June 3, 2022

TO: Daniela Ortiz de Montellano, Project Manager
 Industrial and Hazardous Waste Permits Section
 Waste Permits Division
 Texas Commission on Environmental Quality

SUBJECT: New Coal Combustion Residuals (CCR) Registration No. CCR101
Lower Colorado River Authority – La Grange, Fayette County, Texas
Industrial Solid Waste Registration No. 31575
EPA Identification No. TXD083566547
Tracking No. 27214088; RN100226844/CN600253637

Ms. Ortiz,

The Lower Colorado River Authority is in receipt of your letter dated April 22, 2022 outlining deficiencies the Coal Combustion Residuals registration application dated January 24, 2022. Our responses are outlined below, corresponding to deficiency number and application section and location. Furthermore, we have included a redline/strike out version of the changes as well as replacement pages.

1. Application section I, Application cover sheet section 1

 A Proposed CCR Registration No. CCR101 was assigned to LCRA Sam Seymour Fayette Power Project. Future correspondence should reflect CCR101 registration number and Tracking No. 27214088.

 Future correspondence will reflect CCR Registration No. CCR101 and tracking no. 27214088

2. Application Section I.18, I.3, Core Data Form

 Provide the following:
 a. Item 14: Identify the customer role.
 b. Item 22, and App. Subsect. I.3: Correct the name of the Regulated Entity to LCRA Sam Seymour Fayette Power Project.
 c. Item 23: Correct zip code.
 d. Item 27: Correct inconsistent latitude and longitude. coordinates between the Core Data form and Subsection I.3 of the application form.

 a. The Customer role had been identified as owner/operator
b. The name of the regulated Entity has been changed to LCRA Sam Seymour Fayette Power Project

c. The zip code has been corrected

d. As discussed with TCEQ, the latitude and longitude on the core data form corresponds to the overall FPP facility and not the CCR unit. The latitude and longitude for CCR 101 has been added to Figure 3 and the text in application has been modified to indicate the coordinates for CCR 101. Therefore, the core data form and the application will not reflect the same coordinates.

3. Application Section I.6, Table I.6

Revise the format of the table to clearly identify the CCR Unit and NOR Nos that correspond to Cells 2A, 2B, 2C, and 3.

Table I.6 has been revised to indicate that CCR101 has one NOR unit number and Cells 2A, 2B, 2C and 3 will all fall under NOR Unit number 013.

4. Application Section I, Table I.6.A

Provide a statement in Note “2” to clarify if the disposal rate is an average based on the facility’s annual generation rates.

The footnote in Table I.6.A has been revised to state the disposal rate is based on the facilities average disposal rate and not the facility’s annual generation rate. This is due to the sale of CCRs for beneficial use.

5. Application Section I.6, Table I.6.C

Complete the information in the table assuming the waste must be resampled, retested, and reclassified when there is a change in the process. “Change in the process” can be used as frequency for sampling of waste.

Table I.6.C has been revised to indicate the methods and parameters used to classify the waste should there be a change in the process necessitating reclassification. The majority of the waste stream classifications going to CCR 101 have been audited and approved by TCEQ Waste Classification Section.
6. Application Section I.13, Attachment 1

Provide the property owner affidavit. Although this affidavit is not specifically listed in the Registration form or instructions, it is prescribed information. We have attached for your assistance a sample affidavit for your use.

The owner affidavit has been completed and included with this response.

7. Application Section I.20, Attachment 2

Provide the following:

a. As applicable, provide the Texas licensed professional engineer or geologist signature and seal that prepared the maps.

b. A map that shows information regarding nature of development of adjacent land, and within a reasonable distance from disposal activities.

c. Latitudes and longitudes.

d. A drawing that depicts all the CCR units in one contiguous registration boundary.

e. A narrative for the process flow diagram.

 a. As discussed with TCEQ, LCRA has not identified any maps that contain engineering or geological work that would require a seal.

 b. Adjacent land use, agricultural, has been added to Figure 4.

 c. Latitudes and longitude for CCR101 has been added to Figure 3.

 d. Figure 3 has been modified to indicate that the boundary of CCR 101 is the registration boundary.

 e. A narrative for the process flow diagram has been added to Figure 5.

8. Application Section I.21, Attachment 3, Section 3.1 and Appendix E

Clarify if a Texas assessment of endangered or threatened species was conducted and if it was taken into consideration on the conclusion of the final assessment including whether special designs were considered if endangered species were found.

Provide a FEMA flood map that depict the facility’s registration boundary as supporting documentation for verification of compliance.
The Location Restriction Certification Report prepared by Geosyntec has been revised to include a FEMA flood map. The revised report also includes a modified Endangered and Threatened Species report prepared by Blanton and Associated which includes a discussion and conclusion regarding Texas species.

9. Application section II.22, Attachment 3, subsections 2.2.2, 2.3.2, 2.4.2

Provide maps and/or documentation that include wetlands, fault areas and seismic impact zones as part of the location restriction demonstration.

A map depicting wetlands was included in the Location Restriction Report prepared by Geosyntec. A revised report has been prepared by Geosyntec including print out of the information referenced in the report regarding fault areas and seismic impact zones.

10. Application Section III.24, Attachment 5

a. Describe how the control measures selected for the landfill will not result in free liquids. In lieu of water, CCR conditioning may be accomplished with an appropriate chemical dust suppression agent.
b. Identify the source(s) of the water that is used for dust suppression.
c. Describe control measures that are used to effectively minimize CCR dust from becoming airborne at the active unit at the end of each day.

As discussed with TCEQ, LCRA is currently marketing and selling CCR from CCR101. Therefore, the use of daily and interim cover is not utilized. Furthermore, chemical dust suppression agents cannot be used as they may affect the properties of the CCR and prevent beneficial use. Water from subcell 2D runoff pond is applied to the CCR as necessary to prevent fugitive dust. Due to the pozzolanic properties of the CCR, a thin crust is produced by adding water. Water is applied at a rate that does not result in saturated CCR, ponding or runoff.
If you have any questions or would like additional information, please feel free to contact me at 512-578-3393 or 800-776-5272, ext. 3393.

Rebecca Jones, P.G.
Environmental Coordinator II
Replacement Pages
TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)
 - ☑ New Permit, Registration or Authorization (Core Data Form should be submitted with the program application.)
 - ☐ Renewal (Core Data Form should be submitted with the renewal form)
 - ☐ Other

2. Customer Reference Number (if issued)
 - CN 600253637

3. Regulated Entity Reference Number (if issued)
 - RN 100226844

SECTION II: Customer Information

4. General Customer Information
 - ☐ New Customer
 - ☐ Update to Customer Information
 - ☐ Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)

The Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secretary of State (SOS) or Texas Comptroller of Public Accounts (CPA).

5. Effective Date for Customer Information Updates (mm/dd/yyyy)
 - N/A

6. Customer Legal Name (If an individual, print last name first: eg: Doe, John)
 - If new Customer, enter previous Customer below:
 - Lower Colorado River Authority

7. TX SOS/CPA Filing Number

8. TX State Tax ID (11 digits)

9. Federal Tax ID (9 digits)
 - 746002915

10. DUNS Number (if applicable)

11. Type of Customer:
 - ☑ Corporation
 - ☐ Individual
 - Partnership:
 - ☑ General
 - ☐ Limited

 Government:
 - ☑ City
 - ☐ County
 - ☐ Federal
 - ☐ State
 - ☐ Other
 - ☑ Sole Proprietorship
 - ☐ Other: River Authority

12. Number of Employees
 - ☑ 0-20
 - ☑ 21-100
 - ☑ 101-250
 - ☑ 251-500
 - ☑ 501 and higher

13. Independently Owned and Operated?
 - ☑ Yes
 - ☐ No

14. Customer Role (Proposed or Actual) – as it relates to the Regulated Entity listed on this form. Please check one of the following
 - ☑ Owner
 - ☐ Operator
 - ☑ Owner & Operator
 - ☐ Occupational Licensee
 - ☐ Responsible Party
 - ☐ Voluntary Cleanup Applicant
 - ☑ Other: City of Austin owns 50% U1 & U2

15. Mailing Address:
 - P.O. Box 220
 - City: Austin
 - State: TX
 - ZIP: 78767
 - ZIP + 4

16. Country Mailing Information (if outside USA)

17. E-Mail Address (if applicable)

18. Telephone Number
 - (512) 473-3200

19. Extension or Code
 - () -

20. Fax Number (if applicable)

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If ‘New Regulated Entity” is selected below this form should be accompanied by a permit application)
 - ☑ New Regulated Entity
 - ☐ Update to Regulated Entity Name
 - ☐ Update to Regulated Entity Information

The Regulated Entity Name submitted may be updated in order to meet TCEQ Agency Data Standards (removal of organizational endings such as Inc, LP, or LLC).

22. Regulated Entity Name (Enter name of the site where the regulated action is taking place.)
 - LCRA Sam Seymour Fayette Power Project
23. Street Address of the Regulated Entity:

<table>
<thead>
<tr>
<th>6549 Power Plant Rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>City: La Grange</td>
</tr>
</tbody>
</table>

24. County:

Enter Physical Location Description if no street address is provided.

25. Description to Physical Location:

27. Latitude (N) In Decimal: 29.914742
28. Longitude (W) In Decimal: -96.753535

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Minutes</th>
<th>Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>54</td>
<td>53.0712</td>
</tr>
<tr>
<td>96</td>
<td>45</td>
<td>12.726</td>
</tr>
</tbody>
</table>

29. Primary SIC Code (4 digits): 4911
30. Secondary SIC Code (4 digits): 221121
31. Primary NAICS Code (5 or 6 digits): 4911
32. Secondary NAICS Code (5 or 6 digits): 221121

33. What is the Primary Business of this entity? (Do not repeat the SIC or NAICS description.)
Coal Fired Power Plant

34. Mailing Address: 6549 Power Plant Rd

35. E-Mail Address: Rebecca.Jones@lcra.org

36. Telephone Number: (979) 249-3111

37. Extension or Code: -

38. Fax Number (if applicable): -

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

- Dam Safety
- Districts
- Edwards Aquifer
- Emissions Inventory Air
- Industrial Hazardous Waste
- New Registration
- Municipal Solid Waste
- New Source Review Air
- OSSF
- Petroleum Storage Tank
- PWS
- Sludge
- Storm Water
- Title V Air
- Tires
- Used Oil
- Voluntary Cleanup
- Waste Water
- Wastewater Agriculture
- Water Rights
- Other:

SECTION IV: Preparer Information

40. Name: Rebecca Jones, P.G.
41. Title: Environmental Coordinator

42. Telephone Number: (512) 578-3393
43. Ext./Code: -
44. Fax Number: -
45. E-Mail Address: Rebecca.Jones@lcra.org

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

<table>
<thead>
<tr>
<th>Company: Lower Colorado River Authority</th>
<th>Job Title: Sr. VP, Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name (In Print): Andrew Valencia, P.E.</td>
<td>Phone: (512) 578-3591</td>
</tr>
<tr>
<td>Signature:</td>
<td>Date: January 21, 2022</td>
</tr>
</tbody>
</table>
I. General Information

1. Reason for Submittal

Type of Registration Application
- ☒ New
- ☐ Major Amendment
- ☐ Minor Amendment
- ☐ Notice of Deficiency (NOD) Response
- ☐ Transfer
- ☐ Name Change
- ☐ Other

2. Application Fees

- ☒ $150 Application Fee

Payment Method
- ☐ Check
- ☒ Online through ePay portal <www3.tceq.texas.gov/epay/>

If paid online, enter ePay Trace Number: 582EA000471145

3. Facility Information

Facility information must match regulated entity information on the Core Data Form.

Applicant: ☐ Owner ☐ Operator ☒ Owner/Operator

Facility TCEQ Solid Waste Registration No: 31575

Facility EPA ID: TXD083566547

Regulated Entity Reference No. (if issued): RN 100226844

Facility Name: Lower Colorado River Authority Fayette Power Project

Facility (Area Code) Telephone Number: (979) 249-3111

Facility physical street address (city, state, zip code, county): 6549 Power Plant Rd., La Grange, TX, 78945, Fayette County

Facility mailing address (city, state, zip code, county): PO Box 220, Austin, TX, 78767, Travis County

Latitude (Degrees, Minutes Seconds): 29°54'53.0712"N

Longitude (Degrees, Minutes Seconds): 96°45'12.726"W
<table>
<thead>
<tr>
<th>CCR Unit No.</th>
<th>Unit Name</th>
<th>N.O.R. No.</th>
<th>Unit Description</th>
<th>Capacity</th>
<th>Unit Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR-101</td>
<td>Combustion Byproduct Landfill (CBL)</td>
<td>013</td>
<td>Cells 1 and 2D</td>
<td>12,400,000 Cu yds</td>
<td>Active</td>
</tr>
<tr>
<td>CCR-101</td>
<td>Combustion Byproduct Landfill (CBL)</td>
<td>013</td>
<td>Cells 2A, 2B, 2C and 3</td>
<td></td>
<td>Proposed^4</td>
</tr>
</tbody>
</table>

1 Registered Unit No. and N.O.R. No. cannot be reassigned to new units or used more than once.
2 Unit Status options: Active, Closed, Inactive (built but not managing waste), Proposed (not yet built), Never Built, Transferred, Post-Closure.
3 If a unit has been transferred, the applicant should indicate which facility/permit it has been transferred to in the Unit Description column.
4 No schedule for development at the time of application submittal but all future cells are developed within the deed recorded footprint of unit CCR-101/NOR 013.
Table I.6.A. – Waste Management Information

<table>
<thead>
<tr>
<th>Waste No.</th>
<th>Waste Type(s)</th>
<th>Source</th>
<th>Volume (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fly Ash Unit 1 and 2</td>
<td>Generated from coal combustion process at FPP</td>
<td>6,728</td>
</tr>
<tr>
<td>2</td>
<td>Fly Ash Unit 3</td>
<td>Generated from coal combustion process at FPP</td>
<td>2,849</td>
</tr>
<tr>
<td>3</td>
<td>Bottom Ash Unit 1 and 2</td>
<td>Generated from coal combustion process at FPP</td>
<td>36,993</td>
</tr>
<tr>
<td>4</td>
<td>Bottom Ash Unit 3</td>
<td>Generated from coal combustion process at FPP</td>
<td>15,751</td>
</tr>
<tr>
<td>5</td>
<td>Synthetic Gypsum</td>
<td>Generated from coal combustion process at FPP</td>
<td>28,449</td>
</tr>
<tr>
<td>6</td>
<td>Refractory, bowl mill rejects, waste sand filter media, waste charcoal filter media, waste resin beads, ash bag house filters, pyrite and coal reject generated from maintenance operations</td>
<td>Generated from coal combustion process at FPP</td>
<td>737</td>
</tr>
<tr>
<td>7</td>
<td>Activated carbon waste</td>
<td>Generated from coal combustion process at FPP</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>ACI Pipe cleaning waste</td>
<td>Generated from coal combustion process at FPP</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Assign waste number sequentially. Do not remove waste number wastes which are no longer generated.
2. Disposal Rates based on 4-year average of actual deposition rates independent of facility generation rates.
Table I.6.C – Sampling and Analytical Methods

<table>
<thead>
<tr>
<th>Waste No.</th>
<th>Sampling Location</th>
<th>Sampling Method</th>
<th>Frequency</th>
<th>Parameter</th>
<th>Test Method</th>
<th>Desired Accuracy Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fly Ash Silo 2 and 3</td>
<td>SW846, representative grab samples</td>
<td>Waste will be sampled when there is a change in the process</td>
<td>If necessary due to a change in process: process knowledge and TCLP HG, TCLP metals</td>
<td>If necessary due to a change in process: SW7470A and SW6010B</td>
<td>LOD/LOQ^4</td>
</tr>
<tr>
<td>2</td>
<td>Fly Ash Silo 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HG 0.00007/0.0002 mg/L</td>
</tr>
<tr>
<td>3</td>
<td>Bottom Ash Bunker 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AS 0.2/0.5 mg/L</td>
</tr>
<tr>
<td>4</td>
<td>Bottom Ash Bunker 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BA 0.04/0.1 mg/L</td>
</tr>
<tr>
<td>5</td>
<td>Synthetic Gypsum Dome 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD 0.03/0.08 mg/L</td>
</tr>
<tr>
<td>6</td>
<td>Boiler and associated equipment for coal processing 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CR 0.04/0.1 mg/L</td>
</tr>
<tr>
<td>7</td>
<td>Activated Carbon Injection System 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PB 0.2/0.5 mg/L</td>
</tr>
<tr>
<td>8</td>
<td>Activated Carbon Injection System 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE 0.4/1.0 mg/L</td>
</tr>
</tbody>
</table>

1 from Table I.6.A., first column

2 All waste has been classified in accordance with 30 TAC 335, Subchapter R, and TCEQ RG-22 Guidelines for the Classification and Coding of Industrial and Hazardous Waste. Prior testing and/or process knowledge of the waste streams eliminates the need for further testing. In accordance with TCEQ waste classification regulations, waste classifications will only be revisited when there is a change in the process which necessitates the need to revisit the classification. Waste is only sampled and reclassified when there is a process change.

3 Waste classification has been audited and approved by TCEQ.

4 LOD Limit of Detection; LOQ Limit of Quantification
Property Owner Affidavit

“I/We, ______Andrew Valencia _________, as _____Senior Vice President, Generation_____
(Printed Signatory Name) (Signatory Capacity)
As authorized signatory for __________Lower Colorado River Authority________________
(Printed Name of Property Owner of Record)

Acknowledge that the State of Texas may hold the property owner of record either jointly or
severally responsible for the operation, maintenance, and closure and post-closure care of the
facility. I further acknowledge that I or the operator and the State of Texas shall have access to
the property during the active life and post-closure care period, if required, after closure for the
purpose of inspection and maintenance.”

______________________________ __________________________
(Property Owner’s Signature) (Date)

April 27, 2022
All adjacent land to facility is agricultural or within the Fayette Power Project Boundary.

- FPP - Discharge Point - WQ0002105000
- FPP - Discharge Route
- CBL Facility Boundary
- Existing Landfill Cell
- 1000 ft. radius from CBL Facility Boundry
- FPP Boundary
- Surface Water Flow Direction
CCR is trucked to the on-site landfill

Boiler

Precipitator

CCR is trucked to the on-site landfill

Conveyor

Vacuum and pipe

scrubber

Fly Ash Silos

CCR is trucked to the on-site landfill

Product is trucked off-site for beneficial use

CBL Landfill

Bottom Ash Bunker

NOR 50163042 (Units 1 & 2)

NOR 50173042 (Unit 3)

Synthetic Gypsum Building

Product is trucked off-site for beneficial use or trucked to the Synthetic Gypsum Building

CBL Landfill

NOR 50143042 (Units 1 & 2)

NOR 50153043 (Unit 3)

NOR 50183922 (all units)
Process Flow Description
The Fayette Power Project (FPP) consists of three coal fired steam electric generating units located in Fayette County, Texas, approximately seven miles east of La grange, Texas. The primary fuel combusted at FPP is subbituminous coal. Other activities at FPP that support the operation of the boilers include coal handling, limestone handling, and powdered activated carbon injection for mercury emissions control.

Pulverized coal is injected into the boiler where it is burned to produce heat and steam. The bottom ash falls to the bottom of the boiler and is removed by conveyor to the Bottom Ash bunker located adjacent to the boiler. From there it is trucked to the Coal Combustion By-Products Landfill (CBL). The fly ash moves with combustion gases to the electrostatic precipitators where fly ash is removed from the combustion gases and a vacuum draws the fly ash into the ash transport system and then is pneumatically transferred to the fly ash collection silos. Fly Ash is loaded in trucks at the silo and trucked off-site for beneficial use. Some fly ash is trucked to the on-site Coal Combustion Residuals Landfill. Combustion gases are routed from the electrostatic precipitator to the scrubber system where a limestone slurry is used to remove sulfur dioxide. The scrubber material is transferred via pipes and conveyors to the Synthetic Gypsum Dome. From there the material is either trucked to the on-site landfill, trucked off-site for beneficial use, or trucked to the on-site Synthetic Gypsum Storage Building and later trucked for beneficial use.
Lower Colorado River Authority (LCRA)
P.O. Box 220
Austin, Texas 78767

LOCATION RESTRICTIONS CERTIFICATION REPORT

COMBUSTION BYPRODUCT LANDFILL
FAYETTE POWER PROJECT
FAYETTE COUNTY, TEXAS

Prepared by

Geosyntec consultants
8217 Shoal Creek Blvd., Suite 200
Austin, Texas 78757

Rev. 0 – June 2022
TABLE OF CONTENTS

1. INTRODUCTION ... 1
 1.1 Purpose ... 1
 1.2 Background ... 1
 1.3 Organization of Report .. 2

2. EVALUATION OF PROPOSED CBL LATERAL EXPANSION WITH RESPECT TO
 COMPLIANCE WITH 30 TAC 352, SUBCHAPTER E ... 3
 2.1 Placement Above the Uppermost Aquifer (30 TAC §352.601) 3
 2.1.1 Location Restriction .. 3
 2.1.2 Uppermost Aquifer .. 3
 2.1.3 Compliance Assessment ... 4
 2.2 Wetlands (30 TAC §352.611) ... 5
 2.2.1 Location Restriction .. 5
 2.2.2 Wetlands Information .. 5
 2.2.3 Compliance Assessment ... 5
 2.3 Fault Areas (30 TAC §352.621) ... 5
 2.3.1 Location Restriction .. 5
 2.3.2 Fault Areas Information ... 6
 2.3.3 Compliance Assessment ... 6
 2.4. Seismic Impact Zones (30 TAC §352.631) ... 6
 2.4.1 Location Restriction .. 6
 2.4.2 Seismic Impact Zone Information .. 7
 2.4.3 Compliance Assessment ... 7
 2.5 Unstable Areas (30 TAC §352.641) ... 7
 2.5.1 Location Restriction .. 7
 2.5.2 Unstable Areas Information ... 8
 2.5.2.1 Geotechnical Investigations ... 8
 2.5.2.2 CBL Slope Stability .. 8
 2.5.2.3 Local Geologic Features .. 10
 2.5.2.4 Local Manmade Features or Events .. 10
 2.5.3 Compliance Assessment ... 10
3. EVALUATION OF CBL WITH RESPECT TO COMPLIANCE WITH 40 CFR SUBPART A, §257-1 TO §257-3

3.1 Floodplains (40 CFR §257.3-1)
 3.1.1 Location Restriction
 3.1.2 Floodplains Information
 3.1.2 Compliance Assessment

3.2 Endangered Species (40 CFR §257.3-2)
 3.2.1 Location Restriction
 3.2.2 Endangered Species Information
 3.2.3 Compliance Assessment

3.3 Surface Water (40 CFR §257.3-3)
 3.3.1 Location Restrictions
 3.3.2 Surface Water Information
 3.3.3 Compliance Assessment

4. REFERENCES

DRAWINGS
Drawing 1 Overall Site Plan (Geosyntec, 2021)
Drawing 2 Existing Site Conditions (Geosyntec, 2021)

FIGURES
Figure 1 Cross Section Location Map
Figure 2 Cross-Section A-A’
Figure 3 Cross-Section B-B’
Figure 4 Cross-Section C-C’
Figure 5 Cross-Section D-D’
Figure 6 Cross-Section E-E’
Figure 7 Wetlands Inventory Map

APPENDICES
Appendix A Certification by a Qualified Professional Engineer
Appendix B Boring Logs
Appendix C Wetlands Assessment (ECC, 2006)
Appendix D Database Query Documentation
Appendix E Slope Stability Analysis Results
Appendix F Protected Species Habitat Assessment (B&A, 2022)
1. INTRODUCTION

1.1 Purpose

This report presents an evaluation of the proposed lateral expansion (Subcells 2A, 2B, 2C and Cell 3) of the Combustion Byproduct Landfill (CBL) at the Lower Colorado River Authority (LCRA) Fayette Power Project (FPP) with respect to compliance with the Texas Commission on Environmental Quality’s (TCEQ’s) location restriction regulations for lateral expansions of coal combustion residuals (CCR) landfills, in accordance with Chapter 352, Subchapter E of Title 30 of the Texas Administrative Code (TAC) (i.e., 30 TAC 352, Subchapter E). These regulations were adopted by reference to Sections 257.60 to 257.64 of Part 257, Subpart D of Title 40 of the Code of Federal Regulations (CFR) (i.e., 40 CFR §257.60 to §257.64).

Geosyntec Consultants (Geosyntec) previously evaluated the compliance of the existing CBL (Cell 1 and Subcell 2D) with respect to 40 CFR §257.60 to §257.64. Of these location restrictions, only the unstable areas (40 CFR §257.64) criterion is applicable to the existing CBL. Geosyntec (2017) demonstrated that the existing CBL is not situated in an unstable area and is therefore in compliance with that location restriction.

This report also presents an evaluation of the CBL with respect to compliance with the 40 CFR 257, Subpart A for floodplains (40 CFR §257.3-1), endangered species (40 CFR §257.3-2), and surface water (40 CFR §257.3-3).

A certification by a Qualified Professional Engineer that the location restriction demonstrations presented herein are appropriate for evaluating the the CBL and that the demonstrations meet the requirements of 40 CFR §§257.60(a), 257.61(a), 257.62(a), and 257.63(a) is presented in Appendix A.

1.2 Background

The FPP is a coal-fired power plant located east of La Grange in Fayette County, Texas (FPP site). CCR generated at the FPP site are disposed in the CBL, a CCR landfill located south of the power plant and north of the railroad that borders FPP (Drawing 1).

At final buildout, the CBL will consist of up to three cells, Cells 1 to 3 (Drawing 2). Cell 1 was constructed in 1988 at natural grade with a recompacted clay liner. From October 2014 to May 2015, Subcell 2D was constructed below grade with a compacted clay liner. The remainder of Cells 2 and 3 will be constructed with a liner system that includes a geomembrane/compacted clay composite liner and leachate collection system.
1.3 **Organization of Report**

The remainder of this report is organized as follows:

- Section 2 presents an evaluation of the proposed CBL lateral expansion with respect to compliance with 30 TAC 352 Subchapter E, including placement above the uppermost aquifer (30 TAC §352.601), wetlands (30 TAC §352.611), fault areas (30 TAC §352.621), seismic impact zones (30 TAC §352.631), and unstable areas (30 TAC §352.641);

- Section 3 presents an evaluation of the CBL with respect to compliance with 40 CFR Subpart A for floodplains (40 CFR §257.3-1), endangered species (40 CFR §257.3-2), and surface water (40 CFR §257.3-3); and

- Section 4 provides a list of references cited in the report.
2. EVALUATION OF PROPOSED CBL LATERAL EXPANSION WITH RESPECT TO COMPLIANCE WITH 30 TAC 352, SUBCHAPTER E

2.1 Placement Above the Uppermost Aquifer (30 TAC §352.601)

2.1.1 Location Restriction

In accordance with 30 TAC §352.601, which adopts by reference 40 CFR §257.60, a lateral expansion of a CCR unit (landfill) must be constructed with a base that is located no less than five feet above the upper limit of the uppermost aquifer, or must demonstrate that there will not be an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR landfill and the uppermost aquifer due to normal fluctuations in groundwater elevations (including the seasonal high water table). “Uppermost aquifer” is defined in in 30 TAC §352.3(a), which adopts by reference 40 CFR §257.53, as “the geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers that are hydraulically interconnected with this aquifer within the facility’s property boundary.” “Aquifer” is defined as “the geologic formation, group of formations, or portion of a formation capable of yielding usable quantities of groundwater to wells or springs”.

2.1.2 Uppermost Aquifer

The information presented below on FPP site geology was developed from historical soil boring and groundwater elevation data, Geosyntec (2013), and AMEC Environmental & Infrastructure, Inc. (AMEC) (2013).

The FPP site is located on the uppermost section of the Miocene-age Oakville Formation, with topographically high portions of the site capped by Pleistocene-age Willis Formation sands, silts, and gravels. The Oakville Formation regionally dips to the southeast, varies in thickness from 200 to 500 feet, and consists of calcareous fine- to medium-grained sand/sandstones and interbedded silt and clay units.

Locally the Oakville was formed in a fluvial environment characterized by small local streams. Sand bodies were deposited as channel-fill units ranging from 10 to 25 feet in thickness and overbank units of limited extent and thickness deposited during flood events. Three groundwater bearing units, designated at the site as the Upper Sand, Intermediate Sand, and Middle Sand, are present in the interval from the surface to a depth of approximately 100 feet. A fourth unit, the Lower Sand, is locally present at a depth greater than 100 feet. Each of these units is separated by low-permeability clays.

The Upper Sand is a low-yielding, laterally discontinuous, unconfined groundwater bearing unit present only at the topographically highest portions of the CBL area. It has been reported as dry at many locations in historical geotechnical studies and is not considered the uppermost aquifer for
location restrictions or groundwater monitoring purposes. In September 2013, TCEQ approved a Class 3 groundwater designation for the Upper Sand (AMEC, 2013).

The Intermediate Sand is a laterally discontinuous unit apparently present beneath the majority of the CBL. It appears to be enveloped by low permeability clays and largely isolated from the overlying Upper Sand and underlying Middle Sand, except towards the south of the FPP site where the Intermediate Sand may stratigraphically merge with the Middle Sand. The Intermediate Sand is considered the uppermost aquifer beneath the CBL. Groundwater is present in the Intermediate Sand under confined/semi-confined conditions, except where the unit is present near the surface towards the southwest of the CBL area.

2.1.3 Compliance Assessment

To comply with the location restriction for placement above the uppermost aquifer, the proposed lateral expansion (Subcells 2A to 2C and Cell 3) of the CBL must be constructed with base that is located no less than 5 feet above the upper limit of uppermost aquifer. At the FPP site, the Intermediate Sand is the uppermost aquifer. “Base” refers to the bottom of the compacted clay component of the landfill liner system.

The top of the clay liner elevations for the lateral expansion area are shown in Figure 1 along with the locations of hydrogeologic Cross-Sections A-A’ to E-E.’ These cross sections, detailed in Figures 2 to 6, show the site stratigraphy in the vicinity of the base of the expansion area, the top of the of the clay liner, the top of the subgrade, and the top of the Intermediate Sand.

The groundwater elevations in monitor wells completed in the Intermediate Sand are typically above the elevation of the top of the Intermediate Sand in the proposed CBL expansion area, confirming confined conditions. Therefore, the elevation of the top of the Intermediate Sand strata should be used for the purpose of determining compliance with 30 TAC 352.601 and 40 CFR §257.60 in areas where groundwater is under confined conditions. Seasonal high water table conditions are applicable to an unconfined aquifer scenario and are not relevant to the Intermediate Sand where it occurs under confined conditions. In the southwest corner of CBL in the footprint of proposed Subcell 3C (Figure 6), the Intermediate Sand is present near the surface and groundwater is unconfined. However, historical groundwater elevations in the Intermediate Sand monitor well in this area have been more than 5 feet below the proposed base of the Subcell 3C. The logs for the borings included in the cross sections are provided in Appendix B.

As shown in Figures 2 to 6, the base of the clay liner is closest to the upper limit of the Intermediate Sand in the central part of the proposed CBL expansion area where the liner grades approach the bottom of the central drainage corridor in the CBL and the Intermediate Sand extending from the east pinches out. However, because the proposed expansion area will be constructed with at least 5 feet separation from the Intermediate Sand, the CBL is in compliance with the location restriction for placement above the uppermost aquifer specified in 30 TAC §352.601.
2.2 **Wetlands (30 TAC §352.611)**

2.2.1 **Location Restriction**

In accordance with 30 TAC §352.611, which adopts by reference 40 CFR §257.61, a lateral expansion of a CCR landfill must not be located in wetlands unless it is demonstrated that the landfill meets certain requirements, as specified in paragraphs §257.61(a)(1) through §257.61(a)(5).

2.2.2 **Wetlands Information**

The CBL was sited in accordance with Texas Water Commission (TWC) Technical Guideline No. 2 (issued 1976). The design and location of the CBL was reviewed and approved by TCEQ in a letter dated January 18, 1988.

In 2006, Ecological Communications Corporation (ECC) conducted a wetlands assessment of the FPP site (Appendix C). Wetlands were not identified in the CBL area (ECC, 2006).

Geosyntec queried the U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) [http://www.fws.gov/wetlands/Data/Mapper.html] (USFWS, 2021) for wetlands in the vicinity of the CBL. Documentation of this query is provided in Figure D-1 in Appendix D. Two manmade features shown on Figure D-1 were identified as freshwater ponds classified as PUBHx (Figure 7): (i) the existing runoff retention pond; and (ii) a manmade isolated topographic depression located in uplands along the east boundary of Subcell 2C. In addition, the existing engineered drainage channel conveying runoff from the active area of Cell 1 to the runoff retention pond as shown on Figure D-1 was identified as a riverine wetland classified as R4SBC. These features do not meet the definition of “Waters of the United States” in 40 CFR §120.2 and are not considered jurisdictional wetlands.

2.2.3 **Compliance Assessment**

Based on review of wetlands data for the CBL, the CBL is not located in jurisdictional wetlands. Therefore, the CBL is in compliance with the location restriction for wetlands specified in 30 TAC §352.611.

2.3 **Fault Areas (30 TAC §352.621)**

2.3.1 **Location Restriction**

In accordance with 30 TAC §352.621, which adopts by reference 40 CFR §257.62, a lateral expansion of a CCR landfill must not be located within 200 feet of the outermost damage zone of a fault that has had displacement in Holocene time unless it is demonstrated that a lesser setback distance will prevent damage to the structural integrity of the CCR landfill. “Holocene” is defined
is defined in 30 TAC §352.3(a), which adopts by reference 40 CFR §257.53, as “the most recent epoch of the Quaternary period, extending from the Pleistocene Epoch, at 11,700 years before present, to present.”

2.3.2 Fault Areas Information

Geosyntec queried the U.S Geological Survey (USGS) Quaternary Fault and Fold Database of the United States [https://www.usgs.gov/natural-hazards/earthquake-hazards/faults] (USGS, 2021a) for faults in the vicinity of the CBL. The database contains information on Quaternary faults and associated folds that are believed to be the sources of earthquakes with a magnitude greater than 6. No faults or folds were identified near the site. A print out from this query is included in Appendix D. While normal, en echelon faults associated with the Mexia-Luling-Talco regional fault system are found regionally, most faults associated with that system are located west of Fayette County and the limited number identified in the County are located west of the FPP (Caran et al., 1982). Further, faults were not identified along the north-south regional geologic cross section that passes through the FPP site (Rogers, 1967) or shown within one mile of the site in the on-line geologic atlas of Texas using the USGS Texas Geology Web Map Viewer [https://txpub.usgs.gov/txgeology/] (USGS, 2021b) as shown on Figure D-2 in Appendix D.

In addition to a desktop study, Geosyntec also reviewed the current topographic map for the FPP, historical aerial photographs of the FPP from December 1997, December 2002, February 2008, May 2014, April 2017, and January 2018 available on Google Earth Pro, and historical soil boring information in the CBL area for evidence of surficial expression of faults. The occurrence of linear surface features or displacement through the surficial sediments could indicate recent activity associated with a fault. No such features were observed.

2.3.3 Compliance Assessment

Based on review of fault information for the CBL, the CBL is not located within 200 feet of the outermost damage zone of a fault that has had displacement in Holocene time. Therefore, the CBL is in compliance with the location restriction for fault areas specified in 30 TAC §352.621.

2.4. Seismic Impact Zones (30 TAC §352.631)

2.4.1 Location Restriction

In accordance with 30 TAC §352.631, which adopts by reference 40 CFR §257.63, a lateral expansion of a CCR landfill must not be located in seismic impact zones unless it is demonstrated that all structural components, including liners, leachate collection systems, and surface water control systems, are designed to resist the maximum horizontal acceleration in lithified earth material from a probable earthquake. “Seismic impact zone” is defined in 30 TAC §352.3(a), which adopts by reference 40 CFR §257.53, as “an area having a 2% or greater probability that the maximum expected horizontal acceleration, expressed as a percentage of the earth’s
gravitational pull (g), will exceed 0.10 g in 50 years.” “Maximum horizontal acceleration in lithified earth material” is defined as “the maximum expected horizontal acceleration at the ground surface as depicted on a seismic hazard map, with a 98% or greater probability that the acceleration will not be exceeded in 50 years, or the maximum expected horizontal acceleration based on a site-specific seismic risk assessment. This requirement translates to a 10% probability of exceeding the maximum horizontal acceleration in 250 years”.

2.4.2 Seismic Impact Zone Information

Seismic zones, which represent areas with the greatest seismic risk, are mapped by the USGS and readily available for all of the United States (https://www.usgs.gov/programs/earthquake-hazards/maps). The 2014 USGS National Seismic Hazard Map for the Conterminous U.S presenting the peak ground acceleration with a 2% or greater probability of exceedance in 50 years in the CBL vicinity is shown on Figure D-3 in Appendix D and indicates that the maximum expected horizontal acceleration at the site for this event is between 0.02 and 0.04 g (Shumway, 2019)

The Unified Hazard Tool for the Conterminous U.S on the USGS website (USGS, 2021c) was used to determine the peak ground acceleration for the CBL. The CBL is approximately located at 29.91° latitude, -96.76° longitude. The peak ground acceleration with a 2% or greater probability of exceedance in 50 years for 29.90° latitude, -96.75° longitude was estimated to be approximately 0.029 g. A screen shot from this query is included in Appendix D. This peak ground acceleration is less than the acceleration defining a seismic impact zone (i.e., > 0.10 g).

2.4.3 Compliance Assessment

Based on the information provided in this section, the CBL is not situated in a seismic impact zone and is therefore in compliance with the requirements of the location restriction for seismic impact zones, specified in 30 TAC §352.631.

2.5 Unstable Areas (30 TAC §352.641)

2.5.1 Location Restriction

In accordance with 30 TAC §352.641, which adopts by reference 40 CFR §257.63, an existing CCR landfill or the lateral expansion of a CCR landfill must not be located in an unstable area unless it is demonstrated that recognized and generally accepted good engineering practices have been incorporated into the design of the landfill to ensure that the integrity of the structural components of the landfill will not be disrupted. To assess whether an area is unstable, the following factors must be considered:

- on-site or local soil conditions that may result in significant differential settlement;
• on-site or local geologic or geomorphologic features; and

• on-site or local human-made features or events (both surface and subsurface).

“Unstable area” is defined in 30 TAC §352.3(a), which adopts by reference 40 CFR §257.53, as “a location that is susceptible to natural or human-induced events or forces capable of impairing the integrity, including structural components of some or all of the CCR unit that are responsible for preventing releases from such unit. Unstable areas can include poor foundation conditions, areas susceptible to mass movements, and karst terrains.” “Structural components” refers to “liners, leachate collection and removal systems, final covers, run-on and run-off systems, inflow design flood control systems, and any other component used in the construction and operation of the CCR unit that is necessary to ensure the integrity of the unit and that the contents of the unit are not released into the environment.”

2.5.2 Unstable Areas Information

2.5.2.1 Geotechnical Investigations

Geotechnical investigations were conducted at the CBL site by McClelland Engineers, Inc. (1983), Brytest, Inc. (1984), Jones and Neuse, Inc. (1992), and Geosyntec [2011, 2013]. The investigations included logging soil borings, conducting standard penetration tests, and collecting soil samples for geotechnical laboratory testing. Based on the results of the geotechnical investigations, soils within the upper 100 feet of the subsurface are predominantly classified as clay (CL or CH) and clayey sand (SC and SM) in accordance with the Unified Soil Classification System (USCS). The logs for the borings included in the hydrogeologic cross sections presented in Figures 2 to 6 are provided in Appendix B. Natural water contents of clays were generally near the plastic limits, and consequently the clays are characterized as stiff to hard. Sands were generally characterized as medium to very dense.

Based on the low compressibility of the site soils, these soils provide adequate foundation for the liner system construction and can support the load of the CBL without significant differential settlement.

2.5.2.2 CBL Slope Stability

The slope stability of the CBL and associated perimeter berm at final grade was evaluated for a critical cross section through Cells 1 to 3 at the center of landfill. This cross section has the tallest slopes. The materials in this section were conceptualized as CCR on a geosynthetic liner system underlain by a clay subgrade and abutted on the north by a perimeter berm. The near surface soils and perimeter berm material are predominantly classified as high plasticity clays (CH).

For long-term (drained) slope stability analyses of soil slopes in high plasticity clays, analyses using fully-softened strength parameters are recommended (e.g., Skempton, 1970; Wright, 2005).
The fully-softened strength parameters of the subgrade, liner system, and perimeter berm soils were estimated based on the site-specific geotechnical data and, as applicable, the correlations presented in Wright (2005). The shear strength of the CCR were estimated based on the results of consolidated undrained triaxial compression tests conducted on CCR from FPP and on published data (e.g., Kim et al., 2005). Geotechnical properties used in the slope stability evaluation are summarized in Table 1.

Table 1. Geotechnical Properties Used in Slope Stability Analysis.

<table>
<thead>
<tr>
<th>Material</th>
<th>Unit Weight γ (lbs/ft³)</th>
<th>Fully-Softened Effective Stress Friction Angle φ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgrade Clay</td>
<td>105</td>
<td>20</td>
</tr>
<tr>
<td>CCR</td>
<td>105</td>
<td>30</td>
</tr>
<tr>
<td>Liner System</td>
<td>105</td>
<td>15</td>
</tr>
<tr>
<td>Perimeter Berm</td>
<td>120</td>
<td>24</td>
</tr>
</tbody>
</table>

The slope stability of the critical section was analyzed using a method of slices coded in the computer program SLIDE®, Version 6.029 [Rocscience, 2014]. SLIDE® is a two-dimensional slope stability program that can be used to evaluate the factor of safety of circular and non-circular (block-type) slip surfaces using the simplified Bishop’s (1955) and Spencer’s (1967) methods, respectively. The simplified Bishop procedure satisfies moment equilibrium conditions only, which is suitable for circular slip surfaces. For non-circular slip surfaces, the Spencer method was used because it satisfies both force and moment equilibrium in each slice of the sliding mass.

Four slope stability scenarios were considered: (i) potential circular slip surfaces through the CCR at the south landfill slope; (ii) potential non-circular slip surfaces along the liner system at the south landfill slope; (iii) potential circular slip surfaces through the CCR and underlying liner system and subgrade clay at the south landfill slope; and (iv) potential circular slip surfaces through the perimeter berm and into the subgrade clay on the north landfill slope. The results of SLIDE analysis for each of the critical cross-sections are summarized in Table 2 and in Appendix E. Table 2 also lists the minimum slope stability factor of safety recommended by TCEQ for CCR landfills (TCEQ, 2020).
Table 2. Results of Slope Stability Analysis.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Factor of Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIDE Analysis</td>
<td>TCEQ Guideline</td>
</tr>
<tr>
<td>Circular Slip Surface Through CCR</td>
<td>1.73</td>
</tr>
<tr>
<td>Block-Type Slip Surface Through Liner System</td>
<td>1.53</td>
</tr>
<tr>
<td>Circular Slip Surface Into Subgrade Clay</td>
<td>1.69</td>
</tr>
<tr>
<td>Circular Slip Surface Through North Perimeter Berm</td>
<td>1.54</td>
</tr>
</tbody>
</table>

For the conditions analyzed, the critical slip surface is a non-circular surface passing along the liner system at the south side of the landfill. The calculated slope stability factor of safety for this scenario is 1.53 using fully-softened strengths. All of the calculated factor of safety values exceed the minimum value of 1.5 recommended by TCEQ for CCR landfills under typical conditions.

2.5.2.3 Local Geologic Features

There are no known local geologic features that would classify the CBL site as an unstable area. Such features include active faults, seismic events, landslides, debris slides, karst terrain, and erosion by rivers. Further, the CBL is not located within the 500-year floodplain (FEMA FIRM 48149C0270C, October 2006; see Figure D-4 in Appendix D).

2.5.2.4 Local Manmade Features or Events

There are no known local manmade features or events that would classify the CBL site as an unstable area. Such features and events include mining, cut and fill activities during construction, excessive drawdown of groundwater, and construction over fill.

2.5.3 Compliance Assessment

Based on the information provided in this section, the CBL is not situated in an unstable area and is therefore in compliance with the requirements of the location restriction for unstable areas specified in 30 TAC §352.641.
3. EVALUATION OF CBL WITH RESPECT TO COMPLIANCE WITH 40 CFR SUBPART A, §257-1 TO §257-3

3.1 Floodplains (40 CFR §257.3-1)

3.1.1 Location Restriction

In accordance with 40 CFR §257.3-1, solid waste facilities in floodplains shall not restrict the flow of the base flood, reduce the temporary water storage capacity of the floodplain, or result in washout of solid waste, so as to pose a hazard to human life, wildlife, or land or water resources. “Base flood” is defined in 40 CFR §257.3-1(b)(1) as “a flood that has a 1 percent or greater chance of recurring in any year or a flood of a magnitude equaled or exceeded once in 100 years on the average over a significantly long period”. “Floodplain” is defined in 40 CFR §257.3-1(b)(2) as “the lowland and relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands, which are inundated by the base flood”.

3.1.2 Floodplains Information

Geosyntec queried the latest Flood Insurance Rate Map (FIRM) for Fayette County, Texas and incorporated areas prepared by the Federal Emergency Management Agency (FEMA) to identify floodplains in the CBL. The map indicated that the CBL is not located within any special flood hazard areas (SFHAs) subject to inundation by the 1 percent annual chance flood. Specifically, as shown in Figure D-4 in Appendix D, the existing CBL is located within “ZONE X” defined as “Areas determined to be outside the 0.2% annual chance floodplain” meaning that it is not located within the mapped 500-year floodplain.

3.1.2 Compliance Assessment

Based on review of the floodplain information data, the operation and expansion of the CBL will not restrict the flow of the base flood and are therefore in compliance with the requirements of location restriction for floodplains specified in 40 CFR §257.3-1.

3.2 Endangered Species (40 CFR §257.3-2)

3.2.1 Location Restriction

In accordance with 40 CFR §257.3-2, solid waste facilities or practices shall not cause or contribute to the taking of any endangered or threatened species of plants, fish, or wildlife; and shall not result in the destruction or adverse modification of the critical habitat of endangered or threatened species as identified in 50 CFR Part 17. In addition to addressing this federal location restriction, this section also describes the potential for state listed threatened or endangered species to occur within the project area.
3.2.2 Endangered Species Information

A Protected Species Habitat Assessment (PSHA) for the CBL was prepared by Blanton and Associates, Inc. (B&A) (B&A, 2022) is attached to this report as Appendix F of this Report. The PSHA evaluates the potential for federally and state listed threatened, endangered, or other protected species (e.g., eagles) to occur in the project area (i.e., future lateral expansion area of CBL) and the potential for those species to be impacted by the project.

B&A (2022) completed a literature, database, and desktop review for federally and state listed protected species potentially occurring in Fayette County and the project area. The purpose of the review was to assess habitats and resources within the project area; to determine protected species of known or potential occurrence within Fayette County and the project vicinity; to evaluate the life history and ecology of these species in relation to the habitats and resources present in the project area; and to ultimately determine the potential for each protected species to occur in the project area. The review of background information was accompanied by a field investigation performed on November 23, 2021. During the field investigation, the project area was evaluated to verify information attained in the background review and to assess the potential for federally or state protected species to occur on the site. Additionally, a presence/absence survey for Navasota ladies’-tresses (NLT) (Spiranthes parksii) was conducted by two B&A biologists. B&A did not identify habitat for federally listed endangered or threatened species through desktop review or field reconnaissance. B&A also concluded that the proposed project activities are not anticipated to affect federally and state avian species that may migrate through the project area, bald eagles that could nest within a 600-foot radius of the project area if potentially suitable nesting habitat was present (no bald eagles, eagle nests, or potentially suitable nesting habitat were observed), freshwater mussels located in streams near the project area, or NLTs (no NLTs or potentially suitable habitat for the species were identified within the project area).

3.2.3 Compliance Assessment

Based on the results of the PSHA (Appendix F) the operation and expansion of the CBL is not expected to cause or contribute to the taking of any endangered or threatened species of plants, fish, or wildlife or the destruction or adverse modification of the critical habitat of endangered or threatened species as identified in 50 CFR Part 17. Therefore, the CBL is in compliance with the requirements of location restrictions for endangered species specified in 40 CFR §257.3-2.

3.3 Surface Water (40 CFR §257.3-3)

3.3.1 Location Restrictions

In accordance with 40 CFR §257.3-3, a facility shall comply with the following requirements:
- A facility shall not cause a discharge of pollutants into waters of the United States that is in violation of the requirements of the National Pollutant Discharge Elimination System (NPDES) under section 402 of the Clean Water Act, as amended.

- A facility shall not cause a discharge of dredged material or fill material to waters of the United States that is in violation of the requirements under section 404 of the Clean Water Act, as amended.

- A facility or practice shall not cause non-point source pollution of waters of the United States that violates applicable legal requirements implementing an areawide or Statewide water quality management plan that has been approved by the Administrator under section 208 of the Clean Water Act, as amended.

In the above paragraphs, “discharge” is a term that includes, but is not limited to any spilling, leaking, pumping, pouring, emitting, emptying or dumping.

3.3.2 Surface Water Information

The information presented in this section is based on the Run-On and Run-Off Control System Plan (Plan) for the CBL (Geosyntec, 2021). The Plan describes how the run-on and run-off control systems were designed and constructed to prevent, collect and control flow onto and from the active portion of the CBL during the peak discharge of a 100-year, 24-hour storm event. The CBL run-on and run-off control systems meet and exceed the design requirements of 40 CFR §257.81(a) and 30 TAC §352.821 (i.e., 25-year, 24-hour storm event). Additional information regarding surface water management of the active portion of the CBL is summarized below.

Run-off from areas of Cell 1 that have not been covered with intermediate cover or final cover could have potentially come in contact with CCR. Therefore, this run-off and is managed as contact water. Contact water collected in Cell 1 is conveyed in the runoff channel to the Runoff Retention Pond (Drawing 2), as authorized under the Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0002105000 and designated as the “CBL Pond” in the permit. The perimeter and interim berms of Cell 1, as well as the underlying recompacted clay liner, keep run-off that has contacted CCR within the CBL until it flows to the runoff channel. CCR is placed in Cell 1 in a manner that directs this runoff in Cell 1 to the channel. Until an intermediate or final cover is placed over the CCR slopes, run-off from the CCR slopes will continue to be collected and directed to the runoff channel. Run-off from areas of the CBL with intermediate or final cover has not contacted CCR and can be directed into a stormwater channel and conveyed away from the CBL rather than being conveyed to the Runoff Retention Pond.

Contact water from the Subcell 2D Contact Water Retention Pond is managed through a pumping system which routes water collected in the pond to the runoff channel.
In general, water run-on to active areas of the CBL and Subcell 2D is controlled by topography and by the landfill perimeter berm. The north side of the CBL is on a topographic high, and the ground surface around the CBL primarily slopes to the south, and also towards two the central stormwater channels (Drawing 2). In addition, the perimeter berm of the CBL deflects stormwater run-on, and this potential run-on is collected in a stormwater channel at the toe of the outboard side slope of the berm.

As described in the Plan, as new subcells are developed, run-on will continue to be controlled by berms and adjacent stormwater channels located at the outboard toe of the berms. In addition, the Plan will be revised whenever there is a change in conditions that would substantially affect the Plan in effect.

3.3.3 Compliance Assessment

Based on the engineering controls for surface water incorporated into the CBL design and the operational procedures employed at the landfill (Geosyntec, 2021), the operation and expansion of the CBL is not expected to cause discharge of pollutants into waters of the United States or a non-point source pollution of waters of the United States that is in violation of the requirements of the National Pollutant Discharge Elimination System (NPDES) under section 402 of the Clean Water Act, as amended. Therefore, the existing CBL is in compliance with location restriction requirements for surface water specified in 40 CFR §257.3-3.
4. REFERENCES

DRAWINGS
THE EXISTING CONTOUR BASE MAP SHOWN ON THIS DRAWING WAS COMPILED USING AN AERIAL SURVEY BASED ON PHOTOGRAPHY PERFORMED ON 23 NOVEMBER 2020 BY SKYVEYOR.

ELEVATIONS ARE IN FEET (FT) AS DEFINED BY THE NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988. STATE PLANE COORDINATE GRID CORRESPONDS TO TEXAS STATE PLANE COORDINATE SYSTEM, TEXAS CENTRAL ZONE (4203), NORTH AMERICAN DATUM 83 (NAD-83) 1983.

EXISTING COMBUSTION WASTE FORCE MAIN CONVEYS WATER FROM EXISTING RUNOFF RETENTION POND TO RECLAIM POND.
FIGURES
NOTES:
1. THE EXISTING CONTOUR BASE MAP SHOWN ON THIS DRAWING WAS COMPILED USING AERIAL SURVEY BASED ON PHOTOGRAPHY PERFORMED ON 23 OCTOBER 2013 BY SURDEX CORPORATION AND LIDAR DATA PUBLISHED DECEMBER 2008 AND PROVIDED BY LCRA SURVEYING, MAPPING, AND GIS.
2. ELEVATIONS ARE IN FEET ABOVE MEAN SEA LEVEL (FT, MSL) AS DEFINED BY THE NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988. STATE PLANE COORDINATE GRID CORRESPONDS TO TEXAS STATE PLANE COORDINATE SYSTEM, TEXAS CENTRAL ZONE (4203), NORTH AMERICAN DATUM 1983 (NAD-83).
3. EXISTING GROUND ELEVATION CONTOUR (FT, MSL) (NOTE 1)
4. EXISTING ROAD
5. EXISTING BUILDING
6. COORDINATE GRID
7. SUBCELL BOUNDARY
8. PROPOSED TOP OF LINT (PT, MILL) (NOTE 2)
9. LANDFILL LIMIT
10. LOWER COLORADO RIVER AUTHORITY
11. 3700 LAKE AUSTIN BLVD.
12. AUSTIN, TEXAS 78703
13. PHONE: 512.473.3200
14. GEOSYNTEC CONSULTANTS, INC.
15. 8217 SHOAL CREEK BLVD., SUITE 200
16. AUSTIN, TEXAS 78757
17. PHONE: 512.451.4003
18. PROJECT:
19. SITE:
20. TITLE:
21. APPROVED BY:
22. REVIEWED BY:
23. FIGURE NO.:
24. DRAWN BY:
25. DESIGN BY:
26. CHECKED BY:
27. FILE:
28. PROJECT NO.: DATE:
29. SIGNATURE
30. DATE
31. DRAWING: P:\CADD\Projects\F\fayette power plant\eng design\ccr rule compliance (txl0225.08)\DRAWINGS\TXL022508F01.dwg PLOTTED: Jan 21, 2022 - 6:44pm
32. LOCATION RESTRICTIONS CERTIFICATION REPORT
33. FAYETTE POWER PROJECT
34. COMBUSTION BYPRODUCT LANDFILL
35. CCR RULE COMPLIANCE DRAWING
36. JANUARY 2022
37. FL8
38. 18.01
39. LOCATION MAP
40. MAP SOURCE: TXDOT URBAN COUNTY MAP
41. APPROXIMATE SCALE
42. PROJECT LOCATION
43. SCALE IN FEET
44. CROSS SECTION LOCATION MAP
45. CCR RULE COMPLIANCE DRAWING
NOTE:
1. SLOPES AND LAYER THICKNESS MAY APPEAR DISTORTED ON THESE CROSS SECTIONS DUE TO THE EXAGGERATED VERTICAL SCALE AND THE SKewed ANGLE AT WHICH THE SECTIONS WERE CUT COMPARED TO THE THREE-DIMENSIONAL SOIL DIRECTIONS.

LEGEND:
- SURFACE TOPOGRAPHY
- COMPACTION STRATA (CLAY, Silt Clay, Sandy Clay, Silty Clay)
- TRANSMISSIVE STRATA (GRAVEL, SAND, SILTY SAND, OR CLAYEY SAND)
- INFERRED STRATA LAYER
- CONFINING STRATA (CLAY, SILTY CLAY, SANDY CLAY, OR GRAVELLY CLAY)
- EXPOSED STRATA LAYER

NOTE: SLOPES AND LAYER THICKNESS MAY APPEAR DISTORTED ON THESE CROSS SECTIONS DUE TO THE EXAGGERATED VERTICAL SCALE AND THE SKewed ANGLE AT WHICH THE SECTIONS WERE CUT COMPARED TO THE THREE-DIMENSIONAL SOIL DIRECTIONS.
NOTE: Slopes and layer thicknesses may appear distorted on these cross sections due to the exaggerated vertical scale and the skewed angle at which the sections were cut compared to the three-dimensional slope directions.
NOTES:
1. THE EXISTING CONTOUR BASE MAP SHOWN ON THIS DRAWING WAS COMPILED USING AERIAL SURVEY BASED ON PHOTOGRAPHY PERFORMED ON 23 OCTOBER 2020 BY SKYVEYOR AND LIDAR DATA PUBLISHED DECEMBER 2008 AND PROVIDED BY LCRA SURVEYING, MAPPING, AND GIS.
2. ELEVATIONS ARE IN FEET ABOVE MEAN SEA LEVEL (FT, MSL) AS DEFINED BY THE NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988. STATE PLANE COORDINATE GRID CORRESPONDS TO TEXAS STATE PLANE COORDINATE SYSTEM, TEXAS CENTRAL ZONE (4203), NORTH AMERICAN DATUM 1983 (NAD-83).
APPENDICES
APPENDIX A

Certification by a Qualified Professional Engineer
CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

The report was prepared by Geosyntec under the direction of Dr. Beth Ann Gross, P.E., a qualified professional engineer, in accordance with 30 TAC §352.231(d) and 30 TAC §352.4.

I certify that location restriction demonstrations presented herein are appropriate for evaluating the Combustion Byproduct Landfill at the Fayette Power Project (FPP) and that the demonstrations meet the requirements of 40 CFR 257.60(a), 40 CFR 257.61(a), 40 CFR 257.62(a), and 40 CFR 257.63(a).

Beth Ann Gross
Printed Name of Licensed Professional Engineer

[Signature]

June 3, 2022
Date
APPENDIX B

Boring Logs
Log of Boring

<table>
<thead>
<tr>
<th>Depth (Feet)</th>
<th>Surface Elevation</th>
<th>Soil Type</th>
<th>Core Drilled/Recovered (%)</th>
<th>Wet Weight (liq. ft.)/Dry Weight (lbs.)</th>
<th>Wet Unit Weight (lbs./ft.)</th>
<th>Unit Weight (lbs./cu. ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>363.36</td>
<td>Intermittent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>CLAYEY SAND WITH GRAVEL, Dark Brown, Moist to Wet (SC) with organics</td>
<td>31.1</td>
<td>92</td>
<td>71</td>
<td>65.3</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>SANDY FAT CLAY, Stiff, Dark Grayish Brown and Reddish Brown, Moist (CH) with scattered gravel</td>
<td>18.0</td>
<td>53</td>
<td>37</td>
<td>53.7</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>SANDY FAT CLAY, Very Stiff to Hard, Light Gray and Red, Dry (CH)</td>
<td>20.4</td>
<td>41</td>
<td>26</td>
<td>55.3</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>SANDY LEAN CLAY, Light Gray, Moist (CL) with calcium deposits</td>
<td>22.5</td>
<td>35</td>
<td>16</td>
<td>32.0</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>CLAYEY SAND, Medium Dense, Light Gray, Wet to Moist (SC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page

Completion Depth 30' Date 4-9-92 Water Observations WATER ENCOUNTERED AT 28' DURING DRILLING / WATER AT 9' AFTER 24 HOURS

JONES AND HENKE, INC. 153702
<table>
<thead>
<tr>
<th>Depth</th>
<th>Type</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>30'</td>
<td>Intermittent</td>
<td>GLAYEY SAND, Medium Dense, Light Gray, Wet to Moist (SC)</td>
</tr>
</tbody>
</table>

P.P. = Pocket Penetrometer
S.F.T. = Standard Penetration Test
Boring grouted with bentonite/grout mix

Completion Depth: 30'
Date: 4-9-92
Water Observations:

JONES AND REHNZ, INC.
153702
Log of Boring

Number: 8-3
Location: N 760,854 E 2,711,162

Project
Fayette Power Plant Disposal Area
LaGrange, Texas

STRATUM DESCRIPTION

Depth	Type	Surface Elevation	OSAH	Type	Core Drilled	P.A.	Plasticity Tilt	SPT	Water	Conductivity	Permeability	Reflection	Density	Density	Density	
		394.23														

- **FAT CLAY WITH GRAVEL, Dark Grayish Brown (CH).**

- **SANDY FAT CLAY, Light Gray and Brown, Dry (CH).**

- **CLAYEY SAND, Dense, Light Gray and Very Pale Brown, Dry (SC).**

- **POORLY GRADED SAND WITH SILT, Very Dense, Gray, Dry (SP-SM).**

Water Observations

- **Completion Depth:** 30'
- **Date:** 3-31-92
- **Water Observations:** NO WATER ENCOUNTERED DURING DRILLING / NO 24 HOUR READINGS OBTAINED

JONES AND REISE, INC.

153702
<table>
<thead>
<tr>
<th>Depth</th>
<th>Stratum Description</th>
<th>Gata. Type</th>
<th>Core Drilled Recovered Ft.</th>
<th>Terminal Type</th>
<th>Bulk Water Lost Lb.</th>
<th>Liquid Limit</th>
<th>Plasticity Index</th>
<th>Siking Value</th>
<th>100 to 300 mm</th>
<th>300 to 500 mm</th>
<th>Sinking Value</th>
<th>Density</th>
<th>Drained Sinking Value</th>
<th>Ejected/Spt. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>SIILY SAND, Very Dense, Light Yellowish Brown and Light Gray, Dry to Wet (SN)</td>
<td></td>
<td>16.8</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>FAT CLAY, Light Gray and Olive Yellow, Moist (CH) with calcium deposits</td>
<td></td>
<td>27.8</td>
<td>39</td>
<td>32</td>
<td>86.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P.P. = Pocket Penetrometer
S.P.T. = Standard Penetration Test

Boring grouted with bentonite/grout mix

Completion Depth: 30'
Date: 3-31-92

JONES AND NEHSE, INC.

153702
Log of Boring

Number: B-4
Location: N 760,720 E 2,711,473

Project: Fayette Power Plant Disposal Area
La Grange, Texas: JNO26412.1

STRATUM DESCRIPTION

<table>
<thead>
<tr>
<th>Depth</th>
<th>Type</th>
<th>Description</th>
<th>Core Drilled</th>
<th>Tapered</th>
<th>Bulk Dry</th>
<th>Liquid Limit</th>
<th>Plasticity Index</th>
<th>Viscosity (De)</th>
<th>Plate of External</th>
<th>Internal Friction</th>
<th>Cohesion (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Clayey Gravel, Light Gray, Moist (GC)</td>
<td></td>
</tr>
<tr>
<td>31.8</td>
<td>FAT CLAY WITH SAND, Hard, Light Gray and Yellow, Moist (CH) with calcium deposits and scattered gravel</td>
<td></td>
<td>31.8</td>
<td>75</td>
<td>46</td>
<td>82.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.7</td>
<td>Sandy Fat Clay, Hard, Light Gray, Olive Yellow, and White, Moist (CH) with calcium deposits and calcareous particles</td>
<td></td>
<td>12.7</td>
<td>57</td>
<td>38</td>
<td>59.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Silty Sand, Very Dense, Light Gray, Dry (SH)</td>
<td></td>
<td>6.6</td>
<td>18</td>
<td>1</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>Clayey Sand, Very Dense, Light Gray and Olive Yellow, Moist (GC)</td>
<td></td>
<td>19.3</td>
<td>37</td>
<td>23</td>
<td>34.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Completion Depth: 30'
Date: 3-31-92
Water Observations: WATER ENCOUNTERED AT 24' DURING DRILLING / NO 24 HOUR READINGS OBTAINED

JONES AND NEUSE, INC.
Log of Boring

Project: Fayette Power Plant Disposal Area
Location: LaGrange, Texas
Location: N 760,720 E 2,711,473

<table>
<thead>
<tr>
<th>Depth</th>
<th>Stratum Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30'</td>
<td>CLAYEY SAND, Very Dense, Light Gray and Olive Yellow, Moist (SC)</td>
</tr>
<tr>
<td>4.5+</td>
<td>FAT CLAY, Hard, Pale Yellow and Brownish Yellow, Moist (CH)</td>
</tr>
</tbody>
</table>

- **P.F. =** Pocket Penetrometer
- **S.P.T. =** Standard Penetration Test

Boring grouted with bentonite/grotr mix

<table>
<thead>
<tr>
<th>Core Drilled/ Recovered Ft.</th>
<th>Normally Consolidated</th>
<th>SPT Drift Value</th>
<th>Liquefaction Potential</th>
<th>Drilled or Diamond Core</th>
<th>Cored and Recovered Feet \</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1</td>
<td>71</td>
<td>47</td>
<td>95.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Completion Depth: 30'

Date: 3-31-92

Water Observations:

JONES AND NEISE, INC.

153702
Log of Boring

Project: Fayette Power Plant Disposal Area
Location: LaGrange, Texas
JNO26412.1

Intermittent

<table>
<thead>
<tr>
<th>Depth</th>
<th>Sample</th>
<th>Core Drilled/Soapstone</th>
<th>Unit Weight</th>
<th>Unit. Type</th>
<th>Unit. Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td>Sandy Fat Clay, Stiff, Very Dark Gray, Moist (CH) with organics and silty sand seams</td>
</tr>
<tr>
<td>0</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td>Lean Clay, Very Stiff, Light Gray and White, Moist (CL) with calcium deposits</td>
</tr>
<tr>
<td>10</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td>Lean Clay with Sand, Very Stiff, Pale Yellow, Dry (CL) with calcium deposits</td>
</tr>
<tr>
<td>20</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td>Sandy Lean Clay, Very Stiff, Light Gray and Olive Yellow, Moist (CL)</td>
</tr>
</tbody>
</table>

Completion Depth: 30'
Date: 4-9-92
Water Observations: Water encountered at 24' during drilling / water at 9' after 24 hours

Continued on next page
<table>
<thead>
<tr>
<th>Depth</th>
<th>Type</th>
<th>Core Drilled</th>
<th>Core Recovered</th>
<th>Liquid Limit</th>
<th>Plasticity Index</th>
<th>S.F.T.</th>
<th>F.P.</th>
<th>Water Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Sandy Lean Clay, Very Stiff, Light Gray and Olive Yellow, Moist (CL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F.P.</td>
<td></td>
</tr>
</tbody>
</table>

F.P. = Pocket Penetrometer
S.F.T. = Standard Penetration Test

Boring grouted with bentonite/grout mix
Log of Boring

Project
- **Fayette Power Plant Disposal Area**, LaGrange, Texas

Number
- B-8

Location
- N 760,467 E 2,711,190

STRATUM DESCRIPTION

<table>
<thead>
<tr>
<th>Depth</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Intermittent</td>
<td>GRAVELLY FAT CLAY WITH SAND, Very Stiff, Reddish Brown, Moist (CH)</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>CLAYEY GRAVEL, Very Dense, Light Gray and Red, Dry (GC)</td>
</tr>
<tr>
<td>4.0+</td>
<td></td>
<td>CLAYEY SAND, Very Dense, Reddish Yellow, Dry (SC)</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>SANDY FAT CLAY, Very Stiff, White, Moist (CH)</td>
</tr>
</tbody>
</table>

Completion Depth
- 30 ft on 3-30-92

Water Observations
- NO WATER ENCOUNTERED DURING DRILLING / NO 24 HOUR READINGS OBTAINED

Additional Notes
- Continued on next page
Log of Boring

Number: B-8
Location: N 760,467 E 2,711,190

Project
- **Fayette Power Plant Disposal Area**
- **LaGrange, Texas**
- JNO26412.1

STRATUM DESCRIPTION

<table>
<thead>
<tr>
<th>Depth</th>
<th>Type</th>
<th>Core Drilled/ Recovered Ft.</th>
<th>moisture content</th>
<th>Unit Dry Weight</th>
<th>Los/sus. Pt.</th>
<th>Liquid Limit</th>
<th>Plasticity Index</th>
<th>% Passing No. 200 sieve</th>
<th>SPT No. Blow</th>
<th>Density Internal</th>
<th>Standard Penetration Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>30'</td>
<td>SANDY FAT CLAY, Very Stiff, White, Moist (CH)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.P. 4.5'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEAN CLAY WITH SAND, Hard, Light Gray, Dry (CL)</td>
<td></td>
</tr>
</tbody>
</table>

P.P. = Pocket Penetrometer
S.P.T. = Standard Penetration Test
Boring grouted with bentonite/grout mix

Completion Depth: 30'
Date: 3-30-92
Water Observations:

JONES AND NEUSE, INC.
153702
Log of Boring

Project
Fayette Power Plant Disposal Area, LaGrange, Texas

Log Number
E-13

Location
W 760,190 E 2,710,942

STRATUM DESCRIPTION

<table>
<thead>
<tr>
<th>Depth</th>
<th>Stratum Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>P.P. Sandy Fat Clay with Gravel, Stiff, Yellowish Red and Yellowish Brown, Moist to Wet (CH) with organics</td>
</tr>
<tr>
<td>4.5</td>
<td>P.P. Clayey Sand, Dense, Red, Light Gray, and Gray, Dry (SC) with scattered gravel</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SPT</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>P.P. Clayey Sand, Dense, Light Gray, Moist (SC)</td>
</tr>
<tr>
<td>4.5</td>
<td>P.P. Lean Clay, Hard, Light Gray and Brownish Yellow, Dry (CL)</td>
</tr>
</tbody>
</table>

Completion Depth
30'

Date
3-30-92

Water Observations
NO WATER ENCOUNTERED DURING DRILLING / NO 24 HOUR READINGS OBTAINED

Water Middleman
JONES AND HINES, INC.

Log Number
153702
Log of Boring

Number: 8-13
Location: N 750,190 E 2,710,942

Project: Fayette Power Plant Disposal Area
Location: LaGrange, Texas
JNO26412-1

<table>
<thead>
<tr>
<th>Depth</th>
<th>Type</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermittent</td>
<td>LEAN CLAY, Hard, Light Gray and Brownish Yellow, Dry (CL)</td>
</tr>
<tr>
<td></td>
<td>Surface Elevation</td>
<td>382.35</td>
</tr>
<tr>
<td></td>
<td>OSMA Type</td>
<td>Core Drilled/ FOB 365</td>
</tr>
<tr>
<td>P.F. 4.54</td>
<td>FAT CLAY, Hard, Fale Yellow, Moist to Dry (CH)</td>
<td>22.0 62 41 93.6</td>
</tr>
</tbody>
</table>

P.P. = Pocket Penetrometer
S.P.T. = Standard Penetration Test

Boring grouted with bentonite/grout mix
Log of Boring

Location: N 760,002.708 E 2,711,227.595

Type: Intermittent

Surface Elevation: 381.03

STRATUM DESCRIPTION

- **SILTY SAND WITH GRAVEL, Loose, Yellowish Brown, Moist to Dry (SH) with organics**

- **CLAYEY GRAVEL WITH SAND, Medium Dense, Light Brownish Gray and Yellowish Brown, Moist to Dry (SC)**
 - SPT: 40
 - 50/4"
 - Elevation: 390.56

- **CLAYEY SAND, Very Dense, Light Gray, Dry (SC)**
 - Elevation: 381.03

- **SILTY SAND, Very Dense, Light Gray, Moist to Dry (SH)**
 - Elevation: 380.01

- **CLAYEY SAND, Medium Dense, Light Gray, Wet (SC)**
 - Elevation: 379.06

- **FAT CLAY, Hard, Light Gray and Brownish Yellow, Moist (CH)**
 - Elevation: 378.07

Completion Depth: 30'

Date: 3-31-92

Water Observations:

NO WATER ENCOUNTERED DURING DRILLING / DRY AFTER 24 HOURS

JONES AND NEUSE, INC.

Core Drilled Ft:

- **16.8**

SPT:

- **75**

Liquid Limit:

- **56**

Plasticity Index:

- **41.8**

Soil Type:

- **12.5**

Continued on next page
Log of Boring

<table>
<thead>
<tr>
<th>Depth</th>
<th>Soil Type Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2 ft</td>
<td>Fat Clay, Hard, Light Gray and Brownish Yellow, Moist (CH)</td>
</tr>
<tr>
<td>2-3 ft</td>
<td>Lean Clay, Hard, Light Gray, Dry (CL)</td>
</tr>
</tbody>
</table>

STRATUM DESCRIPTION

- **P.P. =** Pocket Penetrometer
- **S.P.T. =** Standard Penetration Test

Boring grouted with bentonite/grout mix
Log of Boring

Number: B-18
Location: N 760,180 E 2,709,738

Project: Fayette Power Plant Disposal Area
Location: LaGrange, Texas
JNO26412.1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P. P.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>FAT CLAY WITH SAND, Firm, Gray, Wet (CH) with scattered gravel</td>
<td>27.5</td>
<td>68</td>
<td>50</td>
<td>69.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>SANDY FAT CLAY, Stiff to Hard, Light Brownish Gray, Moist (CH) with calcareous particles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>FAT CLAY, Hard to Very Stiff, Pale Yellow, Moist (CH) with calcium</td>
<td>21.6</td>
<td>62</td>
<td>42</td>
<td>89.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>CLAYEY SAND, Dense, Light Gray, Moist (SC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>CLAYEY SAND, Very Dense, Light Gray, Moist (SC) with cemented seams</td>
<td>19.0</td>
<td>35</td>
<td>18</td>
<td>43.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50/35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>FAT CLAY, Hard, Pale Yellow and Strong Brown, Dry (CH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion Depth</td>
<td>Date</td>
<td>Water Observations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30'</td>
<td>4-9-92</td>
<td>NO WATER ENCOUNTERED DURING DRILLING / WATER AT 16' AFTER 24 HOURS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JONES AND REESE, INC.

153702
STRATUM DESCRIPTION

P.F. = Pocket Penetrometer
S.P.T. = Standard Penetration Test
Boring grouted with bentonite/grout mix

Log of Boring

Number
B-18

Location
N 760,180 E 2,709,758

Project
Fayette Power Plant Disposal Area
LaGrange, Texas
JNO26412.1

<table>
<thead>
<tr>
<th>Depth (Ft)</th>
<th>Core Drill/Recovered Ft</th>
<th>Volume Drilled</th>
<th>Unit Weigh.</th>
<th>Liquid Limit</th>
<th>Plasticity Index</th>
<th>No. 200 Sieve</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PAT CLAY, Hard, Pale Yellow and Strong Brown, Dry (CH)</td>
</tr>
<tr>
<td>P.F. 4.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Completion Depth
30'

Date
4-9-92

Water Observations

153702

JONES AND HUGH, INC.
Log of Boring

Number: B-20
Location: N 759.963.3649 E 2,710.187.172

Project: Fayette Power Plant Disposal Area, LaGrange, Texas
Borehole: JNO26412.1

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample</th>
<th>Type Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>P.P.</td>
<td>FAT CLAY, Stiff, Very Dark Grayish Brown, Wet to Moist (CH) with organic substance</td>
</tr>
<tr>
<td>2.2</td>
<td>P.P.</td>
<td>FAT CLAY WITH SAND, Very Stiff, Gray, Moist (CH)</td>
</tr>
<tr>
<td>4.5+</td>
<td>P.P.</td>
<td>LEAN CLAY, Very Stiff to Hard, Pale Yellow, Light Gray, and White, Moist (CL) with calcium deposits</td>
</tr>
<tr>
<td>5</td>
<td>P.P.</td>
<td>LEAN CLAY WITH SAND, Hard, Light Gray, Dry (CL)</td>
</tr>
<tr>
<td>2.5</td>
<td>P.P.</td>
<td>CLAYEY SAND, Very Dense, Tight Gray, Moist (SC) with some calcium deposits</td>
</tr>
<tr>
<td>3.7</td>
<td>P.P.</td>
<td>FAT CLAY, Light Gray, Dry (CH)</td>
</tr>
</tbody>
</table>

Completion Depth: 30'
Date: 4-2-92
Water Observations: WATER ENCOUNTERED AT 21' DURING DRILLING / WATER AT 6.5' AFTER 24 HOURS

JONES AND NEISE, INC.
Log of Boring

Project
- Fayette Power Plant Disposal Area
- LaGrange, Texas

Location
- N 759,963.3649
- E 2,710,187.172

Log Information
- Number: B-20
- Depth: 30'
- Date: 4-2-92
- Water Observations:

STRATUM DESCRIPTION

<table>
<thead>
<tr>
<th>Depth</th>
<th>Sample</th>
<th>Type</th>
<th>Core Drillated/Fractured?</th>
<th>Percussion Cortical</th>
<th>Unit Weight</th>
<th>Dry Weight</th>
<th>Liquid Limit</th>
<th>Plasticity Index</th>
<th>Penetration Rate</th>
<th>Hardness</th>
<th>Density/Sp. Gr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4.5+</td>
<td>P.P.</td>
<td>FAT CLAY, Hard, Olive Yellow and Pale Yellow, Moist (CH) with calcium deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

FAT CLAY, Light Gray, Dry (CH)

FAT CLAY, Hard, Olive Yellow and Pale Yellow, Moist (CH) with calcium deposits

P.P. = Pocket Penetrometer
S.P.T. = Standard Penetration Test
Boring grouted with bentonite/grout mix

Notes:
- Core Drillated/ Fractured
- Percussion Cortical
- Unit Weight
- Dry Weight
- Liquid Limit
- Plasticity Index
- Penetration Rate
- Hardness
- Density/Sp. Gr.

Completion Depth: 30'

Date: 4-2-92

JONES AND HEUSE, INC.

153702
Log of Boring

Project: Fayette Power Plant Disposal Area
Location: LaGrange, Texas

Number: B-22
Location: N 759,440 E 2,710,493

STRATUM DESCRIPTION

<table>
<thead>
<tr>
<th>Depth</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>P.P.</td>
<td>SILTY SAND, Very Dark Grayish Brown, Wet (SM)</td>
</tr>
<tr>
<td>0.8</td>
<td>P.P.</td>
<td>SILTY SAND, Yellowish Brown, Wet (SH)</td>
</tr>
<tr>
<td>5</td>
<td>SPT</td>
<td>CLAYEY SAND, Loose, Gray, Yellowish Brown, and Red, Moist (SC)</td>
</tr>
<tr>
<td>16</td>
<td>SPT</td>
<td>FAT CLAY, Hard, Light Gray and Pale Yellow, Dry to Moist (CH)</td>
</tr>
<tr>
<td>4.1</td>
<td>P.P.</td>
<td>LEAN CLAY, Hard, Pale Yellow and Light Gray, Dry (CL) with calcium deposits</td>
</tr>
<tr>
<td>4.5+</td>
<td>P.P.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SPT</td>
<td>CLAYEY SAND, Very Dense, Light Gray, Moist to Wet (SC)</td>
</tr>
<tr>
<td>20</td>
<td>SPT</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SPT</td>
<td></td>
</tr>
</tbody>
</table>

Completion Depth: 30'
Date: 4-2-92
Water Observations: WATER ENCOUNTERED AT 22' DURING DRILLING / WATER AT 1' AFTER 24 HOURS

JONES AND HENSS, INC.

153702
<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>P.P. 1.6</td>
</tr>
<tr>
<td></td>
<td>CLAYEY SAND, Very Dense, Light Gray, Moist to Wet (SC)</td>
</tr>
</tbody>
</table>

STRATUM DESCRIPTION

P.P. = Pocket Penetrometer
S.P.T. = Standard Penetration Test

Boring grouted with bentonite/grout mix
Log of Boring

- **Number:** B-24
- **Location:** N 759.015, 2632 E 2,710.307.930
- **Project:** Fayette Power Plant Disposal Area
- **Latitude:** J026412.1

STRATUM DESCRIPTION

<table>
<thead>
<tr>
<th>Depth</th>
<th>Sample</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>P.P.</td>
<td>F.P. CLAY WITH SAND, Stiff, Dark Grayish Brown, Moist (CH) with organics and calcareous particles</td>
</tr>
<tr>
<td>1.4</td>
<td>P.P.</td>
<td>F.P. CLAY, Very Stiff to Hard, Pale Yellow and Light Gray, Moist to Dry (CH)</td>
</tr>
<tr>
<td>2.4</td>
<td>P.P.</td>
<td>F.P. CLAY, Very Stiff to Hard, Pale Yellow and Light Gray, Moist to Dry (CH)</td>
</tr>
<tr>
<td>4.5+</td>
<td>P.P.</td>
<td>F.P. CLAY, Very Stiff to Hard, Pale Yellow and Light Gray, Moist to Dry (CH)</td>
</tr>
<tr>
<td>5+</td>
<td>P.P.</td>
<td>F.P. CLAY, Very Stiff to Hard, Pale Yellow and Light Gray, Moist to Dry (CH)</td>
</tr>
<tr>
<td>50/2"</td>
<td>SPT</td>
<td>LEAN CLAY, Hard, Pale Yellow, Dry (CL)</td>
</tr>
<tr>
<td>24</td>
<td>SPT</td>
<td>CLAYEY SAND, Very Dense, Light Gray, Moist (SC) with calcium deposits and calcareous nodules</td>
</tr>
<tr>
<td>33</td>
<td>SPT</td>
<td>CLAYEY SAND, Very Dense, Light Gray, Moist (SC) with calcium deposits and calcareous nodules</td>
</tr>
<tr>
<td>50/4"</td>
<td>SPT</td>
<td>CLAYEY SAND, Very Dense, Light Gray, Moist (SC) with calcium deposits and calcareous nodules</td>
</tr>
</tbody>
</table>

- **Completion Depth:** 28.5'
- **Date:** 4-3-92
- **Water Observations:** WATER ENCOUNTERED AT 239 DURING DRILLING / DRY AFTER 24 HOURS

JONES AND KRESE, INC.

153702
<table>
<thead>
<tr>
<th>Depth</th>
<th>Type</th>
<th>STRATUM DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td>CLAYEY SAND, Very Dense, Light Gray, Moist (SC) with calcium deposits and calcareous particles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.P. = Pocket Penetrometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S.P.T. = Standard Penetration Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boring grouted with bentonite/grout mix</td>
</tr>
</tbody>
</table>

Completion Depth: 28.5'
Date: 4-3-92

JONES AND NEUSE, INC.

153702
Log of Boring No. 112
Ash and Sludge Disposal Area
Fayette Power Project
Lagrange, Texas

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Symbol</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td></td>
<td>Tan silty fine sand with gravel and roots</td>
</tr>
<tr>
<td>10-20</td>
<td></td>
<td>Very stiff gray and tan sandy clay with gravel</td>
</tr>
<tr>
<td>20-30</td>
<td></td>
<td>White carbonate deposit with clay seams</td>
</tr>
<tr>
<td>30-40</td>
<td></td>
<td>Hard light gray and tan clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with ferrous nodules to 11'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- slickened, 13' to 21'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- blocky, 18' to 23'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- red, 21' to 23'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- light gray, red and tan, 23' to 27.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- tan and light gray, 27.5' to 31'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with ferrous deposits, 27.5' to 28.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with silty clay layer, 30.5' to 31'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- tan below 31'</td>
</tr>
<tr>
<td>40-50</td>
<td></td>
<td>Light gray and tan silty fine sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with tan clay seams to 34'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with sandy clay seams below 34.5'</td>
</tr>
<tr>
<td>50-60</td>
<td></td>
<td>Light gray clayey sand to very sandy clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with light gray silty fine sand seams</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with 1" sandstone seams below 40.5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with sandy clay seams below 43'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ref/6'</td>
</tr>
<tr>
<td>60-70</td>
<td></td>
<td>Hard light gray and tan gray carbonate silty clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with calcareous deposits at 44'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blue clayey sand</td>
</tr>
<tr>
<td>70-80</td>
<td></td>
<td>Hard brown and light gray calcareous clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- slickened to 62'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- tan and light gray below 62'</td>
</tr>
<tr>
<td>80-90</td>
<td></td>
<td>Hard light gray clay, slickened with red streaks and calcareous nodules</td>
</tr>
<tr>
<td>90-100</td>
<td></td>
<td>Hard light gray and tan calcareous clay</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borehole Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No.: 0183-0071</td>
</tr>
<tr>
<td>Completion Depth: 76.5'</td>
</tr>
<tr>
<td>Date: April 22, 1983</td>
</tr>
</tbody>
</table>

| Sampler: 3" thin-walled tube and 2" split-barrel |
| Drilling Method: Wet Rotary |

Strength Legend
- Unconfined Compression
- Unconsolidated-Unconfined Triaxial Compression
- Miniature Vane (open symbols above indicate remolded tests)
- Torvane
- Hard Penetrometer
LOG OF BORING NO. 116
ASH AND SLUDGE DISPOSAL AREA
FAYETTE POWER PROJECT
LAGRANGE, TEXAS

<table>
<thead>
<tr>
<th>DEPTH FT</th>
<th>SYMBOL</th>
<th>LOCATION: N 761.250; E 2,711.250</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>SURFACE EL 391.4'</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Brown and gray sandy clay</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>-with sand layers below 13'</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLOWS PER FT % PASSING NO. 4 IN.</th>
<th>UNIT WET WT LB PER FT</th>
<th>WATER CONTENT %</th>
<th>UNDRAINED SHEAR STRENGTH KIPS PER 50 FT KILOPASCALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Plastic Limit</td>
<td>Natural Limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Liquid Limit</td>
</tr>
</tbody>
</table>

STRENGTH LEGEND
- Unconfined Compression
△ Unconsolidated-Undrained Triaxial Compression
◆ Miniature Vane
(open symbols above indicate remolded tests)
@ Torvane
○ Hand Penetrometer

JOB NO.: 0183-0071
COMPLETION DEPTH: 20.0'
DATE: April 27, 1983

SAMPLER: Auger
DRILLING METHOD: Auger

PLATE 17
LOG OF BORING NO. 126
ASH AND SLUDGE DISPOSAL AREA
FAYETTE POWER PROJECT
LAGRANGE, TEXAS

LOCATION: N 760°750' E 2°711.250

DEPT FT SYMBOL SAMPLES

SURFACE EL 394.6'

Coarse gravel and sandy clay

5

Gray and brown sandy clay

10 - With sand layers below 13'

20

30

40

50

JOB NO.: 0183-0071
COMPLETION DEPTH: 20.0'
DATE: April 27, 1983

SAMPLER: Auger
DRILLING METHOD: Auger

STRENGTH LEGEND
• Unconfined Compression
△ Unconsolidated-Undrained Triaxial
Compression
◆ Miniature Vane
(often symbols above indicate remolded tests)
♦ Torvane
□ Hand Penetrometer

PLATE 27
LOG OF BORING NO. 127
ASH AND SLUDGE DISPOSAL AREA
FAYETTE POWER PROJECT
LAGRANGE, TEXAS

<table>
<thead>
<tr>
<th>DEPTH FT</th>
<th>SYMBOL</th>
<th>SAMPLES</th>
<th>LOCATION: N 760.900; E 2,709.900</th>
<th>WATER CONTENT, %</th>
<th>UNDRAINED SHEAR STRENGTH</th>
<th>KIPS PER SQ FT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SURFACE EL 372.0'</td>
<td>Plastic Limit</td>
<td>Natural Limit</td>
<td>SIkip SPer SQ FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brown sandy clay with sand seams</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JOB NO.: 0193-0071
COMPLETION DEPTH: 20.0'
DATE: April 27, 1983

SAMPLE: Auger
DRILLING METHOD: Auger

STRENGTH LEGEND
- Unconfined Compression
- Unconsolidated-Undrained Triaxial Compression
- Miniature Vane (open symbols above indicate remolded tests)
- Torsvane
- Hand Penetrometer

PLATE 28
LOG OF BORING NO. 128
ASH AND SLUDGE DISPOSAL AREA
FAYETTE POWER PROJECT
LAGRANGE, TEXAS

<table>
<thead>
<tr>
<th>DEPTH (FT)</th>
<th>SYMBOL</th>
<th>LOCATION: N 760,500; E 2,710,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLES

- **SURFACE EL 363.5’**
 - Very Stiff dark gray sandy clay with gravel
 - With roots to 2’
 - Stiff below 2’
 - Gray below 3.5’
 - Hard gray sandy clay (Caliche)

- **10’**
 - Very stiff light gray and tan calcareous silty clay
 - With calcareous deposits to 10’
 - With calcareous nodules below 10’
 - With silt partings below 13’

- **20’**
 - Very stiff light gray and tan clay
 - With sand seams to 18.5’
 - With calcareous silty clay seams to 19’

- **30’**
 - Light gray and tan calcareous silty fine sand with calcareous sandstone seams
 - Ref 6”

- **40’**
 - Hard light gray and tan calcareous nodules with ferrous and calcareous nodules
 - With silt fine to medium sand seams to 28’

- **50’**
 - Hard light gray and tan calcareous silty clay
 - With silt pockets to 46’
 - Light gray, 46’ to 52.5’

- **60’**
 - Light gray and tan below 52.5’
 - With calcareous nodules, 53’ to 56’
 - Slickensided below 58’

- **70’**
 - With calcareous nodules below 66’

WATER CONTENT, %

<table>
<thead>
<tr>
<th>Plastic Limit</th>
<th>Natural Limit</th>
<th>Water Content, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

UNDRAINED SHEAR STRENGTH

<table>
<thead>
<tr>
<th>KIPS PER SQ FT</th>
<th>KILOPASCALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2.2</td>
</tr>
<tr>
<td>1.0</td>
<td>4.4</td>
</tr>
<tr>
<td>1.5</td>
<td>6.6</td>
</tr>
<tr>
<td>2.0</td>
<td>8.8</td>
</tr>
<tr>
<td>2.5</td>
<td>11.0</td>
</tr>
</tbody>
</table>

STRENGTH LEGEND
- *Unconfined Compressive Strength*
- *Unconfined-Undrained Triaxial Compression*
- *Miniature Vane Test (open symbols above indicate remolded tests)*
- *Torvane*
- *Hand Penetrometer*

JOB NO.: 0183-0071
COMPLETION DEPTH: 69.5’
DATE: April 22, 1983

SAMPLE: 3” thin-walled tube and 2” split-barrel

DRILLING METHOD: Wet Rotary

PLATE 29
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Symbol</th>
<th>Samples</th>
<th>Bower per ft</th>
<th>Plastic Limit</th>
<th>Natural Limit</th>
<th>Liquid Limit</th>
<th>Undrained Shear Strength (Kips per sq. ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>Surface EL 364.0'</td>
<td>Gray silty fine sand with roots and gravel below 0'</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>KILOPASCALS: 10</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Very stiff light gray and tan clay with calcareous deposits and roots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Very stiff light gray and tan sandy clay with calcareous and ferrous nodules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Light gray and tan silty fine sand with calcareous and ferrous nodules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Very stiff light gray and tan sandy clay with calcareous and ferrous nodules and clay seams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.9</td>
</tr>
</tbody>
</table>

Location: N 760.500; E 2,710.492

Job No.: 0163-0071

Completion Depth: 19.0'

Date: April 28, 1983

Sampler: 3" thin-walled tube

Drilling Method: Wet Rotary

Strength Legend:
- Unconfined Compression
- Unconsolidated-Undrained Triaxial Compression
- Miniature Vane Test (open symbols above indicate remolded tests)
- Torsion Test
- Hand Penetrometer

Plate: 30
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample Description</th>
<th>Water Content</th>
<th>Undrained Shear Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOCATION: N 760,300; E 2,711,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Surface EL 386.6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tan silty fine sand and gravel</td>
<td>Plastic Limit</td>
<td>0.5 1.0 1.5 2.0 2.5</td>
</tr>
<tr>
<td>20</td>
<td>Stiff gray, light gray and tan sandy clay</td>
<td>Natural</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>- With gravel to 3'</td>
<td>Liquid Limit</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>- Very stiff, 4' to 6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>- Hard below 6'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>- Light gray and tan below 11'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>- With clayey sand and sand seams, 11' to 13.5'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>- With clay pockets below 13.5'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Hard light gray and tan clay with clayey sand and silty sand seams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Hard light gray calcareous silty clay with calcareous deposits (Caliche)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Very stiff light gray and tan silty clay with silty seams and calcareous deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Very stiff light gray and tan very sandy clay with ferrous nodules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Hard light gray and tan silty clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Light gray and tan clayey sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Very stiff light gray and tan silty clay with sandstone seams at 49'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Light gray silty fine sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Very stiff tan and light gray clay with calcareous deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Very stiff light gray and tan sandy clay with calcareous deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Light gray and tan silty fine sand with calcareous and sandy clay seams 50/7'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Hard blue calcareous silty clay - clay layer to 67'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Hard blue calcareous silty clay, slickensided - brown, 73' to 77'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>- tan and gray below 77'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>Hard gray and tan clay with calcareous nodules</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JOB NO.: 0193-0071
COMPLETION DEPTH: 89.0'
DATE: April 23, 1983

SAMPLER: 3" thin-walled tube and 2" split-barrel
DRILLING METHOD: Wet Rotary

STRENGTH LEGEND
- Unconfined Compression
- Unconsolidated-Undrained Triaxial Compression
- Miniature Vane
- Cone Penetrometer

(open symbols above indicate remolded tests)

PLATE 31
LOG OF BORING NO. 137
ASH AND SLUDGE DISPOSAL AREA
FAYETTE POWER PROJECT
LAGRANGE, TEXAS

LOCATION: N 760,000, E 2,711,010

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>SYMBOL</th>
<th>SAMPLES</th>
<th>BLOWS PER FT</th>
<th>UNDRAINED SHEAR STRENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>% PASSING 2"</td>
<td>KIPS PER SQ FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 40 60</td>
<td>0.5 1.0 1.5 2.0 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KILOPASCALS</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>25 50 75 100 125</td>
</tr>
</tbody>
</table>

SURFACE EL 376.4'

Firm light gray and tan sandy clay
- with sand seams to 1'
- with roots and organic matter to 2'
- hard, 1' to 9'

- with clayey sand seams below 7'
- with silty sand seams below 8'
- very stiff below 9'

Light gray clayey sand with sandy clay,
clay and sand seams

Hard light gray and tan sandy clay

44

4.6

4.3

4.0

JOB NO.: 0183-0071
COMPLETION DEPTH: 19.0'
DATE: April 28, 1983

DEPTH TO WATER IN BORING:
CAVED AT:
DATE:

SAMPLER: 3" thin-walled tube
2" split-barrel

DRILLING METHOD: Wet Rotary

STRENGTH LEGEND
- Unconfined Compression
- Unconsolidated-Undrained Triaxial Compression
- Miniature Vane
(open symbols above indicate remolded tests)
- Torvane
- Hand Penetrometer

PLATE 38
LOG OF BORING NO. 139
ASH AND SLUDGE DISPOSAL AREA
FAYETTE POWER PROJECT
LAGRANGE, TEXAS

LOCATION: N 759,750; E 2,710,250

DEPTH, FT SYMBOL SAMPLES

SURFACE EL 355.5'

3 Very stiff dark gray and gray sandy clay
 -with gravel and roots
 -gray and tan below 3.5'

5 Very stiff light gray and tan clay
 -hard with calcareous silt seams below
 -with red ferrosus seam at 9'

15 Light gray and tan calcareous sandy clay
 -with calcareous deposits to 13.5'
 -with silty sand seams below 14'
 Ref/5'

20 Light gray silty fine sand with seams of
 sandy clay, clayey sand and calcareous
 deposits

BLOWS PER FT % PASSING % MEDIAN
NO 200 SIEVE UNDRAINED WEIGHT CUBIC FT

50 40 60 Plastic Natural Liquid
 0.5 1.0 1.5 2.0 2.5

UNDRAINED SHEAR STRENGTH

KIPS PER SQ FT

0.5 1.0 1.5 2.0 2.5

KILOPASCALS

25 50 75 100 125

PLATE 40
LOG OF BORING NO. 147
ASH AND SLUDGE DISPOSAL AREA
FAYETTE POWER PROJECT
LAGRANGE, TEXAS

DEPTH (FT)	SYMBOL	LOCATION: N 759,250; E 2,710,750
		SURFACE EL 167.7’

Brown and gray sandy clay with sand layers

BLOWS PER FT	% PASSING NO. 200 SCREEN	UNDREHYDRAULIC RETENTION	WATER CONTENT, %	UNDRAINED SHEAR STRENGTH
		Plastic Limit	Natural	Liquid Limit

					0.5	1.0	1.5	2.0	2.5
					25	50	75	100	125

JOB NO.: 0183-0071
COMPLETION DEPTH: 20.0’
DATE: April 27, 1993

SAMLER: Auger

DRILLING METHOD: Auger

STRENGTH LEGEND
● Unconfined Compression
▲ Unconsolidated-Unstrained Triaxial Compression
◆ Miniature Vane
(Open symbols above indicate remolded tests)
★ Torane
◎ Hand Penetrometer

PLATE 48
<table>
<thead>
<tr>
<th>DEPTH, FT.</th>
<th>SAMPLE NO.</th>
<th>SYMBOL</th>
<th>DESCRIPTION OF STRATA</th>
<th>REPORT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>Black, fat CLAY, very stiff, w/roots. CH</td>
<td>P3.25</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td>Tan and light brown, fat CLAY, hard, w/numerous calcareous deposits and iron stains. CH</td>
<td>P4.5+</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td></td>
<td>Light gray, lean CLAY w/sand, very stiff, w/numerous calcareous deposits, more sand w/depth. CL</td>
<td>P3.75</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td></td>
<td></td>
<td>P4.5+</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td></td>
<td></td>
<td>P4.5+</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td></td>
<td></td>
<td>P3.75</td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td></td>
<td>Tan and gray, fat CLAY, hard, blocky, calcareous. CH</td>
<td>N47</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td></td>
<td>Light gray, sandy SILT, very dense, slightly calcareous. ML</td>
<td>N53</td>
</tr>
</tbody>
</table>
Light gray, sandy Silt, very dense, slightly calcareous. ML (Continued)

Tan and light gray, fat CLAY, hard, blocky, w/ scattered calcareous deposits. CH

Gray, fat CLAY, hard, blocky, slickensided, w/red stains. CH

- moist, w/gray and red streaks below 59.5 ft.

Tan and gray, fat CLAY, hard, blocky, slickensided. CH
Tan and gray, fat CLAY, hard, blocky, slickensided. CH (Continued)

Gray, fat CLAY, hard, blocky, calcareous. CH

Total depth of boring, 114.5 ft.

NOTE: Drilling fluid was used in advancing the boring between sampling depths.
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample</th>
<th>No. Blows/foot</th>
<th>OVM</th>
<th>Reading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NR</td>
<td>10</td>
<td></td>
<td></td>
<td>NR</td>
</tr>
<tr>
<td>11</td>
<td>NR</td>
<td>50/3</td>
<td></td>
<td></td>
<td>SILT (ML): brown, with trace fine-grained sand, dry, no plasticity</td>
</tr>
<tr>
<td>11</td>
<td>SILT (ML)</td>
<td>6</td>
<td></td>
<td></td>
<td>SANDY GRAVEL (SP): pink to tan, graded, dry</td>
</tr>
<tr>
<td>12</td>
<td>SILT (ML)</td>
<td>7</td>
<td></td>
<td></td>
<td>Large cobbles (2" diameter)</td>
</tr>
<tr>
<td>13</td>
<td>SILT (ML)</td>
<td>13</td>
<td></td>
<td></td>
<td>SANDY CLAY (CL): gray with red, fine-grained, well sorted, some organic matter, medium stiff</td>
</tr>
<tr>
<td>16</td>
<td>SILT (ML)</td>
<td>16</td>
<td></td>
<td></td>
<td>Stiffens at 10’, grades to medium-grained</td>
</tr>
<tr>
<td>20</td>
<td>SILT (ML)</td>
<td>20</td>
<td></td>
<td></td>
<td>Iron oxide stains at 12’</td>
</tr>
<tr>
<td>40</td>
<td>SILT (ML)</td>
<td>40</td>
<td></td>
<td></td>
<td>Moisture at 13’</td>
</tr>
<tr>
<td>27</td>
<td>CLAY (CL)</td>
<td>27</td>
<td></td>
<td></td>
<td>CLAY (CL): gray, high plasticity, stiff</td>
</tr>
<tr>
<td>17</td>
<td>CLAY (CL)</td>
<td>17</td>
<td></td>
<td></td>
<td>SAND (SC): gray, trace clay, fine- to medium-grained, well sorted, wet</td>
</tr>
<tr>
<td>30</td>
<td>CLAY (CL)</td>
<td>30</td>
<td></td>
<td></td>
<td>CLAY (CL): gray, high plasticity, stiff</td>
</tr>
<tr>
<td>22</td>
<td>CLAY (CL)</td>
<td>22</td>
<td></td>
<td></td>
<td>Lenses (1.5") of moist sand at 18.5’ - 19’</td>
</tr>
<tr>
<td>14</td>
<td>CLAY (CL)</td>
<td>14</td>
<td></td>
<td></td>
<td>Shelby tube sample</td>
</tr>
<tr>
<td>15</td>
<td>CLAY (CL)</td>
<td>15</td>
<td></td>
<td></td>
<td>CLAY (CL): light gray with tan, high plasticity, stiff</td>
</tr>
<tr>
<td>25</td>
<td>CLAY (CL)</td>
<td>25</td>
<td></td>
<td></td>
<td>SANDY CLAY (CL): gray and tan, calcareous, very stiff</td>
</tr>
<tr>
<td>39</td>
<td>CLAY (CL)</td>
<td>39</td>
<td></td>
<td></td>
<td>Shelby tube sample</td>
</tr>
<tr>
<td>DEPTH (feet)</td>
<td>SAMPLES</td>
<td>OVM Reading</td>
<td>DESCRIPTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BLows/No.</th>
<th>Sample (feet)</th>
<th>Sample (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>28</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>24</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>24</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>23</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>21</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

Sample 62'-68'

SILTY CLAY (CL): gray and tan, iron oxide and calcareous nodules, stiff, dry

Shelby tube sample

CLAY (CL): tan, iron oxide stains, high plasticity, very stiff, dry

SILTY CLAY (CL): tan, blocky cleavage, low plasticity, trace moisture
Red/gray striations beginning at 48.5'

Sample 52.5'-56'

SAND with CLAY (SC): greenish gray, trace Fe stains, medium plasticity, fine-grained, well sorted

Grab Sample 36'-38'

CLAY (CL): dark green, blocky cleavage, low plasticity, dry, very stiff
Transition to dark reddish brown with green mottles at 62.5'
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Samples</th>
<th>Blows/ Foot</th>
<th>OVM Reading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>Same low plasticity clay, dark green with well mottled green/red calcareous nodules</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>CLAY (CL): hard blue, high plasticity, very stiff, dry</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>SILTY SAND (SM): blue-green, medium dense, some moisture, very fine, well sorted ~50% silt</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>Local cemented lenses (1/4") at 86'</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td>SANDY CLAY (CL): blue-green, moist, very fine, well sorted, stiff</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>SAND (SW): loose, saturated, fine-grained. Poor recovery</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>SANDY CLAY (CL): fine-grained, stiff</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Depth: 93'</td>
</tr>
</tbody>
</table>

Bentonite
20/40 Grade Silica Sand
2" Sch-40 PVC
0.010" Slotted Screen
PROJECT: LCRA FPP Combustion Byproducts Landfill (CBL) Expansion Area

BORING LOCATION: West of Plant Entrance Road

DRILLING CONTRACTOR: Vortex Drilling, Inc.

DRILLING METHOD: Hollow Stem Auger

DRILLING EQUIPMENT: B-59 Mobile Drill

SAMPLING METHOD: 2.5' Split Spoon, Continuous

HAMMER WEIGHT: 140 lbs

DROP: 18"

DATE STARTED: 5/23/11
DATE FINISHED: 5/23/11

TOTAL DEPTH (ft.): 52.5

DEPT TO WATER ATD:

CASING:

SCREEN INTERVAL (ft.): 41'-51'

GROUNDSURFACE ELEVATION AND DATUM:

WELL CONSTRUCTION DESCRIPTION

<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>SAMPLES</th>
<th>OVM</th>
<th>READING</th>
<th>NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-51'</td>
<td></td>
<td></td>
<td></td>
<td>Surface Elevation:</td>
</tr>
<tr>
<td>0-51'</td>
<td></td>
<td></td>
<td></td>
<td>Concrete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bentonite Pellets</td>
</tr>
</tbody>
</table>

DESCRIPTION

- **SAND (SC):** light gray to brown, dry, loose, moderately well sorted, some gravel, medium-grained, ~90% sand, ~10% gravel
- **Silty Clay (CL):** light gray, red mottling, ~90% sand, ~10% silt
- **Clayey Sand (SC):** light gray, red mottling, stiff, dry, quartz, ~90% sand, ~10% clay
- **Sandy Clay (CL):** pale greenish gray, interbedded with spans of light gray sand, ~50% clay, ~50% sand
- **Sand (SM):** light gray, fine-grained sand, loose, dry, quartz, ~95% sand, ~5% clay
- **Sandy Clay (CL):** light gray, some reddish yellow seams, ~75% clay, ~25% sand
- **Clay (CL):** light gray, iron oxide staining, silt partings, moist, stiff, low plasticity, ~95% clay
- **Clayey Sand (SC):** light gray to red sand, medium-grained, moist, ~75% sand, ~25% clay
- Black organic seams in clay at 14.5' 15', moist, yellowish red to gray
- Increase of sand content, dry, ~75% clay, ~25% sand
- **Clay (CL):** yellowish red to gray mottled clay, stiff to very stiff, moist
- Slickensides at 29', 45% fractured plane
Same clay as above
Increase silt at 32' ~85% clay, ~15% sand

Same, dry, blocky with increased silt

Same silt seam at 37" (1" thick), dry, soft

Silty Sand (SM): light gray, quartz, soft, moderately well sorted, moist, medium-grained, minor black grains, 100% sand

Increase clay at 44' to 45'

Moist at 45'

Clay (CL): yellow red to gray, wet, stiff

Sand (SW): gray, medium-grained, moist to damp

Wet at 49'

Clay (CL): yellow to gray, wet, stiff

Total Depth: 52.5'
Log of Well No. CBL - 302 I

PROJECT: LCRA FPP Combustion Byproducts Landfill (CBL) Expansion Area

BORING LOCATION: South of CBL, West of ditch line

DRILLING CONTRACTOR: Vortex Drilling, Inc.

DRILLING METHOD: Hollow Stem Auger

DRILLING EQUIPMENT: B-59 Mobile Drill

SAMPLING METHOD: 2.5' Split Spoon

HAMMER WEIGHT: 140 lbs **DROP:** 18" **DESCRIPTION**

NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.

Surface Elevation:

- **Sample No. 15:** CLAYEY SAND (SC): light green, ~80% sand, ~20% clay, dry to moist
- **Sample No. 16:** Increasing clay content with depth

- **Sample No. 17:** SANDY CLAY (CL): medium brown to gray with iron oxide stain (red), mottled, dry from gravel at 30', same sandy clay, ~80% clay, ~15% sand, ~15% gravel, moist roots

- **Sample No. 5:** Color change to light gray to white, calcareous white with green mottling, moist, plastic, organic material, increasing clay with depth

- **Sample No. 10:** CLAYEY SAND (SC): gray, medium gray, dry, loose, medium-grained

- **Sample No. 12:** SANDY CLAY (CL): light gray with white mottling calcareous

- **Sample No. 15:** SILT (ML): light gray, dry, loose to firm, moist, ~90% silt, ~10% clay

- **Sample No. 13:** SANDY CLAY (CL): ~50% clay, ~50 sand, moist, plasticity

DEPTH (ft.):

- **50/3":** CLAYEY SAND (SC)
- **50/5":** SANDY CLAY (CL)
- **50/5":** SILT (ML)
- **50/5":** SANDY CLAY (CL)
- **50/5":** SANDY CLAY (CL)

GROUNDS SURFACE ELEVATION AND DATUM:

DATE FINISHED: 5/24/11

TOTAL DEPTH (ft.): 25.0

SCREEN INTERVAL (ft.): 0-14'

Casing: 2" Sch-40 PVC

Boring Location: South of CBL, West of ditch line

Drilling Location: Geomatrix Consultants

Project No: 01494000.004

Date Started: 5/24/11

Date Finished: 5/24/11

Responsible Professional: Randy Beyer, P.G.

Reg. No.: 5468

Well Construction Details and/or Drilling Remarks:

- **Cement**
- **2" Sch-40 PVC Riser**
- **Bucket Sample (8' - 12') collected from auger cuttings**
- **Bentonite**
- **8/16 Grade Silica Sand**
- **2" Sch-40 PVC 0.010" Slotted Screen**

Total Depth: 25 feet
Log of Well No. CBL - 303 U

PROJECT: LCRA FPP Combustion Byproducts Landfill (CBL) Expansion Area

BORING LOCATION: South of CBL

DRILLING CONTRACTOR: Vortex Drilling, Inc.

DATE STARTED: 5/24/11

DATE FINISHED: 5/24/11

DRILLING METHOD: Hollow Stem Auger

TOTAL DEPTH (ft.): 27.5

SCREEN INTERVAL (ft.): 10'-20'

DRILLING EQUIPMENT: B-59 Mobile Drill

DEPTH TO WATER ATD: 0-10'

SAMPLING METHOD: 2.5' Split Spoon

LOGGED BY: Randy Beyer, P.G.

HAMMER WEIGHT: 140 lbs
DROP: 18"
RESponsible professional: Randy Beyer, P.G.
REG. NO.: 5468

DESCRIPTION

<table>
<thead>
<tr>
<th>Sample</th>
<th>Blows/Foot</th>
<th>SURFACE ELEVATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>7</td>
<td></td>
<td>GRAVELLY SAND (SP): tan, dry, 1-2" diameter gravel</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td></td>
<td>CLAYEY SAND (SC): light gray, iron oxide staining, dry, firm medium-grained sand, ~75% sand, ~25% clay</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td></td>
<td>Increasing sand content to ~90%, ~10% clay, some white grains and organic matter</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td></td>
<td>SAND (SM): light brown, loose, 100% quartz sand, moist</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td></td>
<td>Damp to slightly wet at 13' - 14'</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td></td>
<td>Increase clay content to 10% with depth</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td></td>
<td>SILTY CLAY (CL): light gray with iron oxide/Red mottling, plastic, moist, soft, ~90% clay, ~10% silt, interbedded with layers of higher sand content (25%)</td>
</tr>
</tbody>
</table>

Total Depth: 27.5'
Log of Boring No. CBL - 305 B

ELEVATION AND DATUM:

DATE STARTED: 5/26/11
DATE FINISHED: 5/31/11

LOGGED BY: Randy Beyer, P.G.

RESPONSIBLE PROFESSIONAL: Randy Beyer, P.G.

Reg. No. 5468

PROJECT: LCRA FPP Combustion Byproducts Landfill (CBL) Expansion Area

BORING LOCATION: West of Cell Expansion Area

DRILLING CONTRACTOR: Vortex Drilling, Inc.

DRILLING METHOD: Hollow Stem Auger

DRILLING EQUIPMENT: B-59 Mobile Drill / B6I HDX

SAMPLING METHOD: 2.5' Split Spoon

HANGER WEIGHT: 140 lbs
DROP: 18"

TOTAL DEPTH (ft.): 0.0
MEASURING POINT: Water

DATE STARTED: 5/26/11
DATE FINISHED: 5/31/11

SAMPLES

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Sample No.</th>
<th>Sample Size</th>
<th>Sample Foot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
<td>5/5</td>
<td>Caliche Road base</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td></td>
<td>5/5</td>
<td>CLAY (CL): TOPSOIL, dark brown, sandy clay</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td></td>
<td>5/5</td>
<td>SILTY CLAY (CL): yellow to gray, iron oxide staining, hard, dry, low plasticity, homogenous, ~95% clay, ~5% silt</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td></td>
<td>5/5</td>
<td>CLAYEY SAND (SC): light gray, firm, moist, minor iron oxide staining, moderately cementation, homogenous, very fine-grained, quartz, ~90% sand, ~10% clay</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td></td>
<td>5/5</td>
<td>SILTY CLAY (CL): same as 5.0' - 10.8'</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td></td>
<td>5/5</td>
<td>SANDY with CLAY (SC): yellow to tan, dry hard cementation, homogenous, very fine-grained, ~95% sand, ~5% clay</td>
</tr>
<tr>
<td>4-14</td>
<td>17</td>
<td></td>
<td></td>
<td>Loose at 15' - 16.5'</td>
</tr>
<tr>
<td>14-17</td>
<td>17</td>
<td></td>
<td>50/5</td>
<td>Firm at 16.5' - increasing clay to ~20%, moist, iron oxide stains</td>
</tr>
<tr>
<td>15-18</td>
<td>17</td>
<td></td>
<td>50/5</td>
<td>Trace limestone fragments 20' - 22'</td>
</tr>
<tr>
<td>23-25</td>
<td>17</td>
<td></td>
<td>50/5</td>
<td>Abundant limestone fragments at 22.5-23.5', coarse gravel, dry, loose, poorly sorted</td>
</tr>
<tr>
<td>26-30</td>
<td>17</td>
<td></td>
<td>50/5</td>
<td>CLAY with SAND (CL): yellowish tan, very stiff, homogenous, iron oxide staining, ~95% clay, ~5% silt</td>
</tr>
</tbody>
</table>

MEASURING POINT:

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Size</th>
<th>Sample Foot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/5</td>
<td></td>
<td>Caliche Road base</td>
</tr>
<tr>
<td>2</td>
<td>5/5</td>
<td></td>
<td>CLAY (CL): TOPSOIL, dark brown, sandy clay</td>
</tr>
<tr>
<td>3</td>
<td>5/5</td>
<td></td>
<td>SILTY CLAY (CL): yellow to gray, iron oxide staining, hard, dry, low plasticity, homogenous, ~95% clay, ~5% silt</td>
</tr>
<tr>
<td>4-14</td>
<td>5/5</td>
<td></td>
<td>CLAYEY SAND (SC): light gray, firm, moist, minor iron oxide staining, moderately cementation, homogenous, very fine-grained, quartz, ~90% sand, ~10% clay</td>
</tr>
<tr>
<td>15-17</td>
<td>5/5</td>
<td></td>
<td>SILTY CLAY (CL): same as 5.0' - 10.8'</td>
</tr>
<tr>
<td>18-20</td>
<td>5/5</td>
<td></td>
<td>SANDY with CLAY (SC): yellow to tan, dry hard cementation, homogenous, very fine-grained, ~95% sand, ~5% clay</td>
</tr>
<tr>
<td>21-25</td>
<td>5/5</td>
<td></td>
<td>Loose at 15' - 16.5'</td>
</tr>
<tr>
<td>26-30</td>
<td>5/5</td>
<td></td>
<td>Firm at 16.5' - increasing clay to ~20%, moist, iron oxide stains</td>
</tr>
<tr>
<td>31-34</td>
<td>5/5</td>
<td></td>
<td>Trace limestone fragments 20' - 22'</td>
</tr>
<tr>
<td>35-38</td>
<td>5/5</td>
<td></td>
<td>Abundant limestone fragments at 22.5-23.5', coarse gravel, dry, loose, poorly sorted</td>
</tr>
<tr>
<td>39-42</td>
<td>5/5</td>
<td></td>
<td>CLAY with SAND (CL): yellowish tan, very stiff, homogenous, iron oxide staining, ~95% clay, ~5% silt</td>
</tr>
</tbody>
</table>

REMARKS:

DRILLING METHOD:

DRILLING EQUIPMENT:

DRILLING CONTRACTOR: Vortex Drilling, Inc.

HANGER WEIGHT: 140 lbs
DROP: 18"

SAMPLES

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Size</th>
<th>Sample Foot</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5/5</td>
<td></td>
<td>Caliche Road base</td>
</tr>
<tr>
<td>2</td>
<td>5/5</td>
<td></td>
<td>CLAY (CL): TOPSOIL, dark brown, sandy clay</td>
</tr>
<tr>
<td>3</td>
<td>5/5</td>
<td></td>
<td>SILTY CLAY (CL): yellow to gray, iron oxide staining, hard, dry, low plasticity, homogenous, ~95% clay, ~5% silt</td>
</tr>
<tr>
<td>4-14</td>
<td>5/5</td>
<td></td>
<td>CLAYEY SAND (SC): light gray, firm, moist, minor iron oxide staining, moderately cementation, homogenous, very fine-grained, quartz, ~90% sand, ~10% clay</td>
</tr>
<tr>
<td>15-17</td>
<td>5/5</td>
<td></td>
<td>SILTY CLAY (CL): same as 5.0' - 10.8'</td>
</tr>
<tr>
<td>18-20</td>
<td>5/5</td>
<td></td>
<td>SANDY with CLAY (SC): yellow to tan, dry hard cementation, homogenous, very fine-grained, ~95% sand, ~5% clay</td>
</tr>
<tr>
<td>21-25</td>
<td>5/5</td>
<td></td>
<td>Loose at 15' - 16.5'</td>
</tr>
<tr>
<td>26-30</td>
<td>5/5</td>
<td></td>
<td>Firm at 16.5' - increasing clay to ~20%, moist, iron oxide stains</td>
</tr>
<tr>
<td>31-34</td>
<td>5/5</td>
<td></td>
<td>Trace limestone fragments 20' - 22'</td>
</tr>
<tr>
<td>35-38</td>
<td>5/5</td>
<td></td>
<td>Abundant limestone fragments at 22.5-23.5', coarse gravel, dry, loose, poorly sorted</td>
</tr>
<tr>
<td>39-42</td>
<td>5/5</td>
<td></td>
<td>CLAY with SAND (CL): yellowish tan, very stiff, homogenous, iron oxide staining, ~95% clay, ~5% silt</td>
</tr>
<tr>
<td>DEPTH (feet)</td>
<td>SAMPLES</td>
<td>DESCRIPTION</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>31-32</td>
<td></td>
<td>Increase in silt content to ~20% at 29.5'</td>
<td></td>
</tr>
<tr>
<td>33-34</td>
<td></td>
<td>Silty seam at 32'</td>
<td></td>
</tr>
<tr>
<td>35-36</td>
<td></td>
<td>Calcite and iron nodules in fracture at 34'</td>
<td></td>
</tr>
<tr>
<td>37-38</td>
<td></td>
<td>Increasing calcite/iron nodules in seams at 36'-37.5'</td>
<td></td>
</tr>
<tr>
<td>39-40</td>
<td></td>
<td>45% fractures, few slickensides, calcite in fractures</td>
<td></td>
</tr>
<tr>
<td>41-42</td>
<td></td>
<td>Color changes to light greenish gray</td>
<td></td>
</tr>
<tr>
<td>43-44</td>
<td></td>
<td>CLAY (CL): light greenish gray clay, moist very stiff, homogenous, fractured, 100% clay, medium plasticity</td>
<td></td>
</tr>
<tr>
<td>45-46</td>
<td></td>
<td>Abundant fractures, trace pyrite (47.5'-48')</td>
<td></td>
</tr>
<tr>
<td>47-48</td>
<td></td>
<td>Color changes to light gray</td>
<td></td>
</tr>
<tr>
<td>49-50</td>
<td></td>
<td>Abundant fractures (55'-56')</td>
<td></td>
</tr>
<tr>
<td>51-52</td>
<td></td>
<td>Color changes to light gray/light tan</td>
<td></td>
</tr>
<tr>
<td>53-54</td>
<td></td>
<td>Local increase in silt content (10%) from 60-61.5'</td>
<td></td>
</tr>
</tbody>
</table>

RMRK3
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Blows/ Foot</th>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-68</td>
<td>Hard</td>
<td>Trace moisture, trace limestone pebbles</td>
<td></td>
</tr>
<tr>
<td>67-69</td>
<td>12</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>67-70</td>
<td>18</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>67-71</td>
<td>25</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>71-72</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>72-73</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>73-74</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>74-75</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>75-76</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>76-77</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>77-78</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>78-79</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>79-80</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>80-81</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>81-82</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>82-83</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>83-84</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>84-85</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>85-86</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>86-87</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>87-88</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>88-89</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>89-90</td>
<td>Hard</td>
<td>Abundant limestone pebbles at 72-74'</td>
<td></td>
</tr>
<tr>
<td>90-91</td>
<td>21</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>91-92</td>
<td>25</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>92-93</td>
<td>30</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>93-94</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>94-95</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>95-96</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>96-97</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>97-98</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>98-99</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>99-100</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>100-101</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>101-102</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
<tr>
<td>102-103</td>
<td>Hard</td>
<td>Increased clay (40%) at 90', trace moisture, less stiff</td>
<td></td>
</tr>
</tbody>
</table>

Total Depth: 102' Hollow Stem Auger refusal at 102'
PROJECT: LCRA FPP Combustion Byproducts Landfill (CBL) Expansion Area

BORING LOCATION: South of CBL Leachate Pond

DRILLING CONTRACTOR: Vortex Drilling, Inc.

DATE STARTED: 6/1/11

DATE FINISHED: 6/3/11

DRILLING METHOD: Hollow Stem Auger

TOTAL DEPTH (ft.): 12.5

SCREEN INTERVAL (ft.): 7.5' - 12.5'

DRILLING EQUIPMENT: B-61 HDX

DEPTH TO WATER ATD: 0 - 12.5'

SAMPLING METHOD: 2.5' Split Spoon

LOGGED BY: Mike Schofield, P.G.

HAMMER WEIGHT: 140

DROP: 18"

RESPONSIBLE PROFESSIONAL: Mike Schofield, P.G. 10666

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>SAMPLE</th>
<th>BLOW</th>
<th>FOOT</th>
<th>OVM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grab</td>
<td>7</td>
<td>7</td>
<td></td>
<td>CLAY (CL): black, trace moisture, stiff, organic matter</td>
</tr>
<tr>
<td>7</td>
<td>Sample</td>
<td>7</td>
<td>7</td>
<td></td>
<td>CLAY with SAND: gray, fine-grained, trace moisture, medium stiff</td>
</tr>
<tr>
<td>7</td>
<td>Sample</td>
<td>7</td>
<td>7</td>
<td></td>
<td>SAND (SW): tan/gray, iron oxide staining, fine-grained, loose, large calcareous nodules</td>
</tr>
<tr>
<td>7</td>
<td>Sample</td>
<td>7</td>
<td>7</td>
<td></td>
<td>CLAY (CL): gray with tan, localized, stiff, silt as high as 25%, blocky leavage, stiff</td>
</tr>
<tr>
<td>6</td>
<td>Grab</td>
<td>6</td>
<td>6</td>
<td></td>
<td>CLAY (CL): black, trace moisture, stiff, organic matter</td>
</tr>
<tr>
<td>6</td>
<td>Grab</td>
<td>6</td>
<td>6</td>
<td></td>
<td>CLAY with SAND: gray, fine-grained, trace moisture, medium stiff</td>
</tr>
<tr>
<td>9</td>
<td>Shelby</td>
<td>9</td>
<td>50/3</td>
<td>ST</td>
<td>SAND (SW): tan/gray, iron oxide staining, fine-grained, loose, large calcareous nodules</td>
</tr>
<tr>
<td>14</td>
<td>Shelby</td>
<td>14</td>
<td>50/3</td>
<td>ST</td>
<td>CLAY (CL): gray with tan, localized, stiff, silt as high as 25%, blocky leavage, stiff</td>
</tr>
<tr>
<td>8</td>
<td>Shelby</td>
<td>8</td>
<td>10</td>
<td></td>
<td>26' onward, no silt (100% clay)</td>
</tr>
<tr>
<td>50/3</td>
<td>Shelby</td>
<td>50/3</td>
<td>10</td>
<td></td>
<td>Red mottling at 28'</td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS

- Concrete
- Bentonite
- 2" Sch-40 PVC Riser
- 20/40 Grade Silica Sand
- 2" Sch-40 PVC 0.010" Slotted Screen
- Bucket sample collected for (5'-9') interval from auger cuttings

SURFACE ELEVATION:

- **OVM:** South of CBL Leachate Pond

GROUND SURFACE ELEVATION AND DATUM:

- **DATE FINISHED:** 6/3/11
- **DATE STARTED:** 6/1/11
- **TOTAL DEPTH (ft.):** 12.5
- **DEPTH TO WATER ATD:** 0 - 12.5'

DRILLING REMARKS:

- Cementation, react. w/HCl, geo. inter.

AMEC Geomatrix, Inc.

Project No. 01494000.004 Page 1 of 3
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>SAMPLES</th>
<th>SAMPLE No.</th>
<th>Blows/ Foot</th>
<th>OVM Reading</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Same stiff clay, light gray to tan</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clear crystals at 34', not HCL reactive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45° fractures, 34’ - 38’</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Same, all light gray</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Same, some tan mottling</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Same, calcareous nodules at 29’</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROJECT: LCRA FPP Combustion Byproducts

Landfill (CBL) Expansion Area

Log of Well No. CBL - 306 B/l (cont’d)

DESCRIPTION
NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.
<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Samples</th>
<th>Blows/ Foot</th>
<th>OVM Reading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/3</td>
<td>1</td>
<td></td>
<td></td>
<td>Large calcareous seam at 65.5, some limestone pebbles starting at 66'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Same, slight greenish gray color, calcareous, clay, stiff, localized silt (~15-20%) in pockets, dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Depth: 80', Hollow Stem Auger refusal at 80'</td>
</tr>
</tbody>
</table>
Log of Well No. CBL - 307 U

PROJECT: LCRA FPP Combustion Byproducts Landfill (CBL) Expansion Area

Boring Location: West of Trees 10’

Drilling Contractor: Vortex Drilling, Inc.

Date Started: 12/21/11

Drilling Method: Hollow Stem Auger

Date Finished: 12/21/11

Drilling Equipment: Mobile Drill B-59

Screen Interval (ft): 26’-41’

Depth to Water ATD: 33.90

Casing: 0’-41’

Sampling Method: Continuous-Split Spoon

Logged By: Randy Beyer, P.G.

Hammer Weight:

<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>SAMPLES</th>
<th>OVM</th>
<th>READING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample</td>
<td>No.</td>
<td>Blows/ Foot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Well Construction Details and/or Drilling Remarks

- 2" Sch-40 PVC Riser
- Bentonite
- 20/40 Grade Silica Sand Filter Pack
<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>SAMPLES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample</td>
<td>NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.</td>
</tr>
<tr>
<td>26</td>
<td>No.</td>
<td>CLAYEY SAND (SC): moist, firm, non plastic 50% sand/50% clay</td>
</tr>
<tr>
<td>32</td>
<td>Blows</td>
<td>Sand - saturated at 32’</td>
</tr>
<tr>
<td>35</td>
<td>Foot</td>
<td>coarse-grained at 35’</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>CLAY (CH): orange to light tan</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>GRAVELLY SAND (GC): medium gray, wet, 80% sand/20% gravel, coarse sand</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>CLAY (CH): yellow to tan, moist, high plasticity -sand layer 40’-40.5’</td>
</tr>
<tr>
<td>42.5</td>
<td></td>
<td>Total Depth = 42.5</td>
</tr>
<tr>
<td>2”</td>
<td>Sch-40 PVC</td>
<td></td>
</tr>
<tr>
<td>0.010”</td>
<td>Slotted Screen</td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS

2” Sch-40 PVC
0.010” Slotted Screen
<table>
<thead>
<tr>
<th>DEPTH (ft.)</th>
<th>SAMPLES</th>
<th>SURVEY</th>
<th>OVM</th>
<th>Reading</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CASING: Continous-Split Spoon</td>
</tr>
<tr>
<td>0'-22'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DEPTH TO WATER ATD: 29.5</td>
</tr>
<tr>
<td>22'-32'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCREEN INTERVAL (ft.): 34.5</td>
</tr>
<tr>
<td>29.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DEPTH TO WATER ATD: 0'-22'</td>
</tr>
<tr>
<td>34.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL DEPTH (ft.): 34.5</td>
</tr>
</tbody>
</table>

FAT CLAY (CH) with GRAVEL:
light gray and tan, moist, iron oxide staining, stiff

becomes **FAT CLAY (CH):**
pale yellow-tan, moist, stiff, blocky

SANDY CLAY (CL):
mottled tan-gray, iron oxide staining, dry, blocky saturated sand lens

CLAYEY SAND (SC):
very light gray, dry, sand seam at 16', increasing calcium carbonate

CLAYEY SILT (ML):
tan and gray with iron oxide mottling, stiff, dry

SILTY CLAY (CL):
tan and gray with iron oxide mottling, stiff, dry

CLAYEY SAND (SC):
gray, moist, firm, iron oxide staining, moist, lenses of calcium carbonate

FAT CLAY (CH):
tan and gray, hard, mottled, iron oxidized staining, blocky

TOTAL DEPTH = 34.5

SAMPLES WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS

SAMPLES WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS

WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS

Concrete

2" Sch-40 PVC Riser

Bentonite

20/40 Grade Silica Sand filter pack

2" Sch-40 PVC 0.010"-Slotted Screen

SANDY CLAY (CL): mottled tan-gray, iron oxide staining, dry, blocky saturated sand lens

NAME (USCS):
color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.

DESCRIPTION

Surface Elevation:

Concrete

2" Sch-40 PVC Riser

Bentonite

20/40 Grade Silica Sand filter pack

2" Sch-40 PVC 0.010"-Slotted Screen

SANDY CLAY (CL): mottled tan-gray, iron oxide staining, dry, blocky saturated sand lens

FAT CLAY (CH):
tan and gray, hard, mottled, iron oxidized staining, blocky

TOTAL DEPTH = 34.5

SAMPLES WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Recovery (ft/ft)</th>
<th>USCS</th>
<th>Lithologic Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0/5.0</td>
<td>SM</td>
<td>(0.0 - 0.5) Silty SAND, reddish-brown, very moist, very soft.</td>
</tr>
<tr>
<td>5</td>
<td>5.0/5.0</td>
<td>SC</td>
<td>(5.0 - 11.0) Clayey SAND, light gray, some orange staining, moist to very moist, slightly firm.</td>
</tr>
<tr>
<td>10</td>
<td>5.0/5.0</td>
<td>CH</td>
<td>(11.0 - 17.0) CLAY, gray, some orange staining, moist, hard, high plasticity.</td>
</tr>
<tr>
<td>15</td>
<td>5.0/5.0</td>
<td>CL</td>
<td>(17.0 - 19.0) Silty CLAY, gray, some orange staining, friable, moist, hard, low plasticity.</td>
</tr>
<tr>
<td>20</td>
<td>3.0/5.0</td>
<td>CL</td>
<td>(19.0 - 21.0) CLAY, gray, some orange staining, moist, hard, high plasticity.</td>
</tr>
<tr>
<td>25</td>
<td>2.5/2.5</td>
<td>CL</td>
<td>(21.0 - 27.5) Silty CLAY, gray, some orange staining, high plasticity clay lens at 21.0-22.0', very hard from 22.0-27.5', very moist, soft to very hard, low plasticity. Refusal at 27.5'</td>
</tr>
</tbody>
</table>

Notes:
- Refusal at 27.5'.
- Ground elevation is approximate.
Log of Boring: CBL-311

Lower Colorado River Authority

Fayette Power Plant
La Grange, TX

PBW Project No. 1650

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Recovery (ft/ft)</th>
<th>USCS</th>
<th>Lithologic Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>SM</td>
<td>(0.0 - 0.5) Silty SAND with gravel, dark reddish brown, very moist, soft.</td>
</tr>
<tr>
<td>3.5/5.0</td>
<td></td>
<td>CH</td>
<td>(0.5 - 5.5) CLAY, gray, some orange staining, calcareous nodules at 4.5-5.0', calcareous clay and weak cementation from 5.0-5.5', dry to moist, hard, low to high plasticity.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>SC</td>
<td>(5.5 - 10.0) Clayey SAND, gray to reddish-gray, moist, slightly firm.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>CH</td>
<td>(10.0 - 11.0) CLAY, gray, some orange staining, moist, firm, high plasticity.</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>CL</td>
<td>(11.0 - 19.0) Silty CLAY, gray, some orange staining, abundant orange staining at 15.0-19.0', very moist, firm, low plasticity.</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>CH</td>
<td>(19.0 - 21.5) CLAY, gray, abundant orange staining, very moist, hard, high plasticity.</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>CL</td>
<td>(21.5 - 25.5) Silty CLAY, gray, abundant orange staining, moist, hard, low plasticity.</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>CH</td>
<td>(25.5 - 27.5) CLAY, gray, abundant orange staining, moist, hard, high plasticity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CL</td>
<td>(27.5 - 30.0) Silty CLAY, gray, abundant orange staining, moist, hard, low plasticity.</td>
</tr>
</tbody>
</table>

PBW
Pastor, Behling & Wheeler, LLC
2201 Double Creek Dr., Suite 4004
Round Rock, TX 78664
Tel (512) 671-3434 Fax (512) 671-3446

Notes:
Ground elevation is approximate.
Log of Boring CBL-321
Sheet 1 of 1

Date(s) Drilled: 7/30/2013
Logged By: Ed Jones
Checked By: M. Zahirul Islam, Ph.D., P.E.

Drilling Method: Geoprobe DPT
Drill Bit Size/Type: 2.25 in
Total Depth of Borehole: 25 feet bgs

Drill Rig Type: Geoprobe
Drilling Contractor: Vortex Drilling, Inc.
Approximate Surface Elevation: 361 ft, MSL

Groundwater Level and Date Measured: Not Recorded
Sampling Method(s): 1 3/4" x 5' sample tube
Hammer Data: n/a

Borehole Backfill: Cement-bentonite grout
Approximate Location: N 9947764, E 3428880

Recovery/Aimpted
3.0/5.0
5.0/5.0
5.0/5.0
3.0/3.0
5.0/5.0
2.0/2.0

MATERIAL DESCRIPTION

TOPSOIL: black, moist, hard, trace organics.

Well-graded GRAVEL with sand (GW): light gray to pink, loose, fine, angular, trace organics.

Sandy CLAY (CL): light pink to gray, dry, low plasticity, soft.
- Trace fine angular gravel at 8.5'-8.8'.

CLAY (CL): light gray to pink, dry, loose to hard, low plasticity, mottling, iron oxide staining, some sand, trace silt.
- Moist, stiff at 13'.

Sandy CLAY (CL): light gray to orange, moist, low plasticity, stiff.
- Light gray, trace silt at 16.5'.
- Loose and crumbly, iron oxide staining, and trace gravels at 18'-18.5'.

CLAY (CH): light gray, moist, hard, iron oxide staining, refusal at 25'.

Total Depth: 25'
Log of Boring CBL-323

Date(s) Drilled: 7/30/2013
Logged By: Ed Jones
Checked By: M. Zahirul Islam, Ph.D., P.E.

<table>
<thead>
<tr>
<th>Drilling Method</th>
<th>Drill Bit Size/Type</th>
<th>Total Depth of Borehole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoprobe DPT</td>
<td>2.25 in</td>
<td>30 feet bgs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drill Rig Type</th>
<th>Drilling Contractor</th>
<th>Approximate Surface Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoprobe</td>
<td>Vortex Drilling, Inc.</td>
<td>359 ft, MSL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groundwater Level and Date Measured</th>
<th>Sampling Method(s)</th>
<th>Hammer Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Recorded</td>
<td>1 3/4" x 5' sample tube</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borehole Backfill</th>
<th>Approximate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement-bentonite grout</td>
<td>N 9947794, E 3428980</td>
</tr>
</tbody>
</table>

Approximate Surface Elevation: 359 ft, MSL

Drilling Contractor: Vortex Drilling, Inc.

Hammer Data: n/a

Total Depth of Borehole: 30 feet bgs

Graphic Log

MATERIAL DESCRIPTION

- **Well-graded GRAVEL with sand (GW):** brown to orange, moist, loose, fine, angular.
- **CLAY (CL):** dark brown, dry, hard, trace fine angular gravel.
- **Sandy CLAY (CL):** light brown, dry, low plasticity, medium stiff.
 - Light gray to orange, some mottling at 7'.
 - Light gray to brown at 10'.
- **Sandy CLAY (CL):** light gray to brown, dry to moist, hard, trace angular fine gravel.
 - White to gray, crumbly, iron oxide staining at 16'.
- **Sandy CLAY (CL):** light brown, moist, hard.
- **Lean CLAY with sand (CL):** light gray to white, moist to dry, low plasticity, loose and crumbly.
- **Lean CLAY with sand (CL):** light brown, low plasticity, hard, trace iron oxide staining.
- **CLAY (CL):** light gray and brown, moist to wet, low to medium plasticity, stiff.
 - Reddish brown to pink, moist to dry, mottled at 27'.

Total Depth: 30'
Log of Boring CBL-325

Sheet 1 of 2

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
<th>Drilling Method</th>
<th>Drilling Rig Type</th>
<th>Groundwater Level and Date Measured</th>
<th>Borehole Backfill</th>
<th>Total Depth of Borehole</th>
<th>Approximate Surface Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/29/2013</td>
<td>Ed Jones</td>
<td>M. Zahirul Islam, Ph.D., P.E.</td>
<td>Geoprobe DPT</td>
<td>Geoprobe</td>
<td>Not Recorded</td>
<td>Cement-bentonite grout</td>
<td>34 feet bgs</td>
<td>354 ft, MSL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drill Bit</td>
<td>Drilling Contractor</td>
<td>Sampling Method(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.25 in</td>
<td>Vortex Drilling, Inc.</td>
<td>1 3/4” x 5’ sample tube</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphic Log

- **Depth (feet)**
 - 0
 - 5
 - 10
 - 15
 - 20
 - 25
 - 30

- **Sample Number**
 - P:\Projects\LCRA Fayette Power Plant\Task 5_Cell 2 Subsurface Investigation\DPT Borings to Locate Sand Layer\LCRA Cell 2 DPT Boring Program 2013-08-28\pgeosyntec.tpl

MATERIAL DESCRIPTION

- **TOPSOIL:** dark brown, hard, trace angular fine gravel and organics.

- **Sandy CLAY (CL):** dark brown to gray, dry, low plasticity, hard, trace sand.
 - Light brown to white at 6’.
 - Light brown at 8’.

- **Sandy CLAY (CL):** light gray to brown, dry, low plasticity, hard.
 - Iron oxide staining at 13.5’.

- **Sandy CLAY (CL):** light gray to light brown, moist, low plasticity, compact.
 - Light brown, dry, loose and crumbly at 22’.
 - Light brown to brown at 25’.

- **Sandy CLAY (CL):** light gray, moist, low plasticity, compact.
 - Trace sand at 29’.

- **CLAY (CL):** reddish brown to brown, low plasticity, hard, some mottling, trace iron oxides.
<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>Sample Type</th>
<th>Recovery/Appeared</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- Dark gray to reddish brown, mottled, low plasticity, hard, refusal at 34'.

Total Depth: 34'
Project: LCRA Fayette Power Project

Project Location: 6549 Power Plant Rd, La Grange, TX 78945

Project Number: TXL0225-05

Log of Boring CBL-326

Sheet 1 of 1

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
<th>Project Location: 6549 Power Plant Rd, La Grange, TX 78945</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/31/2013</td>
<td>Ed Jones</td>
<td>M. Zahirul Islam, Ph.D., P.E.</td>
<td></td>
</tr>
</tbody>
</table>

Drilling Method
- Geoprobe DPT

Drill Rig Type
- Geoprobe

Groundwater Level and Date Measured
- Not Recorded

Borehole Backfill
- Cement-bentonite grout

Approximate Location: N 9947771, E 3429019

- **Drill Bit Size/Type:** 2.25 in
- **Drilling Contractor:** Vortex Drilling, Inc.
- **Sampling Method(s):** 1 3/4" x 5' sample tube
- **Hammer Data:** n/a
- **Surface Elevation:** 357 ft, MSL
- **Total Depth of Borehole:** 25 feet bgs

Graphic Log

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>Sample Type</th>
<th>Recovery/Atempted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description

- **Sandy CLAY (CL):** black, dry, hard.
 - Trace angular fine gravel and organics at 0'-2'.
 - Trace iron oxides at 9.5'.

- **Sandy CLAY (CL):** light gray to white, dry to moist, slight plasticity, stiff to firm, some mottling.
 - Trace iron oxides at 9.5'.

- **CLAY (CL):** light gray to orange, dry to moist, low plasticity, firm, mottling, some sand.
 - Loose and crumbly at 11.5'.

- **Lean CLAY with sand (CL):** light gray to brown, moist, slight to low plasticity, soft to firm.
 - Trace iron oxide staining at 17.5'.

- **Sandy CLAY (CL):** light gray to black, moist, hard, mottled, trace iron oxides, refusal at 25'.

Total Depth: 25'
Project: LCRA Fayette Power Project
Project Location: 6549 Power Plant Rd, La Grange, TX 78945
Project Number: TXL0225-05

Log of Boring CBL-328
Sheet 1 of 2

Date(s) Drilled: 7/30/2013
Logged By: Ed Jones
Checked By: M. Zahirul Islam, Ph.D., P.E.

Drilling Method: Geoprobe DPT
Drill Bit Size/Type: 2.25 in
Total Depth of Borehole: 43 feet bgs

Drill Rig Type: Geoprobe
Drilling Contractor: Vortex Drilling, Inc.
Approximate Surface Elevation: 369 ft, MSL

Groundwater Level and Date Measured: Not Recorded
Sampling Method(s): 1 3/4" x 5' sample tube
Hammer Data: n/a

Borehole Backfill: Cement-bentonite grout
Approximate Location: N 9947890, E 3428656

MATERIAL DESCRIPTION

TOPSOIL: dark brown to black, soft, trace organics.

Sandy CLAY (CL): light brown to gray, moist, low plasticity, stiff.
- Trace iron oxides at 7.5'.

Sandy CLAY (CL): light orange to light gray, dry, crumbly, trace gravel.
- Light gray, compact, fine, iron oxide staining at 13'.

Sandy CLAY (CL): light brown, dry and crumbly, iron oxide staining.
- Hard from 17'-20'.

Sandy CLAY (CL): light brown to light gray, moist to dry, low plasticity, stiff.
- Crumbly at 21'.

Clayey SAND (SC): light brown to gray, moist, compact, iron oxide staining.
<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>Sample Type</th>
<th>Recovery/Attempted</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>4.0/5.0</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>3.0/3.0</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- Clayey SAND (SC): light brown to gray, moist, compact, iron oxide staining.
- Sandy CLAY (CL): white to light brown, compact to crumbly from 31.5' to 33'.
- Sandy CLAY (CL): light brown, moist, compact, iron oxide staining.
- Sandy CLAY (CL): light brown to gray, moist to dry, compact, some mottling, trace iron oxide staining.
- Some light brown to orange sand at 37'.

CLAY (CL): reddish brown to light brown, moist, hard, mottling, iron oxide staining, refusal at 43'.

Total Depth: 43'
Log of Boring CBL-335

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
<th>Drilling Method</th>
<th>Drill Bit Size/Type</th>
<th>Total Depth of Borehole</th>
<th>Groundwater Level and Date Measured</th>
<th>Approximate Surface Elevation</th>
<th>Borehole Backfill</th>
<th>Approximate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/31/2013</td>
<td>Ed Jones</td>
<td>M. Zahirul Islam, Ph.D., P.E.</td>
<td>Geoprobe DPT</td>
<td>2.25 in</td>
<td>20 feet bgs</td>
<td>Not Recorded</td>
<td>375 ft, MSL</td>
<td>Cement-bentonite grout</td>
<td>N 9948197, E 3429784</td>
</tr>
</tbody>
</table>

- **Drill Rig Type:** Geoprobe
- **Drill Rig Contractor:** Vortex Drilling, Inc.
- **Sampling Method(s):** 1 3/4" x 5' sample tube
- **Hammer Data:** n/a

Graphic Log

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sample Number</th>
<th>Recovery/Appeared</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **Sandy CLAY (CL):** light brown to light pink, moist, hard, low plasticity, iron oxide staining.
- **Sandy CLAY (CL):** light gray to white, moist to dry, soft, low plasticity, stiff to soft.
- **Sandy CLAY (CL):** light gray, moist to dry, plasticity, stiff to soft.
- **Well-graded SAND (SW):** gray, wet, loose.
- **CLAY (CL):** light gray to orange, moist, low plasticity, hard, trace iron oxide staining, trace sand.

Total Depth: 20'
Log of Boring CBL-337

Project: LCRA Fayette Power Project
Project Location: 6549 Power Plant Rd, La Grange, TX 78945
Project Number: TXL0225-05

<table>
<thead>
<tr>
<th>Date(s) Drilled</th>
<th>Logged By</th>
<th>Checked By</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/31/2013</td>
<td>Ed Jones</td>
<td>M. Zahirul Islam, Ph.D., P.E.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drilling Method</th>
<th>Drill Bit</th>
<th>Total Depth of Borehole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoprobe DPT</td>
<td>2.25 in</td>
<td>25 feet bgs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drill Rig Type</th>
<th>Drilling Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoprobe</td>
<td>Vortex Drilling, Inc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Groundwater Level and Date Measured</th>
<th>Sampling Method(s)</th>
<th>Hammer Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Recorded</td>
<td>1 3/4" x 5' sample tube</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borehole Backfill</th>
<th>Approximate Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement-bentonite grout</td>
<td>N 9946807, E 3428861</td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **TOPSOIL:** black, stiff, trace organics.
- **CLAY (CL):** light gray to brown, dry, hard, trace angular gravel.
- **CLAY (CL):** dark brown to black, moist, plasticity, stiff, trace sand.
- **CLAY (CL):** light brown at 9'-10'.
- **Lean CLAY (CL):** light gray to light brown, dry, low to medium plasticity, soft and crumbly, trace iron oxides.
- **CLAY (CL):** light gray to green, moist, low plasticity, hard, iron oxides.
- **CLAY (CL):** medium stiff at 18'-18.5'.
- **CLAY (CL):** light gray to green at 20'-25'.

Total Depth: 25'
APPENDIX C

Wetlands Assessment
WETLAND ASSESSMENT

for

Fayetteville Power Plant Complex
La Grange, Fayette County, Texas

Prepared by:
Ecological Communications Corporation

August 8, 2006
INTRODUCTION

Ecological Communications Corporation (EComm) was contracted by RMT, Inc. to conduct a wetlands assessment on the grounds of the Fayetteville Power Plant (FPP) outside of La Grange, TX. EComm performed an on-site visit on July 20, 2006 in order to identify any potentially occurring Waters of the United States (U.S.), including wetlands, as defined by the U.S. Army Corps of Engineers (USACE), evaluate the existing methods of protecting sensitive areas and to identify ways to further protect those areas. Additional information regarding experience and capabilities for EComm firm and staff can be found in Appendix A of this document.

This report presents the findings that were concluded as a result of observations made during an on-site visit conducted July 20, 2006, and information gathered from aerial photographs and vegetation surveys as provided by the Texas Parks and Wildlife Department (TPWD), and topographic maps.

REGULATORY GUIDANCE

All Waters of the U.S. are considered jurisdictional by the USACE. The dredging or filling of more than a standard acreage or distance (depending on the activity) of these waters at an individual project site requires a specific permit, under Section 404 of the Clean Water Act.

Waters of the U.S. include, with some exceptions:

- All waters which are currently used, or were used in the past, or may be susceptible to use, in interstate or foreign commerce, including all waters which are subject to the ebb and flow of the tide;
- All interstate waters including interstate wetlands;
- All other waters such as interstate lakes, rivers, streams (including intermittent streams), mudflats, sandflats, wetlands, sloughs, prairie potholes, wet meadows, playa lakes, or natural ponds; the use, degradation or destruction of which could affect interstate or foreign commerce including any such waters:
 1. Which are or could be used by interstate or foreign travelers for recreational or other purposes; or
 2. From which fish or shellfish are or could be taken and sold in interstate or foreign commerce; or
 3. Which are used or could be used for industrial purpose by industries in interstate commerce;
- All impoundments of waters otherwise defined as Waters of the U.S. under the definition;
- Tributaries of waters identified in all sections above;
- The territorial seas;
- Wetlands adjacent to waters (other than waters that are themselves wetlands) identified in all sections above. The term "adjacent" means bordering, contiguous, or neighboring. Wetlands separated from other Waters of the U.S. by man-made dikes or barriers, natural river berms, beach dunes and the like are "adjacent wetlands."
Waters of the U.S. typically do not include:

- Waste treatment systems, including treatment ponds or lagoons designed to meet the requirements of the Clean Water Act;
- Abandoned stock ponds (in certain circumstances);
- Road-side ditches;
- Mined areas (until they assume characteristics of Waters of the U.S.); or
- Agricultural areas.

Of the jurisdictional waters included in the above definition, some are considered special aquatic sites by the U.S. Environmental Protection Agency (USEPA) and require specific conditions in order to be classified. One special aquatic site that pertains to areas within the subject property is a wetland. Wetlands are areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Any activity involving the dredging or filling of wetlands of any size requires a permit by the USACE.

SITE INVESTIGATION METHODS

A windshield survey was performed along the boundaries of the property. A pedestrian survey was performed along the unnamed tributary of Cedar Creek, a spring fed ephemeral stream that crosses the property, northwest to southeast. The tributary traverses the southern half of the property, and flows into Cedar Creek in the southeast corner of the property (Figure 1). The channel and confluence of the stream were examined, as well as the hydrology and morphology of the stream to determine the tributary’s status as jurisdictional waters of the U.S. Dominant vegetation along the tributaries and their impoundments were also identified, to determine the possibility of wetlands.

SITE EVALUATION RESULTS

The unnamed tributary of Cedar Creek originates approximately 3300 feet south of the southwest corner of the Fayette Reservoir (Photo 1), joining Cedar Creek approximately 4300 feet downstream, southeast of the FPP property. This tributary, as shown on the 1981 U.S. Geological Survey (USGS) Fayetteville, TX topographic map, flows through the property and the FPP complex located there. The tributary channels are clearly defined, and contain a significant amount of wetland vegetation within or near the channel (Photos 3 through 7).

The tributaries maintain defined ordinary high water marks throughout most of its course within the property (Photo 8). A significant amount of unmaintained riparian vegetation grows along the banks of the tributary. Vegetation within the riparian areas are dominated by American elm (*Ulmus americana*), mesquite (*Prosopis glandulosa*), cypress (*Taxodium distichum*), hackberry (*Celtis laevigata*), eastern cottonwood (*Populus deltoides*), ashe juniper (*Juniperus ashei*), greenbriar (*Smilax bona-nox*), poison ivy (*Toxicodendron radicans*), and other herbaceous vegetation. Once the tributary exits the property, it flows southeast into Cedar Creek.

This tributary is considered a jurisdictional water of the U.S., and has several wetlands present. A small wetland area (approximately 200 square feet) is located at the beginning of the tributary, a sizable wetland area along the northern bank of the tributary where it flows between the FPP’s rail loop (approximately 0.20 acre), and a small wetland area within the channel of the tributary as it flows southeast past the eastern portion of the rail loop (approximately 200 square feet). The wetland area within the rail loop and
the surrounding riparian area have been previously surrounded by three foot high orange geotextile fence, silt fence, and straw barriers, by FPP personnel, to avoid vehicle and drainage impacts. The wetland areas at the streams origin and southeast of the culvert under the eastern section of the rail loop have not been fenced off. Signs noting the sensitive areas’ presence have been posted to inform people of their locations.

CONCLUSIONS

The unnamed tributary of Cedar Creek that traverses the FPP property is jurisdictional. Any disturbance to the wetland areas or disturbance of greater than a minimum acreage or linear feet limit (depending on the activity) will require coordination with USACE. In the event of a catastrophic oil spill, additional silt fencing around the key wetland areas can be implemented, and a USACE Nationwide Permit 20, Oil Spill Cleanup, can be obtained. If vehicles or heavy machinery are needed, a USACE Nationwide Permit 14, Linear Transportation, would be necessary. While this stream is the main tributary within the FPP property, other sources of riparian and special vegetative areas could exist within the property boundaries and were not surveyed as part of this report.
FIGURE 1: USGS FAYETTEVILLE, TX TOPOGRAPHIC MAP

PHOTO 1: ORIGIN OF UNNAMED TRIBUTARY OF CEDAR CREEK

PHOTO 2: RIPARIAN AREA INSIDE FAYETTEVILLE POWER PLANT COMPLEX
PHOTO 3: WETLAND VEGETATION ALONG THE NORTHERN BANK OF TRIBUTARY

PHOTO 4: RIPARIAN AND WETLAND VEGETATION WITH PROTECTIVE FENCE
Photo 5: Riparian and Wetland Vegetation with Protective Fence and Sign

Photo 6: Rail Line Culvert with Wetland Vegetation
Photo 7: Wetland Vegetation Southeast of Rail Line Culvert

Photo 8: Tributary Upstream With Wetland Vegetation
REFERENCES

U.S. GEOLOGICAL SURVEY. 1981. 7.5 Topographic Quad Map of Fayetteville, Texas.

U.S. GEOLOGICAL SURVEY. 1981. 7.5 Topographic Quad Map of La Grange East, Texas.

APPENDIX D

Database Query Documentation
NOTE:
1. AERIAL IMAGE OBTAINED FROM ESRI ARCMAP GIS LATEST MICROSOFT BING IMAGERY.
NOTE:

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the U.S. Seismic Design Maps web tools (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

<table>
<thead>
<tr>
<th>Input</th>
<th>Spectral Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edition</td>
<td>Peak Ground Acceleration</td>
</tr>
<tr>
<td>Dynamic: Conterminous U.S. 2014 (update) v4.2.0</td>
<td></td>
</tr>
<tr>
<td>Latitude</td>
<td>Time Horizon</td>
</tr>
<tr>
<td>Decimal degrees</td>
<td>Return period in years</td>
</tr>
<tr>
<td>29.9</td>
<td>2475</td>
</tr>
<tr>
<td>Longitude</td>
<td>2% in 50 years</td>
</tr>
<tr>
<td>Decimal degrees, negative values for western longitudes</td>
<td>2% in 50 years (500 years)</td>
</tr>
<tr>
<td>-96.75</td>
<td>5% in 50 years</td>
</tr>
<tr>
<td>Site Class</td>
<td>10% in 50 years</td>
</tr>
<tr>
<td>760 m/s (B/C boundary)</td>
<td>10% in 50 years (500 years)</td>
</tr>
</tbody>
</table>

(source: https://earthquake.usgs.gov/hazards/interactive/)
Hazard Curves

- Annual Frequency of Exceedence
 - Ground Motion (g)
 - Time Horizon 2475 years
 - Peak Ground Acceleration
 - 0.10 Second Spectral Acceleration
 - 0.20 Second Spectral Acceleration
 - 0.30 Second Spectral Acceleration
 - 0.50 Second Spectral Acceleration
 - 1.00 Second Spectral Acceleration
 - 2.00 Second Spectral Acceleration

Uniform Hazard Response Spectrum

- Ground Motion (g)
- Spectral Period (s)
- PGA Ground Motion (g): 0.0289

(source: https://earthquake.usgs.gov/hazards/interactive/)
Component Curves for Peak Ground Acceleration

View Raw Data

(source: https://earthquake.usgs.gov/hazards/interactive/)
APPENDIX E

Slope Stability Analyses Results
Circular Slip Surface Through CCR Material

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Water Surface</th>
<th>Safety Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGD Waste</td>
<td></td>
<td>105</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td>None</td>
<td>0.000</td>
</tr>
<tr>
<td>60mil HDPE</td>
<td></td>
<td>105</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>15</td>
<td>None</td>
<td>0.500</td>
</tr>
<tr>
<td>Subgrade Clay</td>
<td></td>
<td>105</td>
<td>Infinite</td>
<td>None</td>
<td>0</td>
<td>None</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Block-Type Slip Surface Through Liner System

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Water Surface</th>
<th>Safety Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGD Waste</td>
<td></td>
<td>105</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td>None</td>
<td>0.000</td>
</tr>
<tr>
<td>60mil HDPE</td>
<td></td>
<td>105</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>15</td>
<td>None</td>
<td>0.500</td>
</tr>
<tr>
<td>Subgrade Clay</td>
<td></td>
<td>105</td>
<td>Mohr-Coulomb</td>
<td>None</td>
<td>0</td>
<td>None</td>
<td>1.000</td>
</tr>
</tbody>
</table>
APPENDIX F

Protected Species Habitat Assessment
PROTECTED SPECIES HABITAT ASSESSMENT FOR THE FAYETTE POWER PROJECT COAL COMBUSTION BYPRODUCT LANDFILL

FAYETTE COUNTY, TEXAS

Prepared for

LCRA
ENERGY • WATER • COMMUNITY SERVICES

Prepared by

Blanton & Associates, Inc.
ENVIRONMENTAL CONSULTING • PLANNING • PROJECT MANAGEMENT
5 Lakeway Centre Court, Suite 200
Austin, Texas 78734
512-264-1095
BLANTONASSOCIATES.COM

May 2022
Table of Contents

1.0 INTRODUCTION.. 1
2.0 METHODS... 1
3.0 PROJECT AREA DESCRIPTION .. 3
 3.1 Land Cover and Vegetation Communities .. 3
 3.2 Water Resources ... 6
 3.3 Soils ... 6
4.0 PROTECTED SPECIES ASSESSMENT ... 6
 4.1.1 Endangered Species Act ... 6
 4.1.2 Bald and Golden Eagle Protection Act ... 8
 4.1.3 Migratory Bird Treaty Act .. 8
 4.1.4 State of Texas Threatened and Endangered Species Regulations 9
4.2 Assessment of Protected Species Occurrence ... 9
 4.2.1 Federally Protected Species .. 10
 4.2.2 State Protected Species ... 19
 4.2.3 Other Protected Species .. 23
5.0 SUMMARY AND RECOMMENDATIONS ... 23
6.0 REFERENCES .. 24

Appendices

Appendix A Representative Photographs

Figures

Figure 1. Project Location ... 2
Figure 2. Land Use/Land Cover ... 4
Figure 3. Soils ... 7
Figure 4. Protected Species Occurrences ... 13
Figure 5. Results of Navasota Ladies’-Tresses Survey ... 20

Tables

Table 1. Land Cover Classification for the Project Area ... 5
Table 2. Soils Mapped in the Project Area ... 6
Table 3. Protected Species Potentially Occurring in Fayette County, Texas 9
1.0 INTRODUCTION

The Lower Colorado River Authority (LCRA) is preparing an application for the registration of its Fayette Power Project (FPP) Coal Combustion Byproduct Landfill under the Coal Combustion Residual Rules of the Texas Commission on Environmental Quality (TCEQ). Blanton and Associates, Inc. (B&A) was contracted by LCRA to conduct a protected species habitat assessment on approximately 70 acres of land (herein referred to as the project area) which is a portion of the 123-acre deed recorded Class 2 landfill solid waste management unit for the FPP. The 70-acre project area is designated for the development of future landfill cells and is shown in Figure 1. Site preparation for future cells would include the removal of all current vegetation.

This document assesses the potential for federally and state listed threatened, endangered, or other protected species (e.g., eagles) to occur in the project area and potential for those species to be impacted by the project. Subsequent sections provide the methods used in the analysis (Section 2.0); a description of vegetation, water resources, and soils within the project area (Section 3.0); a discussion of state and federal regulations that address protected species as well as identification and description of protected species of potential occurrence in the project area (Section 4.0); and a summary of the evaluation results and consequent recommendations (Section 5.0). Representative photographs of the project area are presented in Appendix A.

2.0 METHODS

B&A ecologists completed a literature, database, and desktop review for federally and state listed protected species potentially occurring in Fayette County and the project area. The purpose of the review was to assess habitats and resources within the project area; to determine protected species of known or potential occurrence within Fayette County and the project vicinity; to evaluate the life history and ecology of these species in relation to the habitats and resources present in the project area; and to ultimately determine the potential for each protected species to occur in the project area. Information reviewed included, but was not limited to the following:

- The U.S. Fish and Wildlife Service (USFWS) Information for Planning and Consultation (IPaC) Trusted Resource List for Fayette County, Texas (USFWS 2022a)
- The USFWS Environmental Conservation Online System (ECOS) Species by County Report for Fayette County, Texas (USFWS 2022b)
- The USFWS Critical Habitat online mapper (USFWS 2022c)
- The USFWS National Wetlands Inventory (USFWS 2021d) the Texas Parks and Wildlife Department (TPWD) Annotated County List of Rare Species for Fayette County, Texas (TPWD 2022a)
- The U.S. Geological Survey (USGS) National Land Cover Database (Multi-Resolution Land Characteristics Consortium [MRLC])
- The TPWD Texas Natural Diversity Database (TXNDD 2022)
- The Cornell Lab of Ornithology’s eBird Database (eBird 2022)
- The California Academy of Sciences and National Geographic Society’s iNaturalist Database (iNaturalist 2022)
- The USGS National Hydrography Dataset (USGS 2021a)
- USGS 7.5-minute La Grange East topographic quadrangle map (USGS 2019)
- The USDA-Natural Resource Conservation Service (NRCS) Soils Survey Geologic Database (SSURGO) (USDA-NRCS 2021), and
- Photointerpretation of historical and contemporary natural color aerial imagery for the project area (Google Earth Pro 2022)

Of note, the eBird (2022) and iNaturalist (2022) databases include self-reported species sightings by citizens that are unverified, and as such, provide a general reference but inherently exhibit a level of uncertainty. Additionally, eBird does not depict observation locations, but rather only frequency of observation within a larger region, for some sensitive species. Likewise, iNaturalist sightings for some sensitive species (e.g., bald eagle [*Haliaeetus leucocephalus*] nests) provide proximal locations that have been randomly repositioned in the vicinity of their reported location.

The review of background information was accompanied by a field investigation on November 23, 2021. During the field investigation, the project area was evaluated to verify information attained in the background review and to assess the potential for federally or state protected species to occur on the site. Additionally, a presence/absence survey for Navasota ladies’-tresses (NLT) (*Spiranthes parksii*) was conducted by two B&A biologists.

3.0 PROJECT AREA DESCRIPTION

The project area is located approximately seven miles east of the City of La Grange and encompasses approximately 70 acres on the south side of the FPP (Figure 1). The project lies within the Texas Blackland Prairies Level III ecoregion and Southern Blackland/Fayette Prairie Level IV ecoregion (Griffith et al 2007). The Texas Blackland Prairies form a disjunct ecological region, distinguished from surrounding regions by fine-textured, clayey soils and predominantly prairie natural vegetation (Griffith et al 2007).

The project area is humid sub-tropical, with an average annual rainfall of approximately 39.63 inches (National Oceanic and Atmospheric Administration [NOAA 2021]). Monthly average precipitation ranges from 4.27 inches in October (historically the wettest month) to 2.06 inches in July (historically the driest month) (NOAA 2021).

3.1 Land Cover and Vegetation Communities

The project area lies is within the Blackland Prairie vegetational area (Gould et. al 1960), which generally corresponds with the Texas Blackland Prairies (Level III) ecoregion previously described. Based on the 2016 National Land Cover Database (NLCD) (Multi-Resolution Land Characteristics Consortium [MRLC] 2016), mapped land cover classes for the project area are provided below on Figure 2 and Table 1.
Most of the project area consists of shrub/scrub, deciduous forest, and developed land (with open space). Minor land cover types occurring in the project area include evergreen forest, mixed forest and developed land (low intensity).

Based on the field investigations, vegetation within the project area was consistent with the NLCD mapping. Land use is variable with regard to browsing and mowing regimen, affecting vegetative communities present and their structure. Browsing pressure was evident throughout the project area. Common grassland/herbaceous species included yellow bluestem (*Bothriochloa ischaemum*), broomsedge bluestem (*Andropogon virginicus*), woolly croton (*Croton capitatius*), slender threeseed mercury (*Acalypha gracilens*), silver bluestem (*Bothriochloa laguroides*), rosette-panicgrass (*Dichanthelium sp.*), narrowleaf marshelder (*Iva angustifolia*), Bermudagrass (*Cynodon dactylon*), western ragweed (*Ambrosia psilostachya*), splitbeard bluestem (*Andropogon ternarius*), low prickly pear (*Opuntia humifusa*), southern dewberry (*Rubus trivialis*), St. Andrew’s cross (*Hypericum hypericoides*), sneezeweed (*Helenium amarum*), and gaping grass (*Steinchisma hians*). Shrubs noted within the project area included coralberry (*Symphoricarpos orbiculatus*), farkleberry (*Vaccinium arboreum*), groundsel tree (*Baccharis halimifolia*), retama (*Parkinsonia aculeata*), and yaupon (*Ilex vomitoria*).

Woodlands in the project area primarily consisted of post oak (*Quercus stellata*), southern live oak (*Quercus virginiana*), blackjack oak (*Quercus marilandica*), eastern redcedar (*Juniperus virginiana*), and few scattered loblolly pines (*Pinus taeda*). The understory was typically composed of dense yaupon and eastern redcedar, with occasional coralberry and farkleberry shrubs. Vines observed in the subcanopy primarily were saw greenbriar (*Smilax bona-nox*) and mustang grape (*Vitis mustangensis*). These wooded areas generally exhibited dense canopy and understory coverage as well as dense leaf litter such that the herb stratum was typically absent, with the exception of a small patch of open woodlands in which three nodding ladies’-tresses (*Spiranthes cernua*) individuals were observed (see Section 4.2.3).

A small pond in the northeast part of the project area exhibited some standing water but appeared to be drying out at the time of the survey. Vegetation in and around this feature included bushy bluestem (*Andropogon glomeratus*), Chinese tallow (*Triadica sebifera*), black willow (*Salix nigra*), gaping grass, floating primrose-willow (*Ludwigia peploides*), wingleaf primrose-willow (*Ludwigia decurrens*), southern cattail (*Typha domingensis*), crownglass (*Paspalum sp.*), annual marshelder (*Iva annua*), western ragweed, and southern dewberry.

Table 1. Land Cover Classification for the Project Area

<table>
<thead>
<tr>
<th>Land Cover Class</th>
<th>Acres*</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrub/Scrub</td>
<td>24</td>
<td>34.3%</td>
</tr>
<tr>
<td>Deciduous Forest</td>
<td>22</td>
<td>31.4%</td>
</tr>
<tr>
<td>Developed, Open Space</td>
<td>14</td>
<td>20.0%</td>
</tr>
<tr>
<td>Evergreen Forest</td>
<td>5</td>
<td>7.1%</td>
</tr>
<tr>
<td>Mixed Forest</td>
<td>4</td>
<td>5.8%</td>
</tr>
<tr>
<td>Developed, Low Intensity</td>
<td>1</td>
<td>1.4%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>70</td>
<td>100%</td>
</tr>
</tbody>
</table>

PROTECTED SPECIES HABITAT ASSESSMENT
LCRA FAYETTE POWER PROJECT COAL COMBUSTION BYPRODUCT LANDFILL
FAYETTE COUNTY, TEXAS
Representative photographs of land cover types/vegetative communities in the project area are depicted in Appendix A.

3.2 Water Resources

The project lies within the Lower Colorado-Cummins (Hydrologic Unit Code [HUC] 12090301) watershed (USGS 2021b). A review of National Wetland Inventory (NWI) data (USFWS 2021d), USGS topographic maps (USGS 2019), the National Hydrography Dataset (NHD) (USGS 2021a), and aerial imagery (Google Earth Pro 2022) revealed that the project area is drained by Cedar Creek. During the field investigation, B&A identified one small pond and the existing runoff channel in the project area.

3.3 Soils

According to USDA-NRCS (2021), five soil types are mapped within the project area (Table 2). Approximately 49 percent of the project area contains sandy soils (Straber soils), 43 percent of the project area contains clay soils (Frelsburg and Latium soils), and 8 percent contains sandy loam soils (Rek soils) (YSDA-NRCS 2021). None of the soils within the project area contain hydric soil components (Table 2). Mapped soils within the project area are depicted on Figure 3.

<table>
<thead>
<tr>
<th>Soil Series (Map Symbol)</th>
<th>Hydric</th>
<th>Hydric Rating (Percent)</th>
<th>Acres</th>
<th>Percent of Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frelsburg clay, 3 to 5 percent slopes (FrC, 32)</td>
<td>No</td>
<td>-</td>
<td>15</td>
<td>22%</td>
</tr>
<tr>
<td>Latium gravelly clay, 5 to 12 percent slopes (LgD)</td>
<td>No</td>
<td>-</td>
<td>15</td>
<td>21%</td>
</tr>
<tr>
<td>Rek extremely gravelly course sandy loam 2 to 5 percent slopes (RkC)</td>
<td>No</td>
<td>-</td>
<td>6</td>
<td>8%</td>
</tr>
<tr>
<td>Straber loamy fine sand, 1 to 5 percent slopes (SwC)</td>
<td>No</td>
<td>-</td>
<td><1</td>
<td><1%</td>
</tr>
<tr>
<td>Straber gravelly loamy fine sand, 2 to 5 percent slopes (SxC)</td>
<td>No</td>
<td>-</td>
<td>34</td>
<td>49%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>70</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: USDA-NRCS 2021

4.0 PROTECTED SPECIES ASSESSMENT

This section discusses the federal and state regulations that address threatened, endangered, proposed and candidate species; identifies and describes protected species of potential occurrence in the project area; and provides an assessment of the potential impacts of the project on protected species, as well as potential regulatory implications.

4.1.1 Endangered Species Act

Animal species listed as threatened or endangered by the USFWS are provided full protection under the Endangered Species Act (ESA). This protection not only prohibits the direct take of a protected species, but also includes a prohibition of indirect take, such as destruction of designated critical habitat. Listed plants are not protected from “take” on private lands, although on federal land it is illegal to collect or maliciously harm federally listed plant species.
Figure 3
Soils
LCRA Fayette Power Project
Coal Combustion Byproduct Landfill
Fayette County, Texas

Soil Unit
- Freiburg clay, 3 to 5 percent slopes (FrC)
- Latium gravelly clay, 5 to 12 percent slopes (LgD)
- Rek extremely gravelly coarse sandy loam, 2 to 5 percent slopes (Re/C)
- Straber gravelly loamy fine sand, 2 to 5 percent slopes (Sw/C)
- Straber loamy fine sand, 1 to 5 percent slopes (Sw/C)

Data Source: NRCS
Base Map: 2020 NAIP Imagery
The federal listing process ranks potential candidates for listing based upon the species’ biological vulnerability. The vulnerability decision is based upon many factors affecting the species within its range and is linked to the best scientific data available to the USFWS at the present time. Candidate species and species under review are not afforded statutory protection under ESA, although USFWS encourages conservation measures for these species as they may soon be warrant full protection. Species proposed for federal listing are likely to become endangered or threatened in the foreseeable future throughout all or a significant portion of their range, as determined by USFWS. However, species proposed for listing are not protected under the ESA until a final rule to list is published in the Federal Register.

4.1.2 Bald and Golden Eagle Protection Act

Within the U.S. or anywhere within its jurisdiction, the bald eagle and the golden eagle (*Aquila chrysaetos*) are protected by the Bald and Golden Eagle Protection Act (BGEPA) (16 U.S.C. 668–668d). Provisions of the act state that, unless otherwise permitted to do so, no person “shall knowingly, or with wanton disregard for the consequences of his act take, possess, sell, purchase, barter, offer to sell, purchase or barter, transport, export or import, at any time or in any manner, any bald eagle . . . or golden eagle, alive or dead, or any part, nest, or egg thereof.” The BGEPA defines the take of an eagle to include a broad range of actions, including to pursue, shoot, shoot at, poison, wound, kill, capture, trap, collect, molest, or disturb. Based on regulations found at 50 CFR 22.3, the term “disturb” means to “agitate or bother a bald or golden eagle to a degree that causes, or is likely to cause, based on the best scientific information available, (1) injury to an eagle, (2) a decrease in its productivity, by substantially interfering with normal breeding, feeding, or sheltering behavior, or (3) nest abandonment, by substantially interfering with normal breeding, feeding, or sheltering behavior.” The act imposes criminal and civil penalties on anyone, including associations, partnerships, and corporations that violate the act.

4.1.3 Migratory Bird Treaty Act

The Migratory Bird Treaty Act (MBTA) prohibits the taking, killing, possession, transportation, import, and export of migratory birds, their eggs, parts, and nests without a USFWS permit or other regulatory authorization. The MBTA protects most native bird species occurring in the wild in the United States except for gallinaceous birds (upland game birds such as turkeys and quail) that are not considered migratory. In addition, the MBTA does not protect some non-native species such as the house sparrow (*Passer domesticus*), European starling (*Sturnus vulgaris*), rock pigeon (*Columba livia*), and any recently listed unprotected species in the Federal Register (FR) (70 FR 12710, 50 CFR 10.13).

Federal courts as well as previous presidential administrations have had conflicting interpretations of the MBTA’s intent, particularly regarding incidental take of migratory birds. On January 7, 2021, the USFWS published a final rule in the Federal Register defining the scope of the MBTA as it pertains to death or injury (“take”) of migratory birds (86 FR 1134). On October 4, 2021, the USFWS revoked that rule and published a final rule which will implement the MBTA as prohibiting incidental take and applying enforcement discretion, consistent with judicial precedent and longstanding agency practice prior to 2017 (86 FR 54642).
4.1.4 State of Texas Threatened and Endangered Species Regulations

Endangered species legislation was passed in Texas in 1973 and amended in 1981, 1985, and 1987 (TPWD 1991). Subsequently the 1975 and 1981 revisions to the TPWD code established a state regulatory vehicle for the management and protection of threatened and endangered species. Chapters 67 and 68 (1975 revisions) of the code authorize the TPWD to formulate lists of threatened and endangered fish and wildlife species and to regulate the taking or possession of the species. A 1981 revision (and 1985 amendment) to the code provides authority for the TPWD to designate plant species as threatened or endangered and to prohibit commercial collection or sale of these species without permits. The ensuing TPWD regulations are Sections 65.171–65.177, 65.181–65.184, and 69.01–69.14 of the Texas Administrative Code (TAC) (Chapters 67, 68, and 88 of the TPWD Code, respectively). These sections regulate the taking, possessing, transporting, exporting, processing, selling/offering for sale, or shipping of endangered or threatened species of fish, wildlife, and plants. Neither specific criteria for the listing of plant and animal species nor protection from indirect take (i.e., destruction of habitat or unfavorable management practices) is found in either of the above-mentioned statutes or regulations for state threatened species (TPWD 1991). Based on this information, unlike the federally listed species, there is no protection of habitat or for indirect take afforded to species that are state-threatened.

4.2 Assessment of Protected Species Occurrence

Protected species of known or potential occurrence in Fayette County are listed below in Table 3 (USFWS 2022a, 2022b; TPWD 2022a). No designated critical habitat for federally listed species occurs in the project area or vicinity (USFWS 2022c). For each of the species listed in Table 3, the following paragraphs discuss their ecology, including habitat preferences and distribution, and provide an evaluation of their potential to occur in the project area.

Table 3. Protected Species Potentially Occurring in Fayette County, Texas

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Conservation Status</th>
<th>Potential to Occur in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIRDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attwater’s Prairie-chicken</td>
<td>Tympanuchus cupido attwateri</td>
<td>E</td>
<td>None</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>BGEPA</td>
<td>None</td>
</tr>
<tr>
<td>Eastern Black Rail</td>
<td>Laterallus jamaicensis</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Piping Plover</td>
<td>Charadrius melodus</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Rufa Red Knot</td>
<td>Calidris canutus rufa</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Swallow-tailed Kite</td>
<td>Elanoides forficatus</td>
<td>–</td>
<td>T</td>
</tr>
<tr>
<td>White-faced Ibis</td>
<td>Plegadis chihi</td>
<td>–</td>
<td>T</td>
</tr>
<tr>
<td>White-tailed Hawk</td>
<td>Buteo albicaustratus</td>
<td>–</td>
<td>T</td>
</tr>
<tr>
<td>Whooping Crane</td>
<td>Grus americana</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Wood Stork</td>
<td>Mycteria americana</td>
<td>–</td>
<td>T</td>
</tr>
<tr>
<td>Zone-tailed Hawk</td>
<td>Buteo albonotatus</td>
<td>–</td>
<td>T</td>
</tr>
<tr>
<td>MOLLUSKS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>False Spike</td>
<td>Fusconaia mitchelli</td>
<td>PE</td>
<td>T</td>
</tr>
<tr>
<td>Guadalupe Orb</td>
<td>Cyclonaiaus necki</td>
<td>PE</td>
<td>T</td>
</tr>
</tbody>
</table>

PROTECTED SPECIES HABITAT ASSESSMENT
LCRA FAYETTE POWER PROJECT COAL COMBUSTION BYPRODUCT LANDFILL
FAYETTE COUNTY, TEXAS
Table 3. Protected Species Potentially Occurring in Fayette County, Texas

<table>
<thead>
<tr>
<th>Species</th>
<th>Conservation Status</th>
<th>Potential to Occur in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Federal</td>
</tr>
<tr>
<td>Texas Fawnsfoot</td>
<td>Truncilla macrodon</td>
<td>PT</td>
</tr>
<tr>
<td>Texas Pimpleback</td>
<td>Quadrula petrina</td>
<td>PE</td>
</tr>
<tr>
<td>INSECTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monarch Butterfly</td>
<td>Danaus plexippus</td>
<td>C</td>
</tr>
<tr>
<td>REPTILES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Horned Lizard</td>
<td>Phrynosoma cornutum</td>
<td>–</td>
</tr>
<tr>
<td>PLANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navasota Ladies’-tresses</td>
<td>Sprianthes parkii</td>
<td>E</td>
</tr>
</tbody>
</table>

1E = Endangered; T = Threatened; PE = Proposed Endangered; PT = Proposed Threatened; C = Candidate for listing as threatened or endangered; BGEPA = Protected under the Bald and Golden Eagle Protection Act

Sources: USFWS 2022a, 2022b and TPWD 2022a.

4.2.1 Federally Protected Species

Attwater’s Prairie-chicken (Endangered)

The southernmost subspecies of the greater prairie-chicken, Attwater’s prairie-chicken (*Tympanuchus cupido attwateri*) was federally listed as endangered in 1967. Its historic range extended from southwest Louisiana to possibly near Brownsville, Texas; however, the subspecies currently occurs in the wild at only three locations: the Attwater Prairie-Chicken National Wildlife Refuge in Colorado County, Texas; the Texas City Prairie Preserve in Galveston County, Texas; and at a private ranch in Goliad County, Texas (USFWS 2010). Preferred habitat includes coastal prairie described as well-drained grassland that supports some weeds or shrubs as well as grasses, with cover varying from light to heavy in density. Both diversification within the grassland type and presence of available surface water in the summer are essential (USFWS 2010).

The project area is outside the current range of Attwater’s prairie-chicken and there are no records of the species from the project area or immediate vicinity (TXNDD 2022, eBird 2022, iNaturalist 2022). Field survey of the project area did not identify suitable habitat for Attwater’s prairie-chicken and the species does not occur within the project area or vicinity. The proposed project activities will have no impact on the species.

Bald Eagle (protected under BGEPA)

The bald eagle is the second largest bird of prey in North America, with a wingspan of 5.5 to 8 feet. In adult plumage, the species exhibits a distinguishable white head and tail with dark brown body and wings, a yellow hooked beak, and yellow feet. In 2007, the USFWS removed the bald eagle from the list of endangered and threatened wildlife (72 FR 37346), and TPWD recently removed the species from the state list of threatened species (45 Texas Register 2188, effective March 30, 2020). However, the species receives federal protection under provisions of the BGEPA, as previously discussed.
The bald eagle is a widespread migratory species, ranging over much of the U.S. and Canada. Primarily foraging on fish and occasionally waterfowl and other prey, including carrion, bald eagles prefer habitats associated with large bodies of water where prey is readily available (USFWS 1989). In Texas, the bald eagle is present year-round and may be found during breeding and wintering seasons as well as during migration. It is a rare summer resident, primarily in the eastern third of the state, but is found more widely throughout most of the state during migration and winter (Oberholser 1974, Lockwood and Freeman 2014). In the winter, bald eagles are locally common only on large reservoirs in the eastern third of Texas (Lockwood and Freeman 2014). Breeding populations generally occur in the eastern half of the state along the Gulf Coast and on major inland lakes and reservoirs, while nonbreeding birds (i.e., migrants and winter residents) can occur throughout the state (USFWS 1993, Campbell 2003).

Migrating eagles generally arrive in Texas between September and October, with nesting typically occurring from October through June (USFWS 1993, Campbell 2003). Nesting sites often include tall trees or cliffs located along river systems or within one to two miles of some other large body of water (e.g., reservoirs) where they forage. In these areas, nests are often located on ecotones in areas where forest, marsh, and water converge. Mature trees taller than the surrounding forest (approximately 40 to 120 feet tall) that provide an unobstructed flight path are typically used for nesting and roosting. Common nest tree species in Texas include loblolly pine, bald cypress (Taxodium distichum), oaks, eastern cottonwood (Populus deltoides), and American sycamore (Platanus occidentalis). Mating bald eagle pairs exhibit high site fidelity to nesting territories and often rebuild in the same location or vicinity of a fallen nest (USFWS 2007a).

No bald eagle nests occur in the project area; however, one bald eagle nest is located approximately 1.75 miles south of the dam on Fayette County Reservoir (Barron 2021). A query of TXNDD reported a bald eagle territory in the vicinity of the project, generally centered on Fayette County Reservoir and including the project area (TXNDD 2022) (Figure 4). A query of eBird (2022) and iNaturalist (2022) reported no observations of bald eagles within one mile of the project area, although a number of sightings have been reported from the north side of Fayette County Reservoir approximately three miles north of the project area. No bald eagle nests were observed in the project area during field surveys by B&A on November 23, 2021. While bald eagles may occur in proximity to the project area, the proposed activities are not expected to adversely affect the species.

Eastern Black Rail (Threatened)

The eastern black rail (Laterallus jamaicensis jamaicensis) was listed by USFWS as threatened in 2020 (85 FR 63764). It is a slight rail between five and six inches tall that is very secretive and rarely observed. The subspecies generally occurs in salt, brackish, and freshwater marshes, on pond borders, and in wet meadows and grassy swamps (TPWD 2022a; Eddleman et al. 1994). The rail nests in high portions of salt marshes, shallow freshwater marshes, wet meadows, and flooded grassy vegetation, nesting in or along the edge of marshes, sometimes on damp ground, but usually on a mat of the previous year’s dead grasses and often hidden in marsh grass or at the base of pickleweed (Salicornia spp.) plants (TPWD 2022a, Eddleman et al. 1994). In Texas, the species is a rare migrant in the eastern third of the state, east of the Balcones Escarpment, and a rare to locally uncommon resident on the upper and central coasts of Texas, where it has been documented breeding (Lockwood and Freeman 2014, Eddleman et al. 1994). Inland migrants in the
state have been detected in the fall from early August through early October, with winter residents arriving by the end of this period, and spring migrants found inland from early April through early May (Lockwood and Freeman 2014). The species migrates at night, though little is known of its migratory behavior or stopover habitat because it is rarely detected (Lockwood and Freeman 2014, Eddleman et al. 1994).

The USFWS (2022a, 2022b) does not list the eastern black rail as potentially occurring in Fayette County; however, TPWD (2022a) includes the species on its county list. Occurrence of the subspecies within or in proximity to the project area has not been recorded (TXNDD 2022, eBird 2022, iNaturalist 2022). No habitat for the eastern black rail occurs in the project area and the proposed project activities are not anticipated to adversely impact the species.

Piping Plover (Threatened)

A small but stocky migratory shorebird of approximately seven inches in length with a wingspan of nearly 15 inches, the piping plover (Charadrius melodus) is one of several plovers marked with a single black neck band (Campbell 2003, USFWS 2021b). Distinguishing features include its combination of short and stout bill, pale upperparts, and orange legs in all seasons. The piping plover is a federally threatened migratory bird species that breeds in the northern Great Plains of the U.S. and Canada, along beaches of the Great Lakes, and along the Atlantic coastline from North Carolina to Newfoundland (Haig and Oring 1987, USFWS 2021e). It was listed as threatened in this portion of its range on December 11, 1985 (50 FR 50726).

Piping plovers spend three to four months of the year on their breeding grounds in the northern U.S. and Canada and the remainder of the year on their wintering grounds. One of their primary wintering areas is the Texas coast, where it is estimated that more than 35 percent of the known piping plover population overwinters (Campbell 2003). These plovers arrive in Texas between late July and late October and depart for their breeding grounds between early March and mid-May (Oberholser 1974). Little is known of the migration routes of the piping plover since the species is not often observed at inland locations during migration, but in Texas most individuals appear to pass east of the Balcones Escarpment (Lockwood and Freeman 2014). Primary habitats used during migration include beaches and alkali flats, which are preferred, although reservoir shorelines, natural lakes, rivers, marshes, industrial ponds, and fish farms have all been documented to be used, with substrate type predominantly mudflat (Elliott-Smith and Haig 2004).

No occurrences of piping plover are recorded within or immediately adjacent to the project area (TXNDD 2022, eBird 2022, iNaturalist 2022). The nearest records of occurrence are approximately 13 miles to the northeast at Lake Somerville State Park (eBird 2022). No habitat for the piping plover occurs in the project area and the project is not expected to impact the species.

Rufa Red Knot (Threatened)

The rufa red knot (Caladris canutus rufa) is a federally threatened sandpiper species known for its long migrations, breeding in the central Canadian Arctic and wintering along the Atlantic coasts of Argentina and Chile, the north coast of Brazil, the northwest Gulf of Mexico (particularly at Laguna Madre), and the southeast United States (USFWS 2013, 2014). The species was listed as threatened on January 12, 2015 (79 FR 73705). Red knots are principally marine shorebirds in the non-breeding season, feeding on polychaete worms, small crabs, and marine mollusks (Baker et al. 2013). In appearance, the species is a
Figure 4
Protected Species Occurrences
LCRA Fayette Power Project
Coal Combustion Byproduct Landfill
Fayette County, Texas

- 1-mile Search Radius
- Project Boundary
- Natural Diversity Database (2022)
- Bald Eagle
- Rookery
- Whooping Crane Migration Corridor
- 80 mi (75% of sightings)

Data Source: Texas Natural Diversity Database (TPWD 2022)
Base Map: 2020 NGIP Imagery
bulky, medium-sized shorebird about 9 to 11 inches in length with a wingspan of approximately 20 inches, noted by its rusty-red in color with reddish head and breast and darker upper parts exhibiting feathers with dark brown-black centers and rufous and grey edges in breeding plumage (USFWS 2011, 2013). In Texas, the species is very rarely detected inland and is a rare migrant through the eastern half of the state, with inland migrants more commonly detected in the fall (Lockwood and Freeman 2014). Inland habitats used in migration include beach habitats, such as saline lakeshores, as well as sandflats and mudflats with high densities of benthic bivalves (Baker et al. 2013).

No sightings of the red knot have been reported from the project area or immediate vicinity (TXNDD 2022, eBird 2022, iNaturalist 2022). The nearest recorded occurrences are to the northwest near Austin, Texas, at Hornsby Bend Bird Observatory approximately 60 miles away (eBird 2022). No habitat for the red knot occurs in the project area and the proposed project is not expected to impact the species.

Whooping Crane (Endangered)

The endangered whooping crane (*Grus americana*) is North America’s tallest bird, with a standing height of five feet or more (Urbanek and Lewis 2020). The species was listed on March 11, 1967 (32 FR 4001) with critical habitat later designated (43 FR 20938). Although four geographically distinct populations of whooping cranes exist in the wild, the Aransas-Wood Buffalo Population (AWBP) is the largest and the only natural, self-sustaining population. The AWBP breeds in isolated marshy areas of Wood Buffalo National Park in Canada’s Northwest Territories and overwinters on the Texas coast. Each fall, the entire population of whooping cranes migrates approximately 2,600 miles from this national park in northern Canada to the Aransas National Wildlife Refuge (ANWR) and adjacent areas of the Texas mid coast in Aransas, Calhoun, and Refugio counties, where the species overwinters in oak savannahs, salt marshes, and bays (Campbell 2003, Canadian Wildlife Service [CWS] and USFWS 2007, USFWS 2009a).

During migration, the AWBP of whooping cranes generally follow the same flight path, with the normal migration corridor in Texas stretching from the eastern edge of the panhandle eastward to the east-central portion of the state, with most migrants crossing over Central Texas. Travel during migration is typically during daylight hours in groups of one to five birds, using thermals and wind currents at high altitudes (1,000 to 6,000 feet) to travel extended distances (200 to 400 miles per day) with minimal effort at speeds up to 30 miles per hour. Inclement conditions, such as shifting wind direction and the loss of thermal currents later in the day, demand excessive energy expenditure and cause whooping cranes to seek stopover habitat for roosting and foraging. The majority of the whooping crane migration stopover sites are located in the central part of the U.S., along significant wetland complexes and riverine habitats, with sporadic stopover sites in Central Texas (CWS and USFWS 2007). In migration, whooping cranes are known to utilize a variety of habitat types, including freshwater marshes, wet prairies, inland lakes, small farm ponds, upland grain fields, and riverine systems. Shallow flooded freshwater wetlands are used for roosting, while croplands and emergent wetlands are used for feeding. Riverine habitats, such as submerged sandbars, are also often used for roosting. Most roost sites are within 0.6 mile of a suitable feeding area and are typically distanced from human development. Low elevation flight is common during travel between roosting and foraging habitats, during inclement conditions, and when taking off and landing at stopover sites. Each whooping crane makes approximately 7 to 9 stopovers in the U.S. during each migration (Armbruster 1990, CWS and USFWS 2007, Howe 1987, Howe 1989, Lingle et al. 1991).
In relation to the typical AWBP migration corridor (Tacha et al. 2010), the project area is located near the center of the corridor (Figure 4), suggesting that potential exists for whooping cranes to migrate through the project area. There are no records of whooping cranes from the project area or immediate vicinity (TXNDD 2022, eBird 2022, iNaturalist 2022). The nearest sighting is approximately 20 miles to the southwest in Muldoon, Texas (eBird 2022).

B&A performed a whooping crane habitat assessment to identify potential whooping crane migration stopover habitat within one mile of the project area. Potential migration stopover habitat was calculated using the methodology outlined in the Watershed Institute (2013). Based on the results of B&A’s habitat assessment, there are no water features within one mile of the project area that are considered potential migration stopover habitat. Due to the lack of migration stopover sites in the project area and vicinity, the project is not expected to adversely impact whooping cranes.

False Spike (Proposed Endangered)

The false spike (*Fusconaia mitchelli*) is a medium-sized freshwater mussel that was proposed for federal listing as endangered with critical habitat on August 26, 2021 (86 FR 47916). Its shell is tawny-brown to dark brown or black, oval to round in shape, and up to 5.2 inches in length (Howells 2014, NatureServe 2022). Its historical range included the Brazos, Colorado, and Guadalupe river systems in Central Texas, and the Rio Grande system in New Mexico, Texas, and Mexico (Howells 2014, 74 FR 66260). Currently the false spike occurs in four populations: the Little Brazos River and some tributaries (Brazos River Basin), the lower San Saba and Llano Rivers (Colorado Basin), and in the lower Guadalupe River (Guadalupe River Basin) (86 FR 47916). Suitable habitat includes larger creeks and rivers, often in sand, gravel, or cobble substrates, in slow to moderate flows at shallow depths and not within impoundments (Howells 2014). The life history of most mussels in Texas is poorly understood, and the glochidial host fish for the false spike is unknown (74 FR 66260).

The project area is outside of the recognized range for the false spike, and recorded occurrence does not exist for the project area or immediate vicinity (USFWS 2021b, TXNDD 2022, iNaturalist 2022). Erosion/sedimentation control measures will be implemented prior to construction to minimize adverse impacts to receiving waters from erosion and sedimentation. Based on the known range information for the species and lack of suitable habitat in the project area, the false spike does not occur in the project area and the project is not expected to adversely affect the species.

Guadalupe Orb (Proposed Endangered)

Recently recognized in 2018 as a separate species from the Texas pimpleback (*Cyclonaias [Quadrula] petrina*), the Guadalupe orb was first identified from the San Marcos River in the San Antonio/Guadalupe River Basin, to which the species is believed endemic (Burlakova et al. 2018, NatureServe 2022). This freshwater mussel species was proposed for federal listing as endangered with critical habitat on August 26, 2021 (86 FR 47916). The Guadalupe orb exhibits a yellow to tan, brown to black, and sometimes with green rays or concentric blotches, subquadrate to suboval shell that is moderately inflated and relatively thin, reaching a length of approximately 2.5 inches (Burlakova et al. 2018). In the San Marcos River, the species has been observed in flowing water with a sand and gravel substrate, mostly in water less than 6.6 feet deep (Burlakova et al. 2018, NatureServe 2022).
The project area is outside of the recognized range for the Guadalupe orb and records for the species do not exist for the project area or immediate vicinity (USFWS 2021b, TXNDD 2022, iNaturalist 2022). Erosion/sedimentation control measures will be implemented prior to construction to minimize adverse impacts to receiving waters from erosion and sedimentation. Based on the known range information for the species and lack of suitable habitat in the project area, the Guadalupe orb does not occur in the project area. Construction of the proposed project is not expected to adversely affect the Guadalupe orb.

Texas Fawnsfoot (Proposed Threatened)

The Texas fawnsfoot (*Truncilla macrodon*) is a small, relatively thin-shelled mussel that can reach 2.4 inches in length but is usually much smaller. It is proposed for federal listing as threatened with critical habitat (86 FR 47916). Its shell is oval to elliptical with coloration that varies from tan to brown to green (Howells 2014, USFWS 2015). The Texas fawnsfoot is a very rare, freshwater mussel species endemic to Central Texas that historically inhabited the Colorado and Brazos drainages, with little known about its habitat (Howells 2014, USFWS 2015). Currently it is known from seven populations: East Fork Trinity River, Middle Trinity River, Clear Fork Brazos River, Upper Brazos River, Middle/Lower Brazos River, San Saba/Colorado Rivers, and Lower Colorado River (86 FR 47916). Preferred habitat includes moderate-sized creeks and rivers in flowing water with substrates of mud, sand, and gravel (Howells 2014).

Recorded occurrence of the species does not exist for the project area or immediate vicinity (TXNDD 2022, iNaturalist 2022). The nearest recorded occurrence is from the Colorado River south of La Grange, Texas, approximately seven miles west of the project area, where live individuals were not observed but shells ranging from recently dead to subfossil were found (TXNDD 2022). Field reconnaissance of the project area revealed no suitable habitat for Texas fawnsfoot. The Colorado River, two to three miles south/southwest of the project area, is the only large perennial stream in the vicinity that could provide suitable habitat for the species. Erosion/sedimentation control measures will be implemented prior to construction to minimize adverse impacts to receiving waters from erosion and sedimentation. Construction of the proposed project should have no impact on the Texas fawnsfoot.

Texas Pimpleback (Proposed Endangered)

The Texas pimpleback (*Quadrula petrina*) is proposed for federal listing as endangered with critical habitat (86 FR 47916). An endemic species to the state, the Texas pimpleback historically occurred across the Colorado River basin. It currently is known to occur in five isolated populations: Concho River, Upper San Saba River, Lower San Saba river/Colorado River, Llano River, and the Lower Colorado River (86 FR 47916). Only the Lower San Saba and Llano River populations are known to be successfully reproducing (86 FR 47916). The shell of the species is approximately four inches long and is yellow to tan, brown to black, and sometimes with green rays or concentric blotches (Howells 2014). The species inhabits moderate to larger creeks and rivers in flowing waters and mud, sand, or gravel bottoms, or sometimes in gravel-filled cracks in bedrock, often at depths less than 6.6 feet, but is not known to occur in impoundments (Howells 2014). The life history of most mussels in Texas is poorly understood, and the glochidial host fish for the Texas pimpleback is unknown but is probably catfish (Howells 2014, 74 FR 66260).

Recorded occurrence of the species does not exist for the project area or immediate vicinity (TXNDD 2022, iNaturalist 2022). The nearest recorded occurrence is from the Colorado River south of La Grange, Texas,
approximately seven miles west of the project area, where live individuals were not observed but shells ranging from recently dead to subfossil were found (TXNDD 2022). Field reconnaissance of the project area revealed no suitable habitat for the Texas pimpleback. The Colorado River, two to three miles south/southwest of the project area, is the only large perennial stream in the vicinity that could provide suitable habitat for the species. Erosion/sedimentation control measures will be implemented prior to construction to minimize adverse impacts to receiving waters from erosion and sedimentation. Construction of the proposed project should have no impact on the Texas pimpleback.

Monarch Butterfly (Candidate)

The monarch butterfly (*Danaus plexippus*), a member of the family Nymphalidae, is a charismatic North American species known for its bright orange wings with a black border and black veins (USFWS 2021b). Adult monarchs lay eggs on their obligate milkweed host plant (primarily *Asclepias* spp.), which their larvae rely on as a food source during development (USFWS 2021b, iNaturalist 2022). The monarch life cycle varies by geographic location, but in many regions where monarchs are present, monarchs breed year-round (USFWS 2020). Monarchs migrate through Texas in the fall and spring and are generally observed in a wide variety of habitats (iNaturalist 2022). Adult monarch butterflies require a diversity of blooming nectar resources, which they feed on throughout migration and during the breeding season. They also need milkweed (for both oviposition and larval feeding) embedded within this diverse nectaring habitat (USFWS 2020).

The project area provides potentially suitable habitat for the monarch butterfly. A search of the iNaturalist website identified one monarch observation approximately 1.7 miles southeast of the project area (iNaturalist 2022). Currently the monarch is a candidate for federal listing and is not provided protection under ESA; however, the USFWS encourages cooperative conservation measures since candidate species may warrant future protection under the ESA.

Navasota ladies’-tresses (Endangered)

Approximately 15 species of ladies’-tresses (genus *Spiranthes*), members of the orchid family Orchidaceae, occur in Texas and flower during the spring or fall. Each of these species is perennial, but relatively inconspicuous on the landscape, occurring as a basal rosette prior to flowering and then reducing to a single flowering scape, reaching a height of 8 to 15 inches. NLT, an endemic federally endangered species, has a historic range that includes a 13-county area of east-central Texas within the Post Oak Savannah Vegetational Area, as described by Gould et al. (1960). NLT typically flowers from mid-October to mid-November, and vegetative growth (the rosette stage) appears in springtime but may appear anytime between September and May (USFWS 1984a, Wonkka et al. 2012). Individual plants do not flower every year, and the flowering population fluctuates from year to year (Ariza 2013). Flowering response is likely correlated with available moisture during the vegetative phase (described above) and the period just prior to flowering (August–September) (Parker 2001, Wilson 2002, Hammons 2008, Ariza 2013).

NLT is a niche specialist that occupies openings in post oak woodland and savanna with grassland patches in sand to sandy loams, often along the streambanks of upland drainages or intermittent streams and in areas with suitable hydrologic factors, such as a perched water table associated with an underlying claypan (Wonkka et al. 2012, TPWD 2022a). According to USFWS (2009b), NLT is often found along the naturally
eroded slopes of the upper reaches of drainages and ephemeral streams, or occasionally near the margins of seeps and swales. Ariza (2013) describes habitat for the species as a distinctive niche along the upper reaches of drainages between the floodplain and open grasslands within the post oak savannah, with the species occurring in naturally disturbed areas of small openings within 80 meters (262 feet) of drainages. Hammons et al. (2009) describes habitat as usually within 600 feet of ephemeral and intermittent drainages. Based on documented population locations, proximity to streams appears important but may exceed these thresholds seemingly when edaphic requirements are met (i.e., high moisture availability).

As an edaphic endemic, suitable soils for NLT are characterized as well-drained, sand to sandy loam surface soils that often have a shallow underlying claypan that is thought to create sufficient subsurface hydrology to support NLT (USFWS 1984a, 2009b, Hammons 2008, Ariza 2013, TPWD 2022a). Vegetative associates include little bluestem (*Schizachyrium scoparium*), splitbeard bluestem, broomsedge bluestem, pinkscale blazing star (*Liatris elegans*), nodding ladies’-tresses, and sundews (*Drosera* spp.) in the herbaceous stratum. Commonly associated trees and shrubs include post oak, blackjack oak, yaupon, farkleberry, and American beautyberry (*Callicarpa americana*) (USFWS 2009b).

Appropriate microsite conditions for the species are associated with soil moisture requirements and typically include a perched water table, commonly caused by the subsurface claypan typical of post oak savannah soils, as previously discussed (TPWD 2021, TPWD 2022a, Wonkka et al. 2012). Adequate light availability, such as that provided by canopy gaps in otherwise closed-canopy, forested habitat is also required, and NLT has been found to typically occur where canopy cover is greater than 40 percent (Wonkka et al. 2012, Ariza 2013). Optimal microhabitat is characterized by small natural clearings within woodlands or at their margins along the dripline, followed by the margins of wildlife trails and upper watershed stream banks, where the aforementioned edaphic criteria are met (Wonkka et al. 2012). USFWS (1984a) typifies the species’ habitat as a late-successional niche within established woodlands; however, occurrence along fencerows and rights-of-way within post oak woodlands and savannas has also been reported, suggesting the importance of either periodic disturbance or high light availability (Wilson 2002, Wonkka et al. 2012). NLT is also known to occur in areas where edaphic factors such as high aluminum content or hydrologic factors associated with a perched water table limit competing vegetation in the herbaceous layer (Texas Organization for Endangered Species 1993).

Numerous factors limit the suitability of areas as habitat. NLT occurrence has been found to be associated low leaf litter cover (e.g., one to three leaves thick) that is uniformly distributed, and the species is unlikely where thick leaf litter is present (Hammons 2008, Ariza 2013). Further, occurrence of NLT is unlikely where dense pasture grasses (e.g., Bermudagrass and bahiagrass [*Paspalum notatum*]) or tall herbaceous vegetation are found (USFWS 2009b). Active grazing is also a deterrent to occurrence. Development of a dense woody understory replacing the herbaceous component through “thicketization” has been accredited with limiting suitability (USFWS 2009b, Ariza 2013, Wonkka et al. 2012). NLT is rarely found in floodplain forests or openings dominated by tall grasses (USFWS 1993).

Advancement in modeling potential NLT habitat within its range is presented by Wang et al. (2019). Through use of a maximum entropy (Maxent) modeling tool, they assessed the relative influence of biologically relevant topographic characteristics, land cover features, geological formations, and edaphic
(i.e., soil) factors on the occurrence of NLT. In doing so, they found local-scale edaphic variables to be the most informative, with soil taxonomic units explaining the highest amount of variance. Wang et al. (2019) imply that specific soil characteristics are correlated with the occurrence of symbiotic mycorrhizal fungi which NLTs are dependent. Soil taxonomic units exhibiting high predictability for presence of NLT were fine smectitic, thermic, Ultic Paleudalfs, and fine mixed, active, thermic, Udic Paleudalfs, which generally correspond to the Burlewash, Singleton, and Shiro soil series. The authors note that many areas with NLT occurrence are not mapped upon these generally associated soil series or on similar soil mapping units matching these characteristics, which they attribute to the occurrence of soil inclusions of the previously noted suitable soils in otherwise unsuitable soil mapping units.

A review of the TXNDD element of occurrence records revealed one NLT occurrence approximately five miles northeast of the project area (TXNDD 2022). Sandy loam and loamy fine sand soils occurring in the project area include the Rek and Straber soil series (Table 2, Figure 3). Based on review of aerial imagery, potentially suitable NLT habitat requiring field review was identified where woodland or savanna overlay suitable soils in the project area, with the most likely areas of potential occurrence of NLT along the dripline within the project area in proximity to the existing runoff channel.

Despite preliminary identification of potentially suitable NLT habitat by remote assessment, field survey did not identify suitable habitat within the project area. Factors limiting the suitability of habitat within the project area were dense cover of tall herbaceous vegetation that extended to the dripline; dense leaf litter in adjacent woodlands/savannahs; high browsing pressure; overly dense midstory cover by yaupon in woodlands; and/or absence of typical vegetative associates. Further, despite the mapped presence of potentially suitable soils, no areas exhibiting high soil moisture availability were identified (evidenced by soil saturation, seeps, inundation, or plant assemblage present) that characterize edaphic conditions required for suitable NLT habitat.

No NLTs were found as a result of presence/absence survey. Three nodding ladies’-tresses, a vegetative associate that closely resembles NLT, were observed in the project area (Figure 5); however, nodding ladies’-tresses occupies a much broader habitat than NLT and is not solely indicative of potential NLT habitat. As discussed above, habitat in the project area was determined unsuitable for NLT. As such, the project is not expected to adversely affect the species.

4.2.2 State Protected Species

Swallow-tailed Kite (Threatened)
The swallow-tailed kite (Elanoides forficatus) is a medium-sized bird with a wingspan of approximately 4 feet. This species rarely perches and remains aloft most of the day. The swallow-tailed kite is white on the underparts and head, black above and along the wing edges. It has a deeply forked tail, which allows for rapid maneuverability during flight. The diet of the species consists primarily of aerial insects, but may also include frogs, lizards, and nestling birds taken from tree branches (Meyer 1995). Typical habitat for the swallow-tailed kite includes lowland forested regions, particularly swampy areas, and it ranges into open woodland. It may also occur in marshes and along rivers, lakes, and ponds. Nests are constructed in tall trees in clearings or on forest woodland edges, usually in pine, cypress, or various deciduous trees (Tweit 2009).
Figure 5
Results of Navasota Ladies’ Tresses Survey
LCRA Fayette Power Project
Coal Combustion Byproduct Landfill
Fayette County, Texas

- Project Boundary
- NLT Survey Area based on Soil Characteristics
- Nodding Ladies’-tresses
 (Spiranthoe oennea)
The range of the species is primarily in Florida, but swallow-tailed kites have been observed in South Carolina, Georgia, Alabama, Mississippi, Louisiana, and southern Texas (Meyer 1995, 2022). The swallow-tailed kite breeds along the Atlantic and Gulf coastal plains and southern Mexico, and it winters southward to Argentina (Sauer et al. 2008, Tweit 2009, Meyer 2022).

The swallow-tailed kite has been documented in several locations in the vicinity of the project area, with the nearest observation located approximately two miles southwest of the project area (eBird 2022). However, due to the absence of suitable habitat for the species in the project area, the swallow-tailed kite is only expected to occur in the project area incidentally and is not expected to be impacted by the proposed project.

White-faced Ibis (Threatened)
The white-faced ibis (*Plegadis chihi*) is a medium-sized wading bird between 18 and 22 inches tall, with a long, down-curved bill and metallic bronze plumage. During the breeding season, there is a bare patch of skin around the eye that is bordered in white feathers. Nonbreeding adults and juveniles lack the bare patch and are duller in color (Ryder and Manry 1994). While the white-faced ibis prefers freshwater marshes for feeding and roosting, they also frequent swamps, ponds, rivers, sloughs, and irrigated rice fields, and may occur in brackish and saltwater habitats (TPWD 2022b). The species typically nests in low trees in marshes, or on the ground in bulrushes, reeds, or on floating mats (TPWD 2022b). It is found as a year-round resident in coastal areas and migrates through Texas to northern breeding grounds (Ryder and Manry 1994).

The white-faced ibis has been documented in several locations generally west and southwest of the project area; the nearest observation is approximately five miles southwest of the project area (eBird 2022). However, occurrences are expected to be incidental since the project area does not contain suitable habitat for the species. The white-faced ibis is not expected to be impacted by the proposed project.

White-tailed Hawk (Threatened)
The white-tailed hawk (*Buteo albicaudatus*) is found from southeastern Texas, through Mexico, to Central and South America (NatureServe 2022). It was formerly found in southern Arizona and has been increasing in abundance in Texas, after a decline in the 1950s and 1960s. Its preferred habitat includes open country, such as savanna, prairie, and arid habitats with mesquite. In Texas, it is found both near the coast on prairies, cordgrass (*Spartina* sp.) flats, and scrub-live oak, as well as further inland, on prairies, mesquite and oak savanna, and mixed savanna-chaparral (NatureServe 2022).

The white-tailed hawk has been documented in a few scattered locations in the vicinity of the project area; the nearest observation is approximately five miles east of the project area (eBird 2022). The white-tailed hawk is only expected to occur in the project area incidentally and is not expected to be impacted by the proposed project.

Wood Stork (Threatened)
The wood stork (*Mycteria americana*) is a large, long-legged wading bird, about 40 to 50 inches tall, with a wingspan of 60 to 65 inches. The plumage is white, except for black primaries and secondaries and a short black tail. The head and neck are absent of feathers and dark gray in color. The bill is black, thick at the base, and slightly decurved. Immature birds are dingy gray and have a yellowish bill (Farrand 1988).
The wood stork forages in prairie ponds, flooded pastures or fields, ditches, and other shallow standing water. This species usually roosts communally in tall snags, sometimes in association with other wading birds (i.e., active heronries), and breeds in Mexico and the southeastern U.S. (USFWS 2007b). Birds forage in Gulf states, Arizona, and California (Farrand 1988, USFWS 1984b). The species nested in Texas until the mid-1960s, but there have been no breeding records since then (Lockwood and Freeman 2014).

Many observations of the wood stork have been documented in the vicinity of the project area (eBird 2022, iNaturalist 2022). The nearest observation is a little under three miles north of the project area, on the northern side of the Fayette County Reservoir (eBird 2022). The wood stork is likely to pass through the project area; however, the project area does not contain suitable habitat and thus the wood stork is only expected to occur in the project area incidentally. The species is not expected to be impacted by the proposed project.

Zone-tailed Hawk (Threatened)

The zone-tailed hawk (*Buteo albonotatus*) is a medium-large raptor, averaging 20 inches in length, 51 inches in wingspan and 1.8 pounds in weight, with females tending to be larger than males. Similar to turkey vultures, which they resemble, the zone-tailed hawk is predominantly black. It breeds locally from the southwestern United States south through Mexico, Central America, and northern South America (Stoleson and Sadoti 2010). Populations in the northernmost part of the range, including Texas, are migratory. Zone-tailed hawks arrive in Texas between mid-March and mid-May, with most individuals arriving from late March to late April. They return south between early September and late October (Tweit 2007). Occurring in diverse lowland and higher-elevation habitats, the species ranges from riparian woodland and humid forests to semiarid open country and montane highlands (Johnson et al. 2000). The zone-tailed hawk prefers nesting habitats with broad, deep, rocky canyons containing streams flowing over stony beds (Call 1978). Habitat for the species is arid open country, including open deciduous or pine-oak woodland, mesa or mountain county, often near watercourses, and wooded canyons and tree-lined rivers along middle-slopes of desert mountains (Tweit 2007). Nesting may occur in various habitats and sites, ranging from small trees in lower desert, and giant cottonwoods in riparian areas, to mature conifers in high mountain regions (Cornell Lab of Ornithology 2022).

The zone-tailed hawk has not been documented in the immediate vicinity of the project area (eBird 2022, iNaturalist 2022, TXNDD 2022). The nearest documented observation is over 12 miles southwest of the project area (eBird 2022, iNaturalist 2022). The project area does not contain suitable habitat for the species. The zone-tailed hawk is only expected to occur in the project area incidentally during migration and is not expected to be impacted by the proposed project.

Texas Horned Lizard (Threatened)

The Texas horned lizard (*Phyrnosoma cornutum*) is a broad, flattened lizard with conspicuous elongated scales that form spines on the head, neck, and back (Conant and Collins 1998, Sherbrooke 2003). Preferred habitat includes semi-arid open areas with scattered vegetation consisting of bunchgrasses along with scattered cacti, yucca, mesquite, catclaw, juniper (*Juniperus* sp.), or other woody shrubs and small trees on a variety of soil types with some loose soil in which to bury themselves (Sherbrooke 2003). The Texas horned lizard once inhabited much of Texas, but the species has disappeared from large portions of its
The Texas horned lizard has not been documented in the immediate vicinity of the project area; the nearest observations are documented just over 20 miles west and northwest of the project area (iNaturalist 2022). The project area does not contain preferred habitat for the Texas horned lizard and the proposed project is not expected to impact the species.

4.2.3 Other Protected Species

The TXNDD element of occurrence records include documentation of a rookery in the vicinity of the project area; however, the record states that the rookery was last observed in 1979 (TXNDD 2022) (Figure 4). Species documented in the nesting colony include the cattle egret (Bubulcus ibis), little blue heron (Egretta caerulea), anhinga (Anhinga anhinga), olivaceous or neotropic cormorant (Nannopterum brasilianum), and great egret (Ardea alba). None of these species are state or federally listed as threatened or endangered, but they are protected by the MBTA. No evidence of this rookery was observed within or immediately adjacent to the project area during the November 2021 field investigation. Since this rookery was not documented in recent years and was not observed during the field investigation, the proposed project is not expected to impact the rookery.

5.0 SUMMARY AND RECOMMENDATIONS

B&A conducted a habitat assessment for state and federally protected species that could potentially occur within the project area and a presence/absence survey for NLT in November 2021. No habitat for federally listed endangered or threatened species was identified by B&A through desktop review or field reconnaissance. Several state and federally listed avian species may migrate through the project area, although proposed project activities are not anticipated to affect these species. The existing runoff channel identified in the project area does not provide habitat for freshwater mussels. Prior to construction, erosion/sedimentation control best management practices (BMPs) will be installed at all stream crossings in accordance with the project’s stormwater pollution prevention plan (SWPPP) to minimize sediment and other potential pollutants from leaving the project site. The project is not expected to result in water quality degradation of project area streams and should not result in adverse impacts to freshwater mussels. Bald eagles could nest in the vicinity of the project area; however, no bald eagles, eagle nests, or potentially suitable nesting habitat were observed within the project area. If eagles are observed in the project area prior to construction, it may be prudent to conduct a winter nest survey to determine if eagles are nesting within the project area or a 600-foot buffer. Results of the NLT presence/absence surveys did not identify NLTs or potentially suitable habitat for the species within the project area.
6.0 REFERENCES

Ariza, M. C. 2013. Mycorrhizal associations, life history, and habitat characteristics of the endangered terrestrial orchid *Spiranthes parksii* Correll and sympatric congener *Spiranthes cernua*: implications for conservation. PhD dissertation, Texas A&M University, College Station, TX.

Lockwood, M. W. and B. Freeman. 2014. The TOS handbook of Texas birds. 2nd ed. Texas A&M University Press, College Station, Texas, USA.

_____. 2022. Swallow-tailed Kite (Elanoides forficatus), version 1.0. In Birds of the World (A. F. Poole and F. B. Gill, Editors). Cornell Lab of Ornithology, Ithaca, NY, USA. Available at: https://doi.org/10.2173/bow.swtkit.01

____. 1989. Southeastern States Bald Eagle Recovery Plan. USFWS-Endangered Species Office, Atlanta, Georgia, USA.

____. 2014. Rufa Red Knot Background Information and Threats Assessment. Supplement to Endangered and Threatened Wildlife and Plants; Final Threatened Status for the Rufa Red Knot (Calidris canutus rufa) [Docket No. FWS-R5-ES-2013-0097; RIN AY17]. USFWS New Jersey Field Office, Pleasantville, New Jersey, USA.

____. 2015. USFWS Species Assessment and Listing Priority Assignment Form, Truncilla macrodon, Texas Fawnsfoot. USFWS Southwest Region. Austin, Texas, USA.

U.S. Geological Survey (USGS). 2019. 7.5 Minute Series Topographic Quadrangle (1:24,000 scale) for La Grange East, Texas. Denver, Colorado, and Reston, Virginia, USA.

Appendix A

Representative Photographs
Photo 1. Upland savannah within project area exhibiting dense herbaceous cover.

Photo 2. Dense understory dominated by eastern redcedar and yaupon within project area woodlands.
Photo 3. Woodland edge characterized by low herbaceous cover and gravelly soil outcrops.

Photo 4. Existing runoff channel in project area.
Photo 5. Water feature mapped as a pond within uplands in the project area.

Photo 6. Representative photograph of the habitat, open woodlands, where nodding ladies’-tresses SC01 and SC02 in Figure 5 were observed in the project area during NLT presence/absence survey.
Photo 7. Nodding ladies’-tresses (SC01 in Figure 5) individual documented in the project area.

Photo 8. Nodding ladies’-tresses (SC02 in Figure 5) individual documented in the project area.
Photo 9. Representative photograph of the habitat, road cut through woodlands, where nodding ladies’-tresses SC03 in Figure 5 was observed in the project area during NLT presence/absence survey.

Photo 10. Nodding ladies’-tresses (SC03 in Figure 5) individual documented in the project area.
Redlined Pages
I. General Information

1. Reason for Submittal

Type of Registration Application
- ☒ New
- ☐ Major Amendment
- ☐ Minor Amendment
- ☐ Notice of Deficiency (NOD) Response
- ☐ Transfer
- ☐ Name Change
- ☐ Other

2. Application Fees

☒ $150 Application Fee

Payment Method
☐ Check
☒ Online through ePay portal <www3.tceq.texas.gov/epay/>

If paid online, enter ePay Trace Number: 582EA000471145

3. Facility Information

Facility information must match regulated entity information on the Core Data Form.

Applicant: ☐ Owner ☐ Operator ☒ Owner/Operator

Facility TCEQ Solid Waste Registration No: 31575

Facility EPA ID: TXD083566547

Regulated Entity Reference No. (if issued): RN 100226844

Facility Name: Lower Colorado River Authority Fayette Power Project

Facility (Area Code) Telephone Number: (979) 249-3111

Facility physical street address (city, state, zip code, county): 6549 Power Plant Rd., La Grange, TX, 78945, Fayette County

Facility mailing address (city, state, zip code, county): PO Box 220, Austin, TX, 78767, Travis County

Latitude (Degrees, Minutes Seconds): 29°54'53.071258.8"N

Longitude (Degrees, Minutes Seconds): 96°45'12.72605.4"W
<table>
<thead>
<tr>
<th>CCR Unit No.¹</th>
<th>Unit Name</th>
<th>N.O.R. No.²</th>
<th>Unit Description³</th>
<th>Capacity</th>
<th>Unit Status²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR-101</td>
<td>Combustion Byproduct Landfill (CBL)</td>
<td>013</td>
<td>Cells 1 and 2D</td>
<td>12,400,000 Cu yds</td>
<td>Active</td>
</tr>
<tr>
<td>CCR-101</td>
<td>Combustion Byproduct Landfill (CBL)</td>
<td>013</td>
<td>Cells 2A, 2B, 2C and 3</td>
<td></td>
<td>Proposed⁴</td>
</tr>
</tbody>
</table>

¹ Registered Unit No. and N.O.R. No. cannot be reassigned to new units or used more than once.
² Unit Status options: Active, Closed, Inactive (built but not managing waste), Proposed (not yet built), Never Built, Transferred, Post-Closure.
³ If a unit has been transferred, the applicant should indicate which facility/permit it has been transferred to in the Unit Description column.
⁴ No schedule for development at the time of application submittal but all future cells are developed within the deed recorded footprint of unit CCR-101/NOR 013.
Table I.6.A. – Waste Management Information

<table>
<thead>
<tr>
<th>Waste No.</th>
<th>Waste Type(s)</th>
<th>Source</th>
<th>Volume (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fly Ash Unit 1 and 2</td>
<td>Generated from coal combustion process at FPP</td>
<td>6,728</td>
</tr>
<tr>
<td>2</td>
<td>Fly Ash Unit 3</td>
<td>Generated from coal combustion process at FPP</td>
<td>2,849</td>
</tr>
<tr>
<td>3</td>
<td>Bottom Ash Unit 1 and 2</td>
<td>Generated from coal combustion process at FPP</td>
<td>36,993</td>
</tr>
<tr>
<td>4</td>
<td>Bottom Ash Unit 3</td>
<td>Generated from coal combustion process at FPP</td>
<td>15,751</td>
</tr>
<tr>
<td>5</td>
<td>Synthetic Gypsum</td>
<td>Generated from coal combustion process at FPP</td>
<td>28,449</td>
</tr>
<tr>
<td>6</td>
<td>Refractory, bowl mill rejects, waste sand filter media, waste charcoal filter media, waste resin beads, ash bag house filters, pyrite and coal reject generated from maintenance operations</td>
<td>Generated from coal combustion process at FPP</td>
<td>737</td>
</tr>
<tr>
<td>7</td>
<td>Activated carbon waste</td>
<td>Generated from coal combustion process at FPP</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>ACI Pipe cleaning waste</td>
<td>Generated from coal combustion process at FPP</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Assign waste number sequentially. Do not remove waste number wastes which are no longer generated.
2 Disposal Rates based on 4-year average of actual deposition rates independent of facility generation rates.
Table I.6.C – Sampling and Analytical Methods

<table>
<thead>
<tr>
<th>Waste No.</th>
<th>Sampling Location</th>
<th>Sampling Method</th>
<th>Frequency</th>
<th>Parameter</th>
<th>Test Method</th>
<th>Desired Accuracy Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fly Ash Silo 2 and 3</td>
<td>See Note 2 SW846, representative grab samples</td>
<td>See Note 2 Waste will be sampled when there is a change in process</td>
<td>See Note 2 If necessary due to a change in process; process knowledge and TCLP HG and TCLP metals</td>
<td>See Note 2 If necessary due to a change in process; process knowledge and TCLP HG and TCLP metals</td>
<td>LOD/LOQ* See Note 2 HG 0.00007/0.0002 mg/L</td>
</tr>
<tr>
<td>2</td>
<td>Fly Ash Silo 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AS 0.2/0.5 mg/L</td>
</tr>
<tr>
<td>3</td>
<td>Bottom Ash Bunker 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BA 0.04/0.1 mg/L</td>
</tr>
<tr>
<td>4</td>
<td>Bottom Ash Bunker 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD 0.03/0.08 mg/L</td>
</tr>
<tr>
<td>5</td>
<td>Synthetic Gypsum Dome 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CR 0.04/0.1 mg/L</td>
</tr>
<tr>
<td>6</td>
<td>Boiler and associated equipment for coal processing 2 and 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PB 0.2/0.5 mg/L</td>
</tr>
<tr>
<td>7</td>
<td>Activated Carbon Injection System 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SE 0.4/1.0 mg/L</td>
</tr>
<tr>
<td>8</td>
<td>Activated Carbon Injection System 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AG 0.04/0.1 mg/L</td>
</tr>
</tbody>
</table>

1 from Table I.6.A., first column
2 All waste has been classified in accordance with 30 TAC 335, Subchapter R, and TCEQ RG-22 Guidelines for the Classification and Coding of Industrial and Hazardous Waste. Prior testing and/or process knowledge of the waste streams eliminates the need for further testing. In accordance with TCEQ waste classification regulations, waste classifications will only be revisited when there is a change in the process which necessitates the need to revisit the classification. Waste is only sampled and reclassified when there is a process change.
3 Waste classification has been audited and approved by TCEQ.
4 LOD Limit of Detection; LOQ Limit of Quantification
LOCATION RESTRICTIONS CERTIFICATION REPORT

COMBUSTION BYPRODUCT LANDFILL
FAYETTE POWER PROJECT
FAYETTE COUNTY, TEXAS

Prepared by
Geosyntec consultants
8217 Shoal Creek Blvd., Suite 200
Austin, Texas 78757

Rev. 0 – January-June 2022
TABLE OF CONTENTS

1. **INTRODUCTION** ... 1
 1.1 Purpose ... 1
 1.2 Background ... 1
 1.3 Organization of Report ... 2

2. **EVALUATION OF PROPOSED CBL LATERAL EXPANSION WITH RESPECT TO COMPLIANCE WITH 30 TAC 352, SUBCHAPTER E** .. 3
 2.1 Placement Above the Uppermost Aquifer (30 TAC §352.601) 3
 2.1.1 Location Restriction ... 3
 2.1.2 Uppermost Aquifer ... 3
 2.1.3 Compliance Assessment ... 4
 2.2 Wetlands (30 TAC §352.611) .. 5
 2.2.1 Location Restriction ... 5
 2.2.2 Wetlands Information .. 5
 2.2.3 Compliance Assessment ... 5
 2.3 Fault Areas (30 TAC §352.621) ... 5
 2.3.1 Location Restriction ... 5
 2.3.2 Fault Areas Information ... 6
 2.3.3 Compliance Assessment ... 6
 2.4 Seismic Impact Zones (30 TAC §352.631) .. 6
 2.4.1 Location Restriction ... 6
 2.4.2 Seismic Impact Zone Information .. 7
 2.4.3 Compliance Assessment ... 7
 2.5 Unstable Areas (30 TAC §352.641) ... 7
 2.5.1 Location Restriction ... 7
 2.5.2 Unstable Areas Information ... 8
 2.5.2.1 Geotechnical Investigations .. 8
 2.5.2.2 CBL Slope Stability ... 8
 2.5.2.3 Local Geologic Features .. 10
 2.5.2.4 Local Manmade Features or Events .. 10
 2.5.3 Compliance Assessment ... 10
3. EVALUATION OF CBL WITH RESPECT TO COMPLIANCE WITH 40 CFR SUBPART A, §257-1 TO §257-3 .. 11
 3.1 Floodplains (40 CFR §257.3-1) .. 11
 3.1.1 Location Restriction .. 11
 3.1.2 Floodplains Information .. 11
 3.1.2 Compliance Assessment .. 11
 3.2 Endangered Species (40 CFR §257.3-2) 11
 3.2.1 Location Restriction .. 11
 3.2.2 Endangered Species Information 12
 3.2.3 Compliance Assessment .. 12
 3.3 Surface Water (40 CFR §257.3-3) ... 12
 3.3.1 Location Restrictions ... 12
 3.3.2 Surface Water Information .. 13
 3.3.3 Compliance Assessment ... 14

4. REFERENCES ... 15

DRAWINGS
Drawing 1 Overall Site Plan (Geosyntec, 2021)
Drawing 2 Existing Site Conditions (Geosyntec, 2021)

FIGURES
Figure 1 Cross Section Location Map
Figure 2 Cross-Section A-A’
Figure 3 Cross-Section B-B’
Figure 4 Cross-Section C-C’
Figure 5 Cross-Section D-D’
Figure 6 Cross-Section E-E’
Figure 7 Wetlands Inventory Map

APPENDICES
Appendix A Certification by a Qualified Professional Engineer
Appendix B Boring Logs
Appendix C Wetlands Assessment (ECC, 2006)
Appendix D Database Query Documentation
Appendix ED Slope Stability Analysis Results
Appendix FE Protected Species Habitat Assessment (B&A, 2022)
1. INTRODUCTION

1.1 Purpose

This report presents an evaluation of the proposed lateral expansion (Subcells 2A, 2B, 2C and Cell 3) of the Combustion Byproduct Landfill (CBL) at the Lower Colorado River Authority (LCRA) Fayette Power Project (FPP) with respect to compliance with the Texas Commission on Environmental Quality’s (TCEQ’s) location restriction regulations for lateral expansions of coal combustion residuals (CCR) landfills, in accordance with Chapter 352, Subchapter E of Title 30 of the Texas Administrative Code (TAC) (i.e., 30 TAC 352, Subchapter E). These regulations were adopted by reference to Sections 257.60 to 257.64 of Part 257, Subpart D of Title 40 of the Code of Federal Regulations (CFR) (i.e., 40 CFR §257.60 to §257.64).

Geosyntec Consultants (Geosyntec) previously evaluated the compliance of the existing CBL (Cell 1 and Subcell 2D) with respect to 40 CFR §257.60 to §257.64. Of these location restrictions, the only one applicable to the existing CBL is the one related to the unstable areas (40 CFR §257.64) criterion is applicable to the existing CBL. Geosyntec (2017) demonstrated that the existing CBL is not situated in an unstable area and is therefore in compliance with that location restriction.

This report also presents an evaluation of the CBL with respect to compliance with the 40 CFR 257, Subpart A for floodplains (40 CFR §257.3-1), endangered species (40 CFR §257.3-2), and surface water (40 CFR §257.3-3).

A certification by a Qualified Professional Engineer that the location restriction demonstrations presented herein are appropriate for evaluating the CBL and that the demonstrations meet the requirements of 40 CFR §§257.60(a), 257.61(a), 257.62(a), and 257.63(a) is presented in Appendix A.

1.2 Background

The FPP is a coal-fired power plant located east of La Grange in Fayette County, Texas (FPP site). CCR generated at the FPP site are disposed in the CBL, a CCR landfill located south of the power plant and north of the railroad that borders FPP (Drawing 1).

At final buildout, the CBL will consist of up to three cells, Cells 1 to 3 (Drawing 2). Cell 1 was constructed in 1988 at natural grade with a recompacted clay liner. From October 2014 to May 2015, Subcell 2D was constructed below grade with a compacted clay liner. The remainder of Cells 2 and 3 will be constructed with a liner system that includes a geomembrane/compacted clay composite liner and leachate collection system.
1.3 **Organization of Report**

The remainder of this report is organized as follows:

- Section 2 presents an evaluation of the proposed CBL lateral expansion with respect to compliance with 30 TAC 352 Subchapter E, including placement above the uppermost aquifer (30 TAC §352.601), wetlands (30 TAC §352.611), fault areas (30 TAC §352.621), seismic impact zones (30 TAC §352.631), and unstable areas (30 TAC §352.641);

- Section 3 presents an evaluation of the CBL with respect to compliance with 40 CFR Subpart A for floodplains (40 CFR §257.3-1), endangered species (40 CFR §257.3-2), and surface water (40 CFR §257.3-3); and

- Section 4 provides a list of references cited in the report.
2. EVALUATION OF PROPOSED CBL LATERAL EXPANSION WITH RESPECT TO COMPLIANCE WITH 30 TAC 352, SUBCHAPTER E

2.1 Placement Above the Uppermost Aquifer (30 TAC §352.601)

2.1.1 Location Restriction

In accordance with 30 TAC §352.601, which adopts by reference 40 CFR §257.60, a lateral expansion of a CCR unit (landfill) must be constructed with a base that is located no less than five feet above the upper limit of the uppermost aquifer, or must demonstrate that there will not be an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR landfill and the uppermost aquifer due to normal fluctuations in groundwater elevations (including the seasonal high water table). “Uppermost aquifer” is defined in in 30 TAC §352.3(a), which adopts by reference 40 CFR §257.53, as “the geologic formation nearest the natural ground surface that is an aquifer, as well as lower aquifers that are hydraulically interconnected with this aquifer within the facility’s property boundary.” “Aquifer” is defined as “the geologic formation, group of formations, or portion of a formation capable of yielding usable quantities of groundwater to wells or springs”.

2.1.2 Uppermost Aquifer

The information presented below on FPP site geology was developed from historical soil boring and groundwater elevation data, Geosyntec (2013), and AMEC Environmental & Infrastructure, Inc. (AMEC) (2013).

The FPP site is located on the uppermost section of the Miocene-age Oakville Formation, with topographically high portions of the site capped by Pleistocene-age Willis Formation sands, silts, and gravels. The Oakville Formation regionally dips to the southeast, varies in thickness from 200 to 500 feet, and consists of calcareous fine- to medium-grained sand/sandstones and interbedded silt and clay units.

Locally the Oakville was formed in a fluvial environment characterized by small local streams. Sand bodies were deposited as channel-fill units ranging from 10 to 25 feet in thickness and overbank units of limited extent and thickness deposited during flood events. Three groundwater bearing units, designated at the site as the Upper Sand, Intermediate Sand, and Middle Sand, are present in the interval from the surface to a depth of approximately 100 feet. A fourth unit, the Lower Sand, is locally present at a depth greater than 100 feet. Each of these units is separated by low-permeability clays.

The Upper Sand is a low-yielding, laterally discontinuous, unconfined groundwater bearing unit present only at the topographically highest portions of the CBL area. It has been reported as dry at many locations in historical geotechnical studies and is not considered the uppermost aquifer for
location restrictions or groundwater monitoring purposes. In September 2013, TCEQ approved a Class 3 groundwater designation for the Upper Sand (AMEC, 2013).

The Intermediate Sand is a laterally discontinuous unit apparently present beneath the majority of the CBL. It appears to be enveloped by low permeability clays and largely isolated from the overlying Upper Sand and underlying Middle Sand, except towards the south of the FPP site where the Intermediate Sand may stratigraphically merge with the Middle Sand. The Intermediate Sand is considered the uppermost aquifer beneath the CBL. Groundwater is present in the Intermediate Sand under confined/semi-confined conditions, except where the unit is present near the surface towards the southwest of the CBL area.

2.1.3 Compliance Assessment

To comply with the location restriction for placement above the uppermost aquifer, the proposed lateral expansion (Subcells 2A to 2C and Cell 3) of the CBL must be constructed with base that is located no less than 5 feet above the upper limit of uppermost aquifer. At the FPP site, the Intermediate Sand is the uppermost aquifer. “Base” refers to the bottom of the compacted clay component of the landfill liner system.

The top of the clay liner elevations for the lateral expansion area are shown in Figure 1 along with the locations of hydrogeologic Cross-Sections A-A’ to E-E.’ These cross sections, detailed in Figures 2 to 6, show the site stratigraphy in the vicinity of the base of the expansion area, the top of the of the clay liner, the top of the subgrade, and the top of the Intermediate Sand.

The groundwater elevations in monitor wells completed in the Intermediate Sand are typically above the elevation of the top of the Intermediate Sand in the proposed CBL expansion area, confirming confined conditions. Therefore, the elevation of the top of the Intermediate Sand strata should be used for the purpose of determining compliance with 30 TAC 352.601 and 40 CFR §257.60 in areas where groundwater is under confined conditions. Seasonal high water table conditions are applicable to an unconfined aquifer scenario and are not relevant to the Intermediate Sand where it occurs under confined conditions. In the southwest corner of CBL in the footprint of proposed Subcell 3C (Figure 6), the Intermediate Sand is present near the surface and groundwater is unconfined. However, historical groundwater elevations in the Intermediate Sand monitor well in this area have been more than 5 feet below the proposed base of the Subcell 3C. The logs for the borings included in the cross sections are provided in Appendix B.

As shown in Figures 2 to 6, the base of the clay liner is closest to the upper limit of the Intermediate Sand in the central part of the proposed CBL expansion area where the liner grades approach the bottom of the central drainage corridor in the CBL and the Intermediate Sand extending from the east pinches out. However, because the proposed expansion area will be constructed with at least 5 feet separation from the Intermediate Sand, the CBL is in compliance with the location restriction for placement above the uppermost aquifer specified in 30 TAC §352.601.
2.2 **Wetlands (30 TAC §352.611)**

2.2.1 **Location Restriction**

In accordance with 30 TAC §352.611, which adopts by reference 40 CFR §257.61, a lateral expansion of a CCR landfill must not be located in wetlands unless it is demonstrated that the landfill meets certain requirements, as specified in paragraphs §257.61(a)(1) through §257.61(a)(5).

2.2.2 **Wetlands Information**

The CBL was sited in accordance with Texas Water Commission (TWC) Technical Guideline No. 2 (issued 1976). The design and location of the CBL was reviewed and approved by TCEQ in a letter dated January 18, 1988.

In 2006, Ecological Communications Corporation (ECC) conducted a wetlands assessment of the FPP site (Appendix C). Wetlands were not identified in the CBL area (ECC, 2006).

Geosyntec queried the U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) [http://www.fws.gov/wetlands/Data/Mapper.html] (USFWS, 2021) for wetlands in the vicinity of the CBL. Documentation of this query is provided in **Figure D-1 in Appendix D**. Two manmade features shown on **Figure D-1** were identified as freshwater ponds classified as PUBHx (Figure 7): (i) the existing runoff retention pond; and (ii) a manmade isolated topographic depression located in uplands along the east boundary of Subcell 2C. **In addition, the existing engineered drainage channel conveying runoff from the active area of Cell 1 to the runoff retention pond as shown on **Figure D-1** was identified as a riverine wetland classified as R4SBC. These features do not meet the definition of “Waters of the United States” in 40 CFR §120.2 and are not considered jurisdictional wetlands.

2.2.3 **Compliance Assessment**

Based on review of wetlands data for the CBL, the CBL is not located in jurisdictional wetlands. Therefore, the CBL is in compliance with the location restriction for wetlands specified in 30 TAC §352.611.

2.3 **Fault Areas (30 TAC §352.621)**

2.3.1 **Location Restriction**

In accordance with 30 TAC §352.621, which adopts by reference 40 CFR §257.62, a lateral expansion of a CCR landfill must not be located within 200 feet of the outermost damage zone of a fault that has had displacement in Holocene time unless it is demonstrated that a lesser setback distance will prevent damage to the structural integrity of the CCR landfill. “Holocene” is defined...
is defined in 30 TAC §352.3(a), which adopts by reference 40 CFR §257.53, as “the most recent epoch of the Quaternary period, extending from the Pleistocene Epoch, at 11,700 years before present, to present.”

2.3.2 Fault Areas Information

Geosyntec queried the U.S Geological Survey (USGS) Quaternary Fault and Fold Database of the United States [https://www.usgs.gov/natural-hazards/earthquake-hazards/faults] (USGS, 2021a) for faults in the vicinity of the CBL. The database contains information on Quaternary faults and associated folds that are believed to be the sources of earthquakes with a magnitude greater than 6. No faults or folds were identified near the site. A print out from this query is included in Appendix D. While normal, en echelon faults associated with the Mexia-Luling-Talco regional fault system are found regionally, most faults associated with that system are located west of Fayette County and the limited number identified in the County are located west of the FPP (Caran et al., 1982). Further, faults were not identified along the north-south regional geologic cross section that passes through the FPP site (Rogers, 1967) or shown within one mile of the site in the on-line geologic atlas of Texas using the USGS Texas Geology Web Map Viewer [https://txpub.usgs.gov/txgeology/] (USGS, 2021b) as shown on Figure D-2 in Appendix D.

In addition to a desktop study, Geosyntec also reviewed the current topographic map for the FPP, historical aerial photographs of the FPP from December 1997, December 2002, February 2008, May 2014, April 2017, and January 2018 available on Google Earth Pro, and historical soil boring information in the CBL area for evidence of surficial expression of faults. The occurrence of linear surface features or displacement through the surficial sediments could indicate recent activity associated with a fault. No such features were observed.

2.3.3 Compliance Assessment

Based on review of fault information for the CBL, the CBL is not located within 200 feet of the outermost damage zone of a fault that has had displacement in Holocene time. Therefore, the CBL is in compliance with the location restriction for fault areas specified in 30 TAC §352.621.

2.4. Seismic Impact Zones (30 TAC §352.631)

2.4.1 Location Restriction

In accordance with 30 TAC §352.631, which adopts by reference 40 CFR §257.63, a lateral expansion of a CCR landfill must not be located in seismic impact zones unless it is demonstrated that all structural components, including liners, leachate collection systems, and surface water control systems, are designed to resist the maximum horizontal acceleration in lithified earth material from a probable earthquake. “Seismic impact zone” is defined in 30 TAC §352.3(a), which adopts by reference 40 CFR §257.53, as “an area having a 2% or greater probability that
the maximum expected horizontal acceleration, expressed as a percentage of the earth’s gravitational pull (g), will exceed 0.10 g in 50 years.” “Maximum horizontal acceleration in lithified earth material” is defined as “the maximum expected horizontal acceleration at the ground surface as depicted on a seismic hazard map, with a 98% or greater probability that the acceleration will not be exceeded in 50 years, or the maximum expected horizontal acceleration based on a site-specific seismic risk assessment. This requirement translates to a 10% probability of exceeding the maximum horizontal acceleration in 250 years”.

2.4.2 Seismic Impact Zone Information

Seismic zones, which represent areas with the greatest seismic risk, are mapped by the USGS and readily available for all of the United States (https://www.usgs.gov/programs/earthquake-hazards/maps). The 2014 USGS National Seismic Hazard Map for the Conterminous U.S presenting the peak ground acceleration with a 2% or greater probability of exceedance in 50 years in the CBL vicinity is shown on Figure D-3 in Appendix D and indicates that the maximum expected horizontal acceleration at the site for this event is between 0.02 and 0.04 g (Shumway, 2019).

The Unified Hazard Tool for the Conterminous U.S on the USGS website (USGS, 2021c) was used to determine the peak ground acceleration for the CBL. The CBL is approximately located at 29.91° latitude, -96.76° longitude. The peak ground acceleration with a 2% or greater probability of exceedance in 50 years for 29.90° latitude, -96.75° longitude was estimated to be approximately 0.029 g. A screen shot from this query is included in Appendix D. This peak ground acceleration is less than the acceleration defining a seismic impact zone (i.e., > 0.10 g).

2.4.3 Compliance Assessment

Based on the information provided in this section, the CBL is not situated in a seismic impact zone and is therefore in compliance with the requirements of the location restriction for seismic impact zones, specified in 30 TAC §352.631.

2.5 Unstable Areas (30 TAC §352.641)

2.5.1 Location Restriction

In accordance with 30 TAC §352.641, which adopts by reference 40 CFR §257.63, an existing CCR landfill or the lateral expansion of a CCR landfill must not be located in an unstable area unless it is demonstrated that recognized and generally accepted good engineering practices have been incorporated into the design of the landfill to ensure that the integrity of the structural components of the landfill will not be disrupted. To assess whether an area is unstable, the following factors must be considered:

• on-site or local soil conditions that may result in significant differential settlement;

• on-site or local geologic or geomorphologic features; and

• on-site or local human-made features or events (both surface and subsurface).

“Unstable area” is defined in 30 TAC §352.3(a), which adopts by reference 40 CFR §257.53, as “a location that is susceptible to natural or human-induced events or forces capable of impairing the integrity, including structural components of some or all of the CCR unit that are responsible for preventing releases from such unit. Unstable areas can include poor foundation conditions, areas susceptible to mass movements, and karst terrains.” “Structural components” refers to “liners, leachate collection and removal systems, final covers, run-on and run-off systems, inflow design flood control systems, and any other component used in the construction and operation of the CCR unit that is necessary to ensure the integrity of the unit and that the contents of the unit are not released into the environment.”

2.5.2 Unstable Areas Information

2.5.2.1 Geotechnical Investigations

Geotechnical investigations were conducted at the CBL site by McClelland Engineers, Inc. (1983), Brytest, Inc. (1984), Jones and Neuse, Inc. (1992), and Geosyntec [2011, 2013]. The investigations included logging soil borings, conducting standard penetration tests, and collecting soil samples for geotechnical laboratory testing. Based on the results of the geotechnical investigations, soils within the upper 100 feet of the subsurface are predominantly classified as clay (CL or CH) and clayey sand (SC and SM) in accordance with the Unified Soil Classification System (USCS). The logs for the borings included in the hydrogeologic cross sections presented in Figures 2 to 6 are provided in Appendix B. Natural water contents of clays were generally near the plastic limits, and consequently the clays are characterized as stiff to hard. Sands were generally characterized as medium to very dense.

Based on the low compressibility of the site soils, these soils provide adequate foundation for the liner system construction and can support the load of the CBL without significant differential settlement.

2.5.2.2 CBL Slope Stability

The slope stability of the CBL and associated perimeter berm at final grade was evaluated for a critical cross section through Cells 1 to 3 at the center of landfill. This cross section has the tallest slopes. The materials in this section were conceptualized as CCR on a geosynthetic liner system underlain by a clay subgrade and abutted on the north by a perimeter berm. The near surface soils and perimeter berm material are predominantly classified as high plasticity clays (CH).
For long-term (drained) slope stability analyses of soil slopes in high plasticity clays, analyses using fully-softened strength parameters are recommended (e.g., Skempton, 1970; Wright, 2005). The fully-softened strength parameters of the subgrade, liner system, and perimeter berm soils were estimated based on the site-specific geotechnical data and, as applicable, the correlations presented in Wright (2005). The shear strength of the CCR were estimated based on the results of consolidated undrained triaxial compression tests conducted on CCR from FPP and on published data (e.g., Kim et al., 2005). Geotechnical properties used in the slope stability evaluation are summarized in Table 1.

Table 1. Geotechnical Properties Used in Slope Stability Analysis.

<table>
<thead>
<tr>
<th>Material</th>
<th>Unit Weight γ (lbs/ft3)</th>
<th>Fully-Softened Effective Stress Friction Angle ϕ ($^\circ$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgrade Clay</td>
<td>105</td>
<td>20</td>
</tr>
<tr>
<td>CCR</td>
<td>105</td>
<td>30</td>
</tr>
<tr>
<td>Liner System</td>
<td>105</td>
<td>15</td>
</tr>
<tr>
<td>Perimeter Berm</td>
<td>120</td>
<td>24</td>
</tr>
</tbody>
</table>

The slope stability of the critical section was analyzed using a method of slices coded in the computer program SLIDE®, Version 6.029 [Rocscience, 2014]. SLIDE® is a two-dimensional slope stability program that can be used to evaluate the factor of safety of circular and non-circular (block-type) slip surfaces using the simplified Bishop’s (1955) and Spencer’s (1967) methods, respectively. The simplified Bishop procedure satisfies moment equilibrium conditions only, which is suitable for circular slip surfaces. For non-circular slip surfaces, the Spencer method was used because it satisfies both force and moment equilibrium in each slice of the sliding mass.

Four slope stability scenarios were considered: (i) potential circular slip surfaces through the CCR at the south landfill slope; (ii) potential non-circular slip surfaces along the liner system at the south landfill slope; (iii) potential circular slip surfaces through the CCR and underlying liner system and subgrade clay at the south landfill slope; and (iv) potential circular slip surfaces through the perimeter berm and into the subgrade clay on the north landfill slope. The results of SLIDE analysis for each of the critical cross-sections are summarized in Table 2 and in Appendix DE. Table 2 also lists the minimum slope stability factor of safety recommended by TCEQ for CCR landfills (TCEQ, 2020).
Table 2. Results of Slope Stability Analysis.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Factor of Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIDE Analysis</td>
<td></td>
</tr>
<tr>
<td>Circular Slip Surface Through CCR</td>
<td>1.73</td>
</tr>
<tr>
<td>Block-Type Slip Surface Through Liner System</td>
<td>1.53</td>
</tr>
<tr>
<td>Circular Slip Surface Into Subgrade Clay</td>
<td>1.69</td>
</tr>
<tr>
<td>Circular Slip Surface Through North Perimeter Berm</td>
<td>1.54</td>
</tr>
<tr>
<td>TCEQ Guideline</td>
<td>1.5</td>
</tr>
</tbody>
</table>

For the conditions analyzed, the critical slip surface is a non-circular surface passing along the liner system at the south side of the landfill. The calculated slope stability factor of safety for this scenario is 1.53 using fully-softened strengths. All of the calculated factor of safety values exceed the minimum value of 1.5 recommended by TCEQ for CCR landfills under typical conditions.

2.5.2.3 Local Geologic Features

There are no known local geologic features that would classify the CBL site as an unstable area. Such features include active faults, seismic events, landslides, debris slides, karst terrain, and erosion by rivers. Further, the CBL is not located within the 500-year floodplain (FEMA FIRM 48149C0270C, October 2006: see Figure D-4 in Appendix D).

2.5.2.4 Local Manmade Features or Events

There are no known local manmade features or events that would classify the CBL site as an unstable area. Such features and events include mining, cut and fill activities during construction, excessive drawdown of groundwater, and construction over fill.

2.5.3 Compliance Assessment

Based on the information provided in this section, the CBL is not situated in an unstable area and is therefore in compliance with the requirements of the location restriction for unstable areas specified in 30 TAC §352.641.
3. EVALUATION OF CBL WITH RESPECT TO COMPLIANCE WITH 40 CFR SUBPART A, §257-1 TO §257-3

3.1 Floodplains (40 CFR §257.3-1)

3.1.1 Location Restriction

In accordance with 40 CFR §257.3-1, solid waste facilities in floodplains shall not restrict the flow of the base flood, reduce the temporary water storage capacity of the floodplain, or result in washout of solid waste, so as to pose a hazard to human life, wildlife, or land or water resources. “Base flood” is defined in 40 CFR §257.3-1(b)(1) as “a flood that has a 1 percent or greater chance of recurring in any year or a flood of a magnitude equaled or exceeded once in 100 years on the average over a significantly long period”. “Floodplain” is defined in 40 CFR §257.3-1(b)(2) as “the lowland and relatively flat areas adjoining inland and coastal waters, including flood-prone areas of offshore islands, which are inundated by the base flood”.

3.1.2 Floodplains Information

Geosyntec queried the latest Flood Insurance Rate Map (FIRM) for Fayette County, Texas and incorporated areas prepared by the Federal Emergency Management Agency (FEMA) to identify floodplains in the CBL. The map indicated that the CBL is not located within any special flood hazard areas (SFHAs) subject to inundation by the 1 percent annual chance flood. Specifically, as shown in Figure D-4 in Appendix D, the existing CBL is located within “ZONE X” defined as “Areas determined to be outside the 0.2% annual chance floodplain” meaning that it is not located within the mapped 500-year floodplain.

3.1.2 Compliance Assessment

Based on review of the floodplain information data, the operation and expansion of the CBL will not restrict the flow of the base flood and are therefore in compliance with the requirements of location restriction for floodplains specified in 40 CFR §257.3-1.

3.2 Endangered Species (40 CFR §257.3-2)

3.2.1 Location Restriction

In accordance with 40 CFR §257.3-2, solid waste facilities or practices shall not cause or contribute to the taking of any endangered or threatened species of plants, fish, or wildlife; and shall not result in the destruction or adverse modification of the critical habitat of endangered or threatened species as identified in 50 CFR Part 17. In addition to addressing this federal location restriction, this section also describes the potential for state listed threatened or endangered species to occur within the project area.
3.2.2 Endangered Species Information

A Protected Species Habitat Assessment (PSHA) for the CBL was prepared by Blanton and Associates, Inc. (B&A) (B&A, 2022) is attached to this report as Appendix E of this Report. The PSHA evaluates the potential for federally and state listed threatened, endangered, or other protected species (e.g., eagles) to occur in the project area and the potential for those species to be impacted by the project.

B&A (2022) completed a literature, database, and desktop review for federally and state listed protected species potentially occurring in Fayette County and the project area. The purpose of the review was to assess habitats and resources within the project area; to determine protected species of known or potential occurrence within Fayette County and the project vicinity; to evaluate the life history and ecology of these species in relation to the habitats and resources present in the project area; and to ultimately determine the potential for each protected species to occur in the project area. The review of background information was accompanied by a field investigation performed on November 23, 2021. During the field investigation, the project area was evaluated to verify information attained in the background review and to assess the potential for federally or state protected species to occur on the site. Additionally, a presence/absence survey for Navasota ladies’-tresses (NLT) (Spiranthes parksii) was conducted by two B&A biologists. B&A did not identify habitat for federally listed endangered or threatened species was not identified through desktop review or field reconnaissance. B&A also concluded that the proposed project activities are not anticipated to affect federally and state avian species that may migrate through the project area, bald eagles that could nest within a 600-foot radius of the project area if potentially suitable nesting habitat was present (no bald eagles, eagle nests, or potentially suitable nesting habitat were observed), freshwater mussels located in streams near the project area, or NLTs (no NLTs or potentially suitable habitat for the species were identified within the project area).

3.2.3 Compliance Assessment

Based on the results of the PSHA (Appendix E) the operation and expansion of the CBL is not expected to cause or contribute to the taking of any endangered or threatened species of plants, fish, or wildlife or the destruction or adverse modification of the critical habitat of endangered or threatened species as identified in 50 CFR Part 17. Therefore, the CBL in compliance with the requirements of location restrictions for endangered species specified in 40 CFR §257.3-2.

3.3 Surface Water (40 CFR §257.3-3)

3.3.1 Location Restrictions

In accordance with 40 CFR §257.3-3, a facility shall comply with the following requirements:
• A facility shall not cause a discharge of pollutants into waters of the United States that is in violation of the requirements of the National Pollutant Discharge Elimination System (NPDES) under section 402 of the Clean Water Act, as amended.

• A facility shall not cause a discharge of dredged material or fill material to waters of the United States that is in violation of the requirements under section 404 of the Clean Water Act, as amended.

• A facility or practice shall not cause non-point source pollution of waters of the United States that violates applicable legal requirements implementing an areawide or Statewide water quality management plan that has been approved by the Administrator under section 208 of the Clean Water Act, as amended.

In the above paragraphs, “discharge” is a term that includes, but is not limited to any spilling, leaking, pumping, pouring, emitting, emptying or dumping.

3.3.2 Surface Water Information

The information presented in this section is based on the Run-On and Run-Off Control System Plan (Plan) for the CBL (Geosyntec, 2021). The Plan describes how the run-on and run-off control systems were designed and constructed to prevent, collect and control flow onto and from the active portion of the CBL during the peak discharge of a 100-year, 24-hour storm event. The CBL run-on and run-off control systems meet and exceed the design requirements of 40 CFR §257.81(a) and 30 TAC §352.821 (i.e., 25-year, 24-hour storm event). Additional information regarding surface water management of the active portion of the CBL is summarized below.

Run-off from areas of Cell 1 that have not been covered with intermediate cover or final cover could have potentially come in contact with CCR. Therefore, this run-off and is managed as contact water. Contact water collected in Cell 1 is conveyed in the runoff channel to the Runoff Retention Pond (Drawing 2), as authorized under the Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0002105000 and designated as the “CBL Pond” in the permit. The perimeter and interim berms of Cell 1, as well as the underlying recompacted clay liner, keep run-off that has contacted CCR within the CBL until it flows to the runoff channel. CCR is placed in Cell 1 in a manner that directs this runoff in Cell 1 to the channel. Until an intermediate or final cover is placed over the CCR slopes, run-off from the CCR slopes will continue to be collected and directed to the runoff channel. Run-off from areas of the CBL with intermediate or final cover has not contacted CCR and can be directed into a stormwater channel and conveyed away from the CBL rather than being conveyed to the Runoff Retention Pond.

Contact water from the Subcell 2D Contact Water Retention Pond is managed through a pumping system which routes water collected in the pond to the runoff channel.
In general, water run-on to active areas of the CBL and Subcell 2D is controlled by topography and by the landfill perimeter berm. The north side of the CBL is on a topographic high, and the ground surface around the CBL primarily slopes to the south, and also towards the central stormwater channels (Drawing 2). In addition, the perimeter berm of the CBL deflects stormwater run-on, and this potential run-on is collected in a stormwater channel at the toe of the outboard side slope of the berm.

As described in the Plan, as new subcells are developed, run-on will continue to be controlled by berms and adjacent stormwater channels located at the outboard toe of the berms. In addition, the Plan will be revised whenever there is a change in conditions that would substantially affect the Plan in effect.

3.3.3 Compliance Assessment

Based on the engineering controls for surface water incorporated into the CBL design and the operational procedures employed at the landfill (Geosyntec, 2021), the operation and expansion of the CBL is not expected to cause discharge of pollutants into waters of the United States or a non-point source pollution of waters of the United States that is in violation of the requirements of the National Pollutant Discharge Elimination System (NPDES) under section 402 of the Clean Water Act, as amended. Therefore, the existing CBL is in compliance with location restriction requirements for surface water specified in 40 CFR §257.3-3.
4. REFERENCES

DRAWINGS
FIGURES
APPENDICES
APPENDIX A

Certification by a Qualified Professional Engineer
CERTIFICATION BY A QUALIFIED PROFESSIONAL ENGINEER

The report was prepared by Geosyntec under the direction of Dr. Beth Ann Gross, P.E., a qualified professional engineer, in accordance with 30 TAC §352.231(d) and 30 TAC §352.4.

I certify that location restriction demonstrations presented herein are appropriate for evaluating the Combustion Byproduct Landfill at the Fayette Power Project (FPP) and that the demonstrations meet the requirements of 40 CFR 257.60(a), 40 CFR 257.61(a), 40 CFR 257.62(a), and 40 CFR 257.63(a).

Beth Ann Gross
Printed Name of Licensed Professional Engineer

Signature

June 3, 2022
Date
APPENDIX B

Boring Logs
APPENDIX C

Wetlands Assessment
APPENDIX D

Database Query Documentation
APPENDIX DE

Slope Stability Analyses Results
APPENDIX EF

Protected Species Habitat Assessment