analysis Plan (SAP) (LCRA, 2023b) have been provided as attachments to the TCEQ CCR Facility Application.

3.0 CBL CCR MONITORING RESULTS - FIRST SEMI-ANNUAL EVENT 2024

LCRA completed the first semi-annual groundwater monitoring event for 2024 on January 29-31, 2024. Figure 2 provides a potentiometric surface map, developed from the groundwater gauging conducted during the January 2024 monitoring event. Groundwater gradients and flow direction are consistent with the historic potentiometric surface maps for the Intermediate Sand in the CBL area.

As shown on the tables and data plots presented in Appendix A, the analytical results from the January 2024 sampling event showed all Appendix III constituents in the five wells to be below their respective GWMP ICLs, with the exception of boron in monitoring well CBL-302I. In this well, boron was detected at a concentration of 0.160 milligrams per liter (mg/L) versus its established ICL of 0.0743 mg/L. Based on these results, CBL-302I was resampled under the GWMP on April 5, 2024. The resample analytical results indicated a boron concentration of 0.163 mg/L, similar to the January 2024 sampling result.

Review of the January and April 2024 sampling results led to the identification of an initial SSI, based entirely on an exceedance of the currently utilized ICL for boron in CBL-302I of 0.0743 mg/L. However, as discussed in Section 4.0 below, the appropriate ICL for boron is actually

Ms. Daniela Ortiz De Montellano TCEQ July 17, 2024 Page 3 of 8

0.2970 mg/L (the ICL used prior to September 2023) and, with the use of 0.2970 mg/l, there is no SSI.

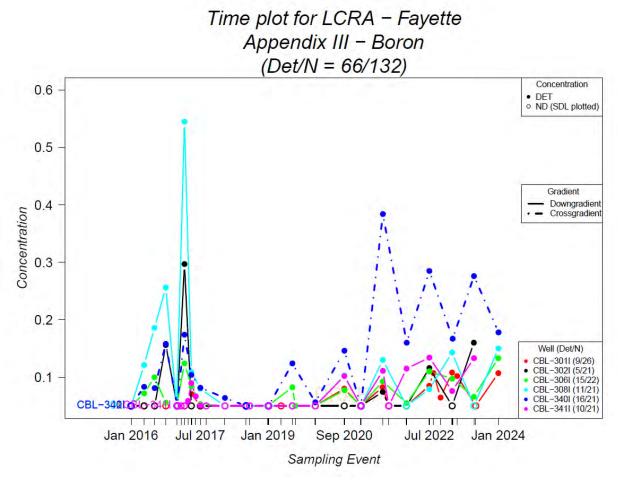
4.0 2023 REVISION OF THE ICL FOR BORON

In the process of finalizing the CBL's CCR Registration Application in 2023, a TCEQ Technical Notice of Deficiency (NOD) letter dated June 16, 2023, review comment 16(f)(i)(b), requested LCRA to provide an explanation for Dixon's Test not identifying two early background study CBL-302l boron detections (noting the detections of 0.1560 mg/L and 0.2970 mg/L from the 2016-2017 time period) as "outliers." As described in LCRA's response to the TCEQ NOD (LCRA, 2023c), the DUMPStat program's default approach for data sets with less than 25 datapoints is to first run Dixon's Test. If the results are flagged as potential outliers, then the suspect outlier results are compared to three times the median value. As the two early background study CBL-302l boron detections were flagged by Dixon's Test, and exceeded the three-times median value, the results were subsequently qualified as outliers. Consequently, a new boron ICL of 0.0743 mg/L was calculated (LCRA, 2023c). Notably, the data set on which the Dixon's Test was run in the 2023 TCEQ NOD Response had only three detections out of 16 data points. Dixon's Test may inappropriately identify relatively higher concentration detections as outliers when there are so few detections in the data set.

After further review of the data and the *USEPA document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (EPA, 2009)*, herein referenced as the "*Unified Guidance*" by our statistician, Dixon's Test should not have been used to identify potential outliers for boron at CBL-302I. The primary reason is that boron at CBL-302I has more than 50% non-detect observations. Dixon's Test assumes "the data without the suspect observation(s) are normally distributed" and "data are quantified," and the normality assumption "should be checked prior to running Dixon's test" (Unified Guidance 6.3.3 and 12.3). For boron at CBL-302I, a "low detection frequency makes it difficult to implement parametric statistical tests, since it may not be possible to determine if the underlying population is normal or can be normalized" (*Unified Guidance* 6.3.3). The *Unified Guidance* also states, "test performance can suffer when more than 50% of the data are non-detects" and "the guidance generally recommends non-parametric options when non-detect data exceed 50%" (*Unified Guidance* Section 15.6).

Prior to LCRA's September 14, 2023 NOD Response, the two boron data points at CBL-302I had not been considered outliers under the initial Interwell Prediction Limit Method, the revised Intrawell Prediction Limit Method, or the subsequent Intrawell Control Chart Method, based on the expectation that the sporadic detections of boron were within the realm of what can be observed in background studies. This is also discussed in the *Unified Guidance*. Several key points are made in the *Unified Guidance* regarding identification of outliers, and the potential for revisiting their status as outliers after additional data are gathered over time, including:

Ms. Daniela Ortiz De Montellano TCEQ July 17, 2024 Page 4 of 8


- The *Unified Guidance* does not recommend that outliers be removed solely on a statistical basis (*Unified Guidance* Chapter 12).
- The Unified Guidance recommends that testing for outliers be performed on background data, but does not recommend their removal from the data set unless some basis for a likely error or discrepancy can be identified. (Unified Guidance 5.2.3)
- The *Unified Guidance* recommends that "[i]f no error in the value can be documented, it should be assumed that the observation is a true but extreme value. In this case, it should not be altered or removed. However, it may be helpful to obtain another observation in order to verify or confirm the initial measurement." (*Unified Guidance* 6.3.3)
- "[T]here is some merit in saving and revisiting apparent 'outliers' in future investigations, even if removed from present databases." (*Unified Guidance* 5.2.3)
- Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples. (*Unified Guidance* 5.2.3)
- "Ideally, removal of one or more statistically identified outliers should be based on other technical information or knowledge which can support that decision." (*Unified Guidance* 5.2.3).

The *Unified Guidance* allows for consideration of several factors in making a decision on identification and use of outliers. Section 5.0 below presents a summary of relevant findings regarding CBL Intermediate Sand boron data for use in consideration of both the identification of outliers and their use in the CBL GWMP.

Comparing boron concentrations from CBL-302I with the side-gradient well CBL-340I using time plots, the concentrations at CBL-302I appear comparable to side-gradient concentrations. The CBL-302I value of 0.297 mg/L falls within the range of side-gradient concentrations and does not appear to be an outlier. Given a lack of any other indication of a release, as discussed in Section 5.0, it is reasonable to conclude the 2016-2017 datapoints are valid "background" results, and, therefore, should be utilized in the GWMP statistical evaluations.

5.0 CBL GWMP BORON DATA OBSERVATIONS

In consideration of the decision to use the two boron data points from 2016-2017 (called out in 2023 as outliers) for CBL-302I, the boron data have been compared to data observed in the other CBL GWMP monitoring wells, in addition to side-gradient well CBL-340I (which is unaffected by the CBL).

Based on the information presented in the time plot above, and the historic boron results and trend plots presented in Attachment A, the following observations are noted:

- Recent boron concentrations in CBL-302I are below those observed in CBL-340I, the monitoring well unaffected by an upgradient CCR source.
- Current and historic boron concentrations observed in CBL-302I are well within the general range of boron results observed at each of the other CCR GWMP wells, in addition to CBL-340I. This is another indication that there is no "likely error or discrepancy" in the detections observed in CBL-302I.

Ms. Daniela Ortiz De Montellano TCEQ July 17, 2024 Page 6 of 8

> The CBL-302I boron ICL of 0.0743 mg/L is by far the lowest ICL for boron among the wells in the CBL monitoring well network.

Additionally, as observed in the time plot presented in the graph above and in the time series data included in Attachment A:

- In comparison to all of the other boron data plots for the GWMP wells, CBL-302I boron concentrations, including the two 2016-2017 outlier results, fall well within the general range of concentrations observed across the GWMP.
- Consistent with boron results observed in each of the wells, boron detections have been generally sporadic in nature (i.e., analyte detections in one event, followed by nondetection in a subsequent event).
- As shown in the CBL-302I Appendix III constituent time series data charts (Attachment A), there are no observed upwards trends in any of the Appendix III constituents in CBL-302I over time.

In the absence of any other data suggesting there may have been a release from the CBL, the two boron detections that were previously considered outliers and that were removed in response to TCEQ comments (LCRA, 2023c) should be returned to the background dataset as being representative of the general background conditions present in the Intermediate Sand GWBU. This is consistent with observations of boron data from the other four downgradient CCR GWMP wells, as well as side-gradient well CBL-340I.

6.0 CONCLUSION

An initial SSI was flagged in the first semi-annual event sample in monitoring well CBL-302I for boron during the January 2024 Detection Monitoring Program event at the CBL. Upon further review of the data by our statistician, it was determined that the data for CBL 302I have too few detections to test whether the dataset is not normally or lognormally distributed. Accordingly, the use of the Dixon Test to determine outliers was not in accordance with EPA's *Unified Guidance*. Therefore, two previously identified outliers have been reinstated in the background dataset resulting in an ICL for boron of 0.2970 mg/L. Both the January and April 2024 sampling data results are below the re-established ICL of 0.2970 mg/L. Based on these findings, the initially identified SSI is no longer applicable and there is no evidence of a release from the CBL. LCRA will prepare addenda to the September 14, 2023 NOD No. 3, the BER, and the Statistical Analysis Plan to document this updated approach.

In accordance with 30 TAC § 352.941(d), the owner has submitted this ASD for TCEQ review within 90 days of the initial SSI determination and, based on the findings as described herein,

Ms. Daniela Ortiz De Montellano TCEQ July 17, 2024 Page 7 of 8

will continue with the Detection Monitoring Program. Initiation of an Assessment Monitoring Program is not required at this time.

7.0 REFERENCES

- Amec Foster Wheeler (October 2017): Groundwater Sampling and Analysis Program, Selection of Statistical Method Certification, Lower Colorado River Authority, Coal Combustion Residuals Unit, Combustion Byproducts Landfill, Fayette Power Project, La Grange, Texas.
- Amec Foster Wheeler (April 2018a): Groundwater Geochemical Evaluation at the Lower Colorado River Authority, Fayette Power Project, La Grange, Texas.
- Amec Foster Wheeler (April 2018b): Groundwater Monitoring System, Certification of Alternate Source Demonstration, Lower Colorado River Authority, Coal Combustion Residuals Unit: Combustion Byproducts Landfill, Fayette Power Project, La Grange, Texas.
- Amec Foster Wheeler (April 2018c): Groundwater Monitoring System Addendum Certification, Lower Colorado River Authority, Coal Combustion Residuals Unit, Combustion Byproducts Landfill, Fayette Power Project, La Grange, Texas.
- Bullock, Bennett & Associates (May 2021): Groundwater Monitoring System Addendum Certification, Lower Colorado River Authority, Coal Combustion Residuals Unit, Combustion Byproducts Landfill, Fayette Power Project, La Grange, Texas.
- DUMPStat (2003) DUMPStat Statistical Guide, version 2.1.8., by Robert D. Gibbons Ltd., with accompanying DUMPStat 2.3 Release Notes.
- EPA (2009): Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance (EPA 530/R-09-007).
- LCRA (2023a): Technical NOD Response Background Evaluation Report, Combustion Byproducts Landfill, Fayette Power Project, La Grange, Texas (September 14, 2023).
- LCRA (2023b): Technical NOD Response Statistical Analysis Plan, Combustion Byproducts Landfill, Fayette Power Project, La Grange, Texas (September 14, 2023).
- LCRA (2023c): Technical NOD Response Request for Clarification, Lower Colorado River Authority, La Grange, Fayette County (September 14, 2023).

Ms. Daniela Ortiz De Montellano TCEQ July 17, 2024 Page 8 of 8

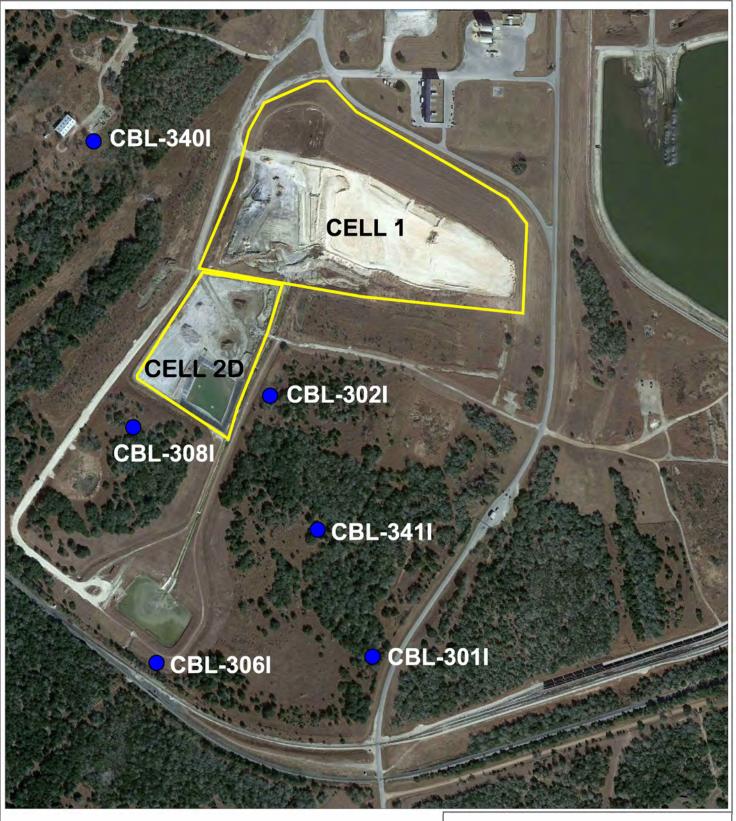
8.0 PROFESSIONAL CERTIFICATION

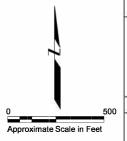
This document and all attachments were prepared by Bullock, Bennett & Associates, LLC under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that the Alternative Source Demonstration at the referenced facility meets the detection monitoring requirements of the Federal CCR Program at 40 C.F.R. § 257.94 and the State CCR Program at 30 T.A.C. § 352.941.

Dai Prir Bul

Dan Bullock, P.E. Principal Engineer

Bullock, Bennett & Associates, LLC


B. Sullah


7/17/2024

ANIEL B. BULLOC

82596

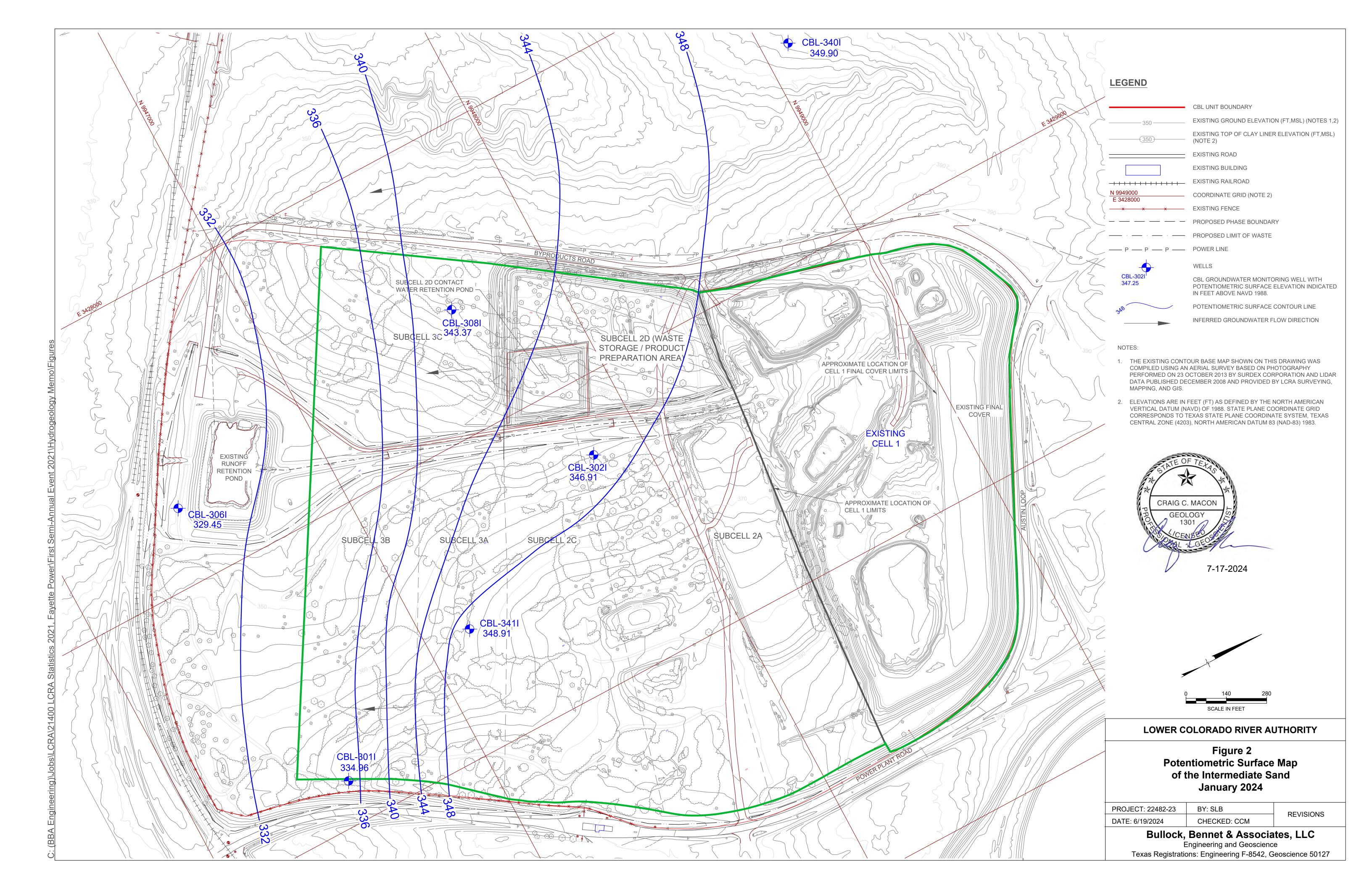

LOWER COLORADO RIVER AUTHORITY

FIGURE 1 Groundwater Monitoring Well Locations Combustion Byproucts Landfill Fayette Power Plant

PROJECT: 21450 BY: SLB DATE: 06/20/2024 CHECKED: CM

Bullock, Bennett & Associates, LLC

Éngineering and Geoscience Texas Registrations: Engineering F-8542, Geoscience 50127

APPENDIX A Cumulative CCR Groundwater Monitoring Analytical Data Summaries (all wells) Cumulative CCR Groundwater Monitoring Appendix III Plots (CBL-302I)

Table 1

Analytical Data Summary for CBL-301I

Constituents	Units	1/21/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/18/2017	7/26/2017	2/8/2018	7/25/2018	1/17/2019	5/2/2019	7/31/2019
Boron, Total	mg/L	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	.0707	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	905	949	925	978	1000	1030	1060	961	873	993	156	762	783
Chloride	mg/L	2300	2160	2290	2250	3200	2390	2420	2500	2480	1330	619	1910	2240
Fluoride	mg/L	<.250	<.500	<.500	<.250	.312	<.500	<.500	<.500	<.500	<.500	.219	.112	.051
pH	S.Ū.	6.33	6.26	5.95	6.23	6.26	6.31	5.95	6.02	6.17	6.04	7.16	6.14	6.19
Sulfate	mg/L	336	311	336	326	488	337	342	381	344	196	104	398	332
Total Dissolved Solids	mg/L	4380	5050	6020	4570	6140	6570	6430	4290	5120	5390	1460	5650	6040

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 1

Analytical Data Summary for CBL-301I

Constituents	1/28/2020	9/17/2020	1/26/2021	7/20/2021	9/7/2021	1/26/2022	7/27/2022	8/30/2022	10/25/2022	1/25/2023	3/7/2023	8/2/2023	1/29/2024
Boron, Total	<.0500	.0801	<.0500	.0826	<.0500	<.0500	.0850	.1070	.0645	.1080	.1020	<.0500	.1070
Calcium, Total	851	1060	1130	1100		999	1010			977		1260	1050
Chloride	2360	2270	2420	2590		2440	1840			1960		2220	2270
Fluoride	.130	<.250	<.500	2.680	<.500	<.050	.156			1.720	<.050	.054	<.100
pH	6.26	6.13	6.06	6.13	6.14	6.27	6.08	6.14	6.21	6.34		6.21	
Sulfate	349	350	374	419		406	285			1370	207	383	475
Total Dissolved Solids	4790	6340	6060	5870		4700	4590			5160		5360	4820

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 2

Analytical Data Summary for CBL-302I

Constituents	Units	1/22/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/16/2017	7/27/2017	2/8/2018	7/27/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.1560	<.0500	.2970	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	1030	1010	1030	1070	1100	1090	1100	1040	934	995	855	914	838
Chloride	mg/L	2190	2130	2210	2170	2080	2050	2230	2040	2080	1980	1960	1540	1540
Fluoride	mg/L	<.2500	<.5000	<.5000	<.2500	.3320	<.5000	<.5000	<.5000	.1120	<.5000	.0402	.0605	.1930
pH	S.Ū.	6.29	6.01	5.17	7.75	5.36	5.40	4.94	6.20	6.21	5.77	6.44	6.15	6.34
Sulfate	mg/L	1020	993	1090	1180	1150	1120	1230	1180	1240	1390	1250	1260	1350
Total Dissolved Solids	mg/L	5500	5390	6850	4210	6430	6460	5860	5120	6010	5510	5060	4190	4790

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 2

Analytical Data Summary for CBL-302I

Constituents	9/17/2020	1/28/2021	7/21/2021	9/7/2021	1/27/2022	7/28/2022	1/26/2023	7/18/2023	1/29/2024	4/5/2024
Boron, Total	<.0500	<.0500	.0743		<.0500	<.0500	.1160	<.0500	.1600	.1630
Calcium, Total	853	1020	844		754	750	889	981	937	
Chloride	1410	1370	1380		1310	1300	1460	1330	1440	
Fluoride	<.2500	<.5000	2.2500	<.2500	<.0500	.1650	<.5000	1.7600	<.1000	
pH	6.20	6.21	6.06	6.28	6.32	6.21	6.33	6.20		
Sulfate	1280	1290	1350		1340	1300	1390	1230	1330	
Total Dissolved Solids	4990	4800	4810		4510	5120	4930	5150	4950	

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 3

Analytical Data Summary for CBL-306I

Constituents	Units	1/21/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/18/2017	7/27/2017	2/8/2018	7/27/2018	1/16/2019	7/31/2019	8/23/2019
Boron, Total	mg/L	<.0500	.0717	.0998	.0556	<.0500	.1240	.0832	.0531	<.0500	<.0500	<.0500	.0824	.0500
Calcium, Total	mg/L	137.0	47.2	105.0	198.0	174.0	204.0	205.0	234.0	230.0	275.0	180.0	106.0	226.0
Chloride	mg/L	155	20	114	330	197	231	289	350	385	283	215	538	318
Fluoride	mg/L	2.50	1.00	1.37	2.38	1.85	12.60	2.20	2.91	2.81	2.95	1.98	9.26	2.66
pH	S.Ŭ.	7.09	6.69	6.95	6.72	7.29	4.41	5.61	6.94	6.67	6.86	6.78	6.92	6.83
Sulfate	mg/L	266.0	29.5	139.0	432.0	270.0	340.0	412.0	513.0	493.0	406.0	292.0	816.0	387.0
Total Dissolved Solids	mg/L	1280	431	790	1150	1320	1460	1440	1280	1760	1450	1220	676	1710

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 3

Analytical Data Summary for CBL-306I

Constituents	1/29/2020	9/19/2020	1/28/2021	7/21/2021	1/27/2022	7/28/2022	1/26/2023	7/18/2023	1/29/2024
Boron, Total	<.0500	.0773	<.0500	.0927	.0548	.1100	.0973	.0659	.1330
Calcium, Total	247.0	260.0	257.0	216.0	212.0	182.0	149.0	260.0	186.0
Chloride	445	420	292	255	384	261	148	336	153
Fluoride	2.83	2.72	2.90	2.42	2.99	2.26	1.92	2.66	1.49
pH	6.70	7.16	6.84	6.55	6.87	6.70	7.30	6.49	
Sulfate	561.0	506.0	388.0	336.0	510.0	348.0	205.0	454.0	266.0
Total Dissolved Solids	1830	1730	1420	1320	1730	1540	1000	1910	1170

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 4

Analytical Data Summary for CBL-308I

Constituents	Units	1/22/2016	5/4/2016	7/26/2016	10/24/2016	1/19/2017	3/22/2017	5/16/2017	7/26/2017	2/6/2018	7/25/2018	1/18/2019	7/31/2019	1/29/2020
Boron, Total	mg/L	<.0500	.1210	.1860	.2560	<.0500	.5450	.1090	.0799	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	903	870	911	939	919	947	954	878	859	863	760	840	745
Chloride	mg/L	2760	2580	2680	2870	2360	2530	2740	2760	2750	2680	2240	2290	2110
Fluoride	mg/L	1.49	2.30	1.64	1.59	1.33	9.05	1.70	1.90	1.76	2.10	1.68	1.62	1.60
pH	S.Ŭ.	6.36	6.13	5.95	6.27	6.83	6.27	5.54	6.27	6.26	6.07	6.39	6.25	6.37
Sulfate	mg/L	1490	1410	1490	1550	1320	1470	1580	1550	1570	1540	1520	1420	1340
Total Dissolved Solids	mg/L	6820	6120	7890	10200	9620	7260	6590	6480	6200	6320	4760	5820	5980

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 4

Analytical Data Summary for CBL-308I

Constituents	9/18/2020	1/28/2021	7/21/2021	1/27/2022	7/27/2022	1/26/2023	7/18/2023	1/30/2024
Boron, Total	.1030	<.0500	.1300	<.0500	.0790	.1430	<.0500	.1500
Calcium, Total	838	830	684	974	736	732	642	714
Chloride	2410	2200	1780	2020	2470	2570	1840	1790
Fluoride	1.33	1.44	1.74	1.75	1.43	<.50	1.86	1.26
pH	6.22	6.26	6.16	6.36	6.23	6.41	6.26	
Sulfate	1310	1340	1240	1310	1190	445	1290	1360
Total Dissolved Solids	6860	6190	5270	5320	6840	5810	5680	5410

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 5

Analytical Data Summary for CBL-340I

Constituents	Units	1/21/2016	5/4/2016	7/27/2016	10/24/2016	1/23/2017	3/22/2017	5/16/2017	7/27/2017	2/8/2018	7/27/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	.0832	.0810	.1580	<.0500	.1740	.1040	.0816	.0638	<.0500	<.0500	.1240	.0562
Calcium, Total	mg/L	564	560	575	607	627	581	584	571	555	544	518	518	539
Chloride	mg/L	2370	2260	2350	2380	2070	2280	2520	2380	2730	2450	2250	2280	2240
Fluoride	mg/L	1.090	1.920	1.060	1.260	.840	8.440	1.010	.850	1.000	1.300	.830	.880	.870
pH	S.Ŭ.	6.52	6.13	6.95	6.19	5.46	6.49	5.77	6.42	6.41	6.25	6.59	6.45	6.49
Sulfate	mg/L	652	616	668	675	571	635	715	685	752	711	639	684	637
Total Dissolved Solids	mg/L	4990	5230	6250	5670	6230	5480	5470	4880	5290	5100	4720	5560	5080

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 5

Analytical Data Summary for CBL-340I

Constituents	9/18/2020	1/28/2021	7/22/2021	1/28/2022	7/28/2022	1/30/2023	7/19/2023	1/31/2024
Boron, Total	.1460	<.0500	.3840	.1600	.2850	.1670	.2760	.1780
Calcium, Total	547	607	532	597	538	635	631	607
Chloride	2130	2260	2200	2200	2160	2230	2130	2210
Fluoride	.725	.835	.865	1.060	.865	.850	1.070	.605
pH	6.32	6.32	6.24	6.42	6.35	6.37	6.41	
Sulfate	608	634	618	619	614	643	599	705
Total Dissolved Solids	5430	5520	4990	4870	5490	5010	5290	5090

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 6

Analytical Data Summary for CBL-341I

Constituents	Units	1/23/2017	2/23/2017	3/22/2017	4/20/2017	5/16/2017	6/20/2017	7/27/2017	9/11/2017	2/8/2018	8/24/2018	1/22/2019	7/31/2019	1/30/2020
Boron, Total	mg/L	<.0500	<.0500	<.0500	.0587	.0896	.0668	.0507	<.0500	<.0500	<.0500	<.0500	<.0500	<.0500
Calcium, Total	mg/L	854	870	906	898	860	950	829	848	810	824	782	714	767
Chloride	mg/L	1600	2000	1780	1770	1900	1820	1970	1710	2110	1910	1790	1650	1780
Fluoride	mg/L	.5300	<.5000	<.5000	<.5000	<.5000	.3350	.0550	.3670	.1060	.1140	.0546	.1000	.1530
pH	S.Ū.	5.74	5.23	5.72	5.73	5.54	6.19	6.21	6.10	6.18	5.82	6.38	6.23	6.27
Sulfate	mg/L	307	404	346	336	369	363	419	354	383	376	358	329	351
Total Dissolved Solids	mg/L	5000	4520	5110	4240	4840	5940	4150	4860	4320	4800	3870	5370	4900

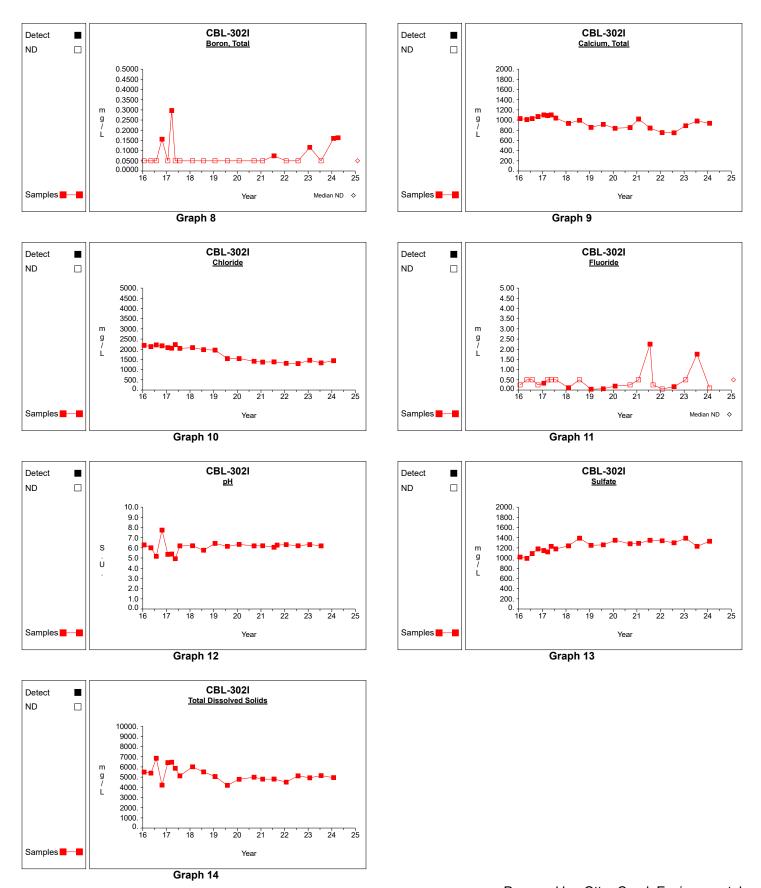

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Table 6
Analytical Data Summary for CBL-341I

Constituents	9/17/2020	1/27/2021	7/22/2021	9/7/2021	1/27/2022	7/28/2022	1/26/2023	7/19/2023	1/29/2024
Boron, Total	.1020	<.0500	.1110		<.0500	.1150	.1340	.0760	.1330
Calcium, Total	814	874	852		1040	704	797	710	875
Chloride	1700	1800	1750		1810	1690	1660	1530	1700
Fluoride	<.2500	<.5000	1.1600	<.2500	<.0500	.1410	<.2500	1.1200	<.1000
pH	6.14	6.06	5.98	6.18	6.26	6.16	6.28	6.22	
Sulfate	336	324	316		320	296	309	259	346
Total Dissolved Solids	4930	3940	4520		3800	4910	4390	4190	3990

^{* -} The displayed value is the arithmetic mean of multiple database matches.

Time Series

