

Lower Colorado River Authority (LCRA)
P.O. Box 220
Austin, Texas 78767

## RUN-ON AND RUN-OFF CONTROL SYSTEM PLAN FOR COMBUSTION BYPRODUCT LANDFILL REGISTRATION NO. 31575

LCRA FAYETTE POWER PROJECT FAYETTE COUNTY, TEXAS

BETH ANN GROSS
79864
8/11/2021

GEOSYNTEC CONSULTANTS, INC.
TX ENG FIRM REGISTRATION NO. F-1182

Prepared by



8217 Shoal Creek Blvd., Suite 200 Austin, Texas 78757

July 2021

#### TABLE OF CONTENTS

| 1.        | INT                     | RODUCTION                           |                            |  |  |
|-----------|-------------------------|-------------------------------------|----------------------------|--|--|
|           | 1.1                     | Purpose                             |                            |  |  |
|           | 1.2                     | Background                          |                            |  |  |
|           | 1.3                     | Organization of Plan                | 2                          |  |  |
| 2.        | REGULATORY REQUIREMENTS |                                     |                            |  |  |
|           | 2.1                     | Run-on and Run-off Controls         | 3                          |  |  |
|           | 2.2                     | Preparation of Plan                 | 3                          |  |  |
|           | 2.3                     | Amendment of Plan                   | 3                          |  |  |
| 3.        | RUN                     | N-ON CONTROL SYSTEM                 | 5                          |  |  |
|           | 3.1                     | Overview                            | 5                          |  |  |
|           | 3.2                     | Initial Run-On Control System Plan  | 5                          |  |  |
|           | 3.3                     | Final Run-On Control System Plan    | 5                          |  |  |
|           | 3.4                     | Compliance Assessment               | 5                          |  |  |
| 4.        | RUN-OFF CONTROL SYSTEM  |                                     |                            |  |  |
|           | 4.1                     | Overview                            | 6                          |  |  |
|           | 4.2                     | Initial Run-Off Control System Plan | 6                          |  |  |
|           | 4.3                     | Final Run-Off Control System Plan   |                            |  |  |
|           | 4.4                     | Compliance Assessment               | 7                          |  |  |
| 5.        | PRC                     | DFESSIONAL ENGINEER CERTIFICATI     | ON 8                       |  |  |
| 6.        | REF                     | FERENCES                            | 9                          |  |  |
| DRA       | WING                    | GS                                  | Buth am Hoss               |  |  |
|           | ving 1                  | Overall Site Plan                   | LE OF TO                   |  |  |
|           | _                       | Existing Site Conditions            | 20 A TON                   |  |  |
| Drawing 3 |                         | Final Cover Grading Plan            | 3 * / X X X                |  |  |
| Drawing 4 |                         | Subcells 2A & 2D Base Grading Plan  | BETH ANN GROSS             |  |  |
| Drawing 5 |                         | Landfill Filling Plan – Subcell 2A  | 79864 E                    |  |  |
| Drawing 6 |                         | Stormwater Management Plan          | S/O NAL 8/11/2021          |  |  |
| Drawing 7 |                         | Stormwater Management Details I     | Misse                      |  |  |
| Drawing 8 |                         | Stormwater Management Details II    | GEOSYNTEC CONSULTANTS INC. |  |  |

i

GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. F-1182

#### SELECT HISTORICAL DRAWINGS

| B-C-00G-025 | Combustion Waste Area Site Plan                       |
|-------------|-------------------------------------------------------|
| B-C-00G-027 | Combustion Waste Area Plans, Sections, and Details    |
| SK-00G-032  | Combustion Waste Area Site Plan – Existing            |
| SK-00G-033  | Existing Combustion Waste Area Site Plan Cell 1       |
| SK-00G-034  | Combustion Waste Area Site Plan – At Closure (Cell 1) |

#### SUBCELL 2D STORAGE AREA RECORD DRAWINGS

| B-C-00G-191 | Title Sheet                                    |
|-------------|------------------------------------------------|
| B-C-00G-192 | Existing Site Conditions                       |
| B-C-00G-193 | Site Development Plan                          |
| B-C-00G-194 | Top of Subgrade Grading Plan                   |
| B-C-00G-195 | Top of Clay Grading Plan                       |
| B-C-00G-196 | Stormwater Management and Operations Plan      |
| B-C-00G-197 | Liner System Details I                         |
| B-C-00G-198 | Liner System Details II                        |
| B-C-00G-199 | Stormwater Management and Operation Details I  |
| B-C-00G-200 | Stormwater Management and Operation Details II |
| B-C-00G-201 | Construction Control Points                    |

#### **APPENDICES**

| Appendix A | Addendum to Appendix A                                                |  |  |
|------------|-----------------------------------------------------------------------|--|--|
|            | Surface Water Management System Design - Final Conditions (Geosyntec, |  |  |
|            | 2016)                                                                 |  |  |
| Appendix B | Final Cover Soil Erosion Loss Calculation (Geosyntec, 2016)           |  |  |
| Appendix C | Surface Water Management System – Active Conditions                   |  |  |



GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. F-1182

#### 1. INTRODUCTION

#### 1.1 Purpose

This document presents the Run-on and Run-off Control System Plan (Plan) for the Combustion Byproduct Landfill (CBL) at LCRA's Fayette Power Project (FPP). In April 2015, the United States Environmental Protection Agency (USEPA) published the final rule for the regulation and management of Coal Combustion Residuals (CCR). The Texas Commission on Environmental Quality (TCEQ) has published their final CCR rule on May 22, 2020 and the final approval by EPA of the Texas CCR Permit Program is effective July 28, 2021. The initial Plan was prepared by Geosyntec Consultants (Geosyntec) in August 2016 and has been reviewed and revised under the direction of Dr. Beth A. Gross, P.E., a qualified professional engineer, to comply with the USEPA's requirements for run-on and run-off control systems plans (40 CFR §257.81(c)) for CCR landfills, the Texas Commission on Environmental Quality's new run-off and run-on requirements for CCR waste management (30 TAC §352.821), and TCEQ guidance (TCEQ, 2020). The owner/operator of a CCR landfill must update the Plan every five years.

#### 1.2 Background

The FPP is a coal-fired power plant located east of La Grange in Fayette County, Texas. CCR generated at the facility are disposed in the CBL, a CCR landfill located south of the power plant and north of the railroad that borders the FPP site (Drawing 1). At final buildout, the CBL will consist of up to three cells, Cells 1 to 3 (Drawing 2). Depending on the rates of CCR production and beneficial use, all cells may not be needed for CCR disposal and the final CBL footprint would be smaller (e.g., Cells 1 and 2, Drawing 3).

Cell 1 was constructed in 1988 with a recompacted clay liner installed over natural clay subgrade. This liner is equivalent to the liner recommended at that time in Texas Water Commission (TWC) Guideline No. 3 for Class II industrial waste landfills: a 2-foot thick (minimum) recompacted clayrich liner or 3 feet of in-place soil exhibiting a permeability less than  $1 \times 10^{-7}$  cm/s (TWC, 1988). The northern slope of Cell 1 was closed with a final cover system in 1992 (Drawing 2).

From October 2014 to May 2015, Subcell 2D was constructed with a 3-foot thick compacted clay liner with a hydraulic conductivity less than  $1 \times 10^{-7}$  cm/s, which meets the recommendations of TCEQ Technical Guideline No. 3 (2015) for Class 2 monofills of consistent, well characterized waste. This subcell currently includes a contact water retention pond (herein referred to as the Subcell 2D Contact Water Retention Pond) lined with a geomembrane/compacted clay composite liner (Drawing 2). Subcell 2D is being used as a waste storage/product preparation area during CCR operations in Cell 1 and future Subcells 2A, 2B and 2C. Cell 1 and Subcell 2D are existing CCR landfill areas under 40 CFR §257.53. The remainder of Cells 2 and 3 will be constructed with a liner system that meets the requirements of 40 CFR §257.70(b) and (d), which includes a leachate collection system and underlying geomembrane/compacted clay composite liner.

Runoff from active areas in Cell 1 of the CBL currently drains to the Runoff Retention Pond via the runoff channel (Drawing 2). Contact water from the Subcell 2D Contact Water Retention Pond is managed through a permanent pumping system which routes flow to the runoff channel. The Runoff Retention Pond is permitted under LCRA's Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0002105000 and is designated as the "CBL Pond" in the permit. The permit allows water in the pond to be managed by conveying it to the FPP Reclaim Pond or, if effluent limitations are met, by discharging via Outfall 004. The Runoff Retention Pond will be used for management of contact water from the active area until the Leachate Evaporation Pond (Drawing 4) is constructed, which will occur prior to disposal of CCR in Subcell 2A (Drawing 4).

Stormwater run-off from the final cover system of the CBL flows into drainage channels along the perimeter of the CBL that primarily discharge south of the CBL but also discharge to a drainage ditch north of the CBL. When CCR disposal operations are initiated in Cell 2, the majority of stormwater run-off from the final cover system will flow into a stormwater pond prior to being discharged from the site (Drawing 4).

#### 1.3 Organization of Plan

The remainder of this Plan is organized as follows:

- Section 2 summarizes the regulatory requirements for the run-on and run-off controls systems and the Plan (40 CFR §257.81 and 30 TAC §352.821);
- Section 3 describes how the run-on control system for the CBL has been designed and constructed to prevent flow onto the active portion of the CBL;
- Section 4 describes how the run-off control system for the CBL has been designed and constructed to collect and control flow from the active portion of the CBL;
- Section 5 presents a certification by a qualified professional engineer that this initial Runon and Run-off Control System Plan meets the requirements of 40 CFR §257.81(a) and (b) and 30 TAC §352.821; and
- Section 6 provides a list of references cited in the Plan.

#### 2. REGULATORY REQUIREMENTS

#### 2.1 Run-on and Run-off Controls

In accordance with 40 CFR §257.81(a) and 30 TAC §352.821, the run-on and run-off control systems for the CBL must be designed, constructed, operated, and maintained to prevent flow onto the active portion of the CBL and collect and control flow from the active portion of the CBL during the peak discharge from a 25-year, 24-hour storm event. As discussed in Section 4.3 and demonstrated in the calculations presented in Appendix A, the run-on and run-off features for the CBL were designed to convey a 100-year, 24-hour storm event. Therefore, the design of these features meets and exceeds the design requirements of 40 CFR §257.81(a) and 30 TAC §352.821.

As described in the rule preamble, the purpose of the run-on controls is to prevent erosion, prevent the surface discharge of CCR in solution or suspension, and minimize the percolation of run-on through wastes. The purpose of the run-off controls is to collect and control the water volume falling on the active portion of the landfill. Run-off from the active portion must be handled in manner that complies with the National Pollutant Discharge Elimination System (40 CFR §257.81(b)). Although the term "active portion" has often been used to refer to a portion of a landfill that is actively receiving waste, under USEPA's CCR regulations "active portion" is that part of a CCR unit that has received or is receiving waste and has not completed closure (40 CFR §257.53). Thus, the active portion includes areas where waste is being disposed and inactive areas, including areas overlain with intermediate cover.

#### 2.2 Preparation of Plan

In accordance with 40 CFR §257.81(c), a Run-on and Run-off Control System Plan that documents how the run-on and run-off control systems have been designed and constructed to meet the requirements of 40 CFR §257.81(a) and (b) must be prepared and placed in the facility's Operating Record. The Plan must be supported by engineering calculations, and a certification from a qualified professional engineer must be obtained to document that the Plan meets the requirements of 40 CFR §257.81(a) and (b).

As described in the rule preamble, submittal of the Plan documents that run-on and run-off control systems have been designed and operated to meet 40 CFR §257.81(a) and (b), and the requirement of 40 CFR §257.81(c)(4) that the Plan be revised every five years is consistent with the requirement that run-on and run-off control systems also be operated and maintained to meet 40 CFR §257.81(a) and (b).

#### 2.3 Amendment of Plan

In accordance with 40 CFR §257.81(c)(2), this Plan may be amended at any time provided the revised Plan is placed in the facility's Operating Record. This Plan must be revised whenever there is a change in conditions that would substantially affect the Plan in effect. Any amendment of the

| Plan requires a certification by a qualified professional engineer that the revised Plan meets the requirements of 40 CFR §257.81(a) and (b). |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |
|                                                                                                                                               |  |

#### 3. RUN-ON CONTROL SYSTEM

#### 3.1 Overview

This section describes the run-on control system for the CBL as it currently exists (i.e., active conditions) and at final grades (i.e., final conditions). In general, run-on to active areas of the CBL is controlled by topography and by the landfill perimeter berm. The north side of the CBL is on a topographic high, and the ground surface around the CBL primarily slopes to the south, and south of the CBL also towards two the central stormwater channels (Drawing 2). In addition, the perimeter berm for the CBL deflects stormwater run-on, and this potential run-on is collected in a stormwater channel at the toe of the outboard side slope of the berm (Drawings 2 and 6).

#### 3.2 Initial Run-On Control System Plan

Cell 1 is the current active cell for the CBL, and the northern portion of this cell has been covered with final cover. The final cover slopes towards the perimeter; thus, based on topography, stormwater from the final cover of the CBL will not run-on to active areas of Cell 1 (Drawing 2). Furthermore, potential run-on from outside of Cell 1 will not overtop the existing perimeter berm and enter Cell 1 along the east and west sides of the cell or overtop the interim berm on the south side of Cell 1. Subcell 2D is also protected from run-on by topography and a perimeter berm (Drawing 2).

As new subcells are developed, run-on will continue to be controlled by perimeter and interim berms and adjacent stormwater channels located at the outboard toe of the berms. Stormwater collected in these channels will be conveyed to the two central stormwater channels located south of the CBL or to a stormwater pond (Drawing 4). In addition, run-on from inactive waste slopes that have received soil intermediate cover will be directed from subcells actively receiving CCR by temporary tack-on berms (Drawing 5).

#### 3.3 Final Run-On Control System Plan

At final conditions, the CBL will be closed with final cover and will no longer be active. Run-on to the closed CBL will continue to be controlled by topography and the landfill perimeter berm and adjacent stormwater channel.

#### 3.4 Compliance Assessment

Based on review of the topography of the ground surface around the CBL perimeter and the engineering controls designed for the CBL (e.g., perimeter berm and stormwater channel, temporary tack-on berms), the CBL will continue to be designed, constructed, operated, and maintained to prevent flow onto the active portion of the CBL. Therefore, the CBL is in compliance with the run-on control requirement of 40 CFR §257.81(a) and 30 TAC §352.821.

#### 4. RUN-OFF CONTROL SYSTEM

#### 4.1 Overview

This section describes the run-off control system for the CBL active conditions and final conditions. In general, run-off from the CBL is controlled by topography, the landfill perimeter berm and stormwater channel, and the stormwater management system components that will be constructed on the CBL as it is developed (Drawings 2, 5, and 6).

#### 4.2 <u>Initial Run-Off Control System Plan</u>

Run-off from areas of Cell 1 that have not been covered with intermediate cover or final cover could have potentially come in contact with CCR and is, therefore, managed as contact water. Contact water collected in the cell is conveyed in the runoff channel to the Runoff Retention Pond (Drawing 2), as authorized under an individual TPDES permit (WQ0002105000). The perimeter and interim berms of Cell 1, as well as the underlying recompacted clay liner, keep run-off that has contacted CCR within the CBL. In addition, CCR is placed in Cell 1 in a manner that directs this runoff to the runoff channel. As Cell 1 is filled, the side slopes of the cell will be covered with intermediate or final cover (Drawing 5). Until a soil cover is placed, run-off from the CCR slopes will be collected and directed to the runoff channel. Run-off from areas of the CBL with intermediate or final cover has not contacted CCR and can be directed into a stormwater channel and conveyed away from the CBL rather than being conveyed to the Runoff Retention Pond.

Contact water from the Subcell 2D Contact Water Retention Pond is managed through a permanent pumping system which routes water collected in the pond to the runoff channel.

The Runoff Retention Pond is used for management of contact water from the active area. Water levels are currently managed at the Runoff Retention Pond by conveying flow through an underground HDPE pipe to the concrete storm drainage system leading to the FPP Reclaim Pond as appropriate or, if effluent limitations are met, by discharging via Outfall 004. Facility personnel monitor the Subcell 2D Contact Water Retention Pond, Runoff Retention Pond, and the FPP Reclaim Pond to maintain the surface water balance of the overall facility. The weather forecast is monitored to track anticipated storm events and manage the pumping schedules accordingly. Current operational procedures regarding the CBL pumping management system are described in further detail in Appendix C.

As new subcells are developed, run-off of contact water will continue to be controlled by perimeter and interim berms and the internal topography of the CBL, and the existing Runoff Retention Pond will be converted into a Leachate Evaporation Pond (Drawing 4). Areas will implement final cover and the permanent stormwater management system as they reach final grade (Drawing 5).

#### 4.3 Final Run-Off Control System Plan

After the final cover has been constructed on the CBL, storm water run-off from the surface of the landfill will be conveyed off the landfill through a series of components, including drainage benches orientated approximately parallel to the final cover system side slopes and drainage downchutes that intersect the drainage benches and are designed to convey runoff to a perimeter drainage channel and then to one or two Stormwater Ponds (Drawings 4 and 6). As previously discussed in Section 2.1, the stormwater management system components are designed to route stormwater run-off resulting from a 100-year, 24-hour design storm event. The design of the stormwater management system components and associated calculations are presented in Appendix A, and details of these components are shown on Drawings 7 and 8.

The stormwater management features are also designed to control runoff velocities and limit soil loss to permissible values. The soil loss on the final cover system top deck and side slope is calculated in Appendix B using the Revised Universal Soil Loss Equation (RUSLE) and compared to a permissible maximum soil loss of 3 tons/acre/year (0.015 inches/year). Based on this calculation, the maximum spacing between drainage benches was limited to 170 feet. To control erosion in the drainage downchutes, the downchutes will be lined with articulated concrete block (ACB) or an alternative lining material that provides sufficient erosion resistance.

#### 4.4 Compliance Assessment

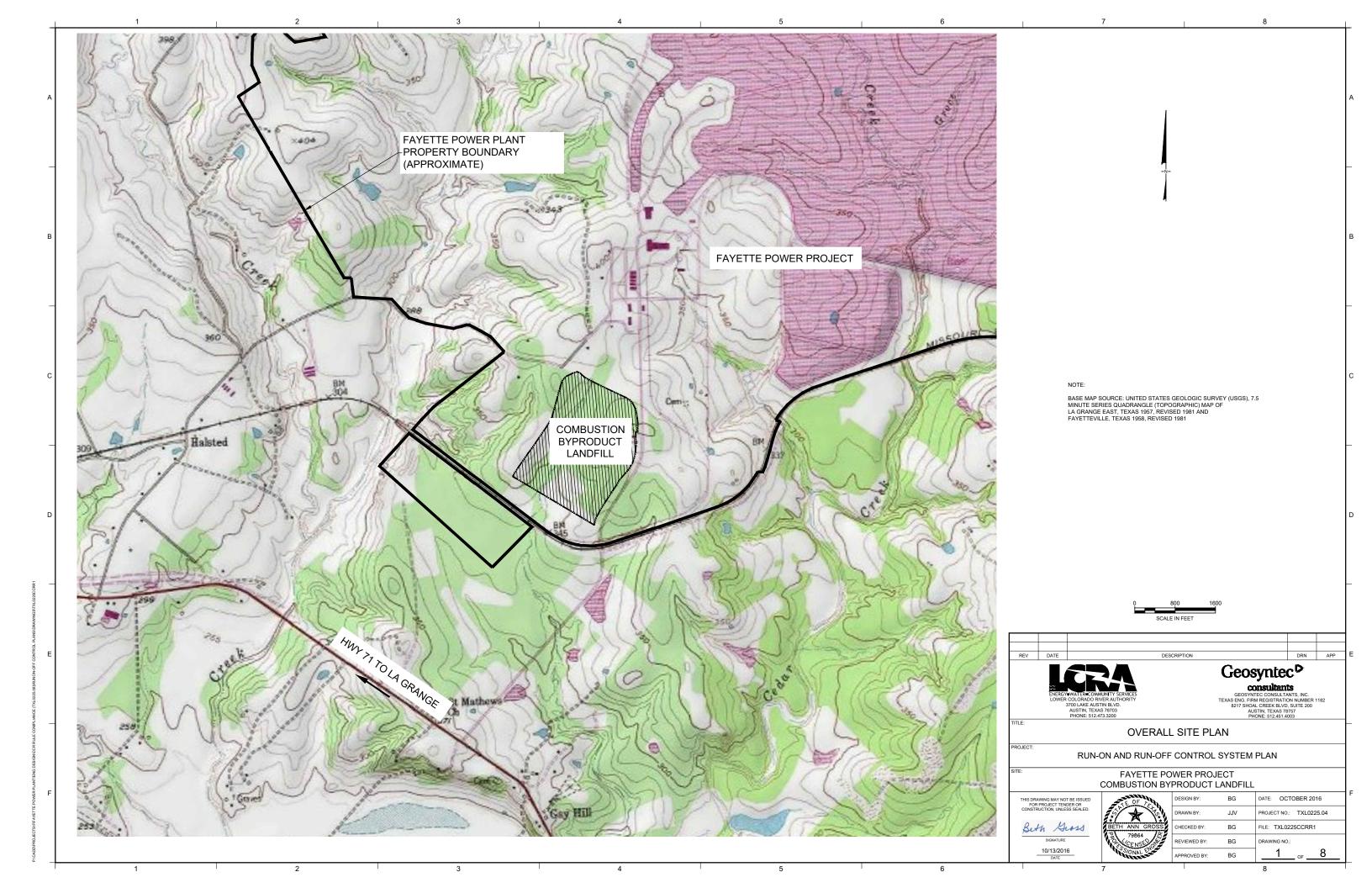
Based on review of the topography of the ground surface around the CBL perimeter, the engineering controls designed for the CBL (e.g., perimeter berm and stormwater channel, temporary tack-on berms), the operational procedures for the CBL, and the fact that the CBL is operated under a TPDES permit, the CBL will continue to be designed, constructed, operated, and maintained to collect and control flow from the active portion of the CBL and handle run-off in a manner that complies with the National Pollutant Discharge Elimination System. Therefore, the CBL is in compliance with the run-off control requirement of 40 CFR §257.81(a) and the run-off management requirement of 40 CFR §257.81(b).

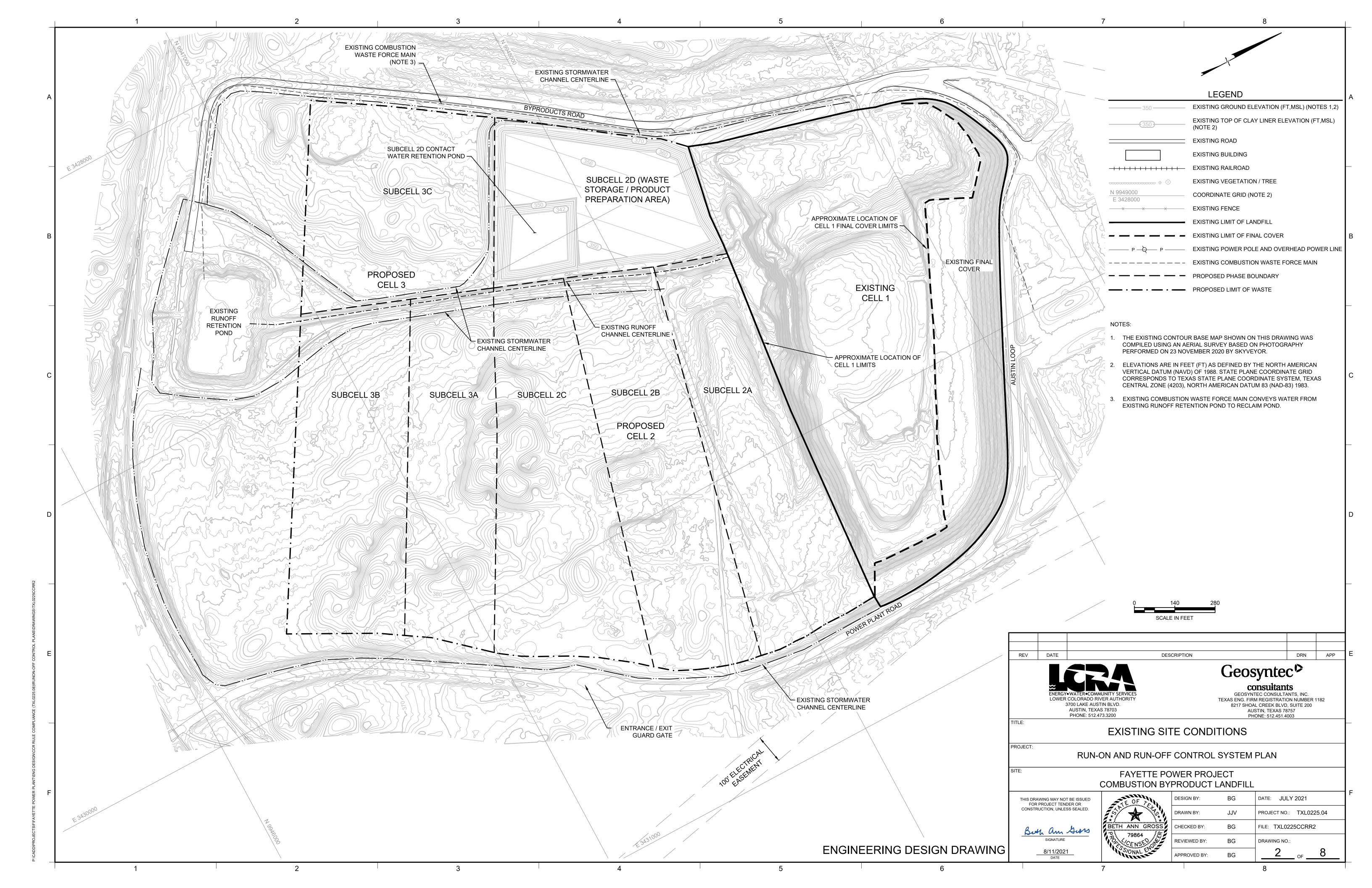
#### 5. PROFESSIONAL ENGINEER CERTIFICATION

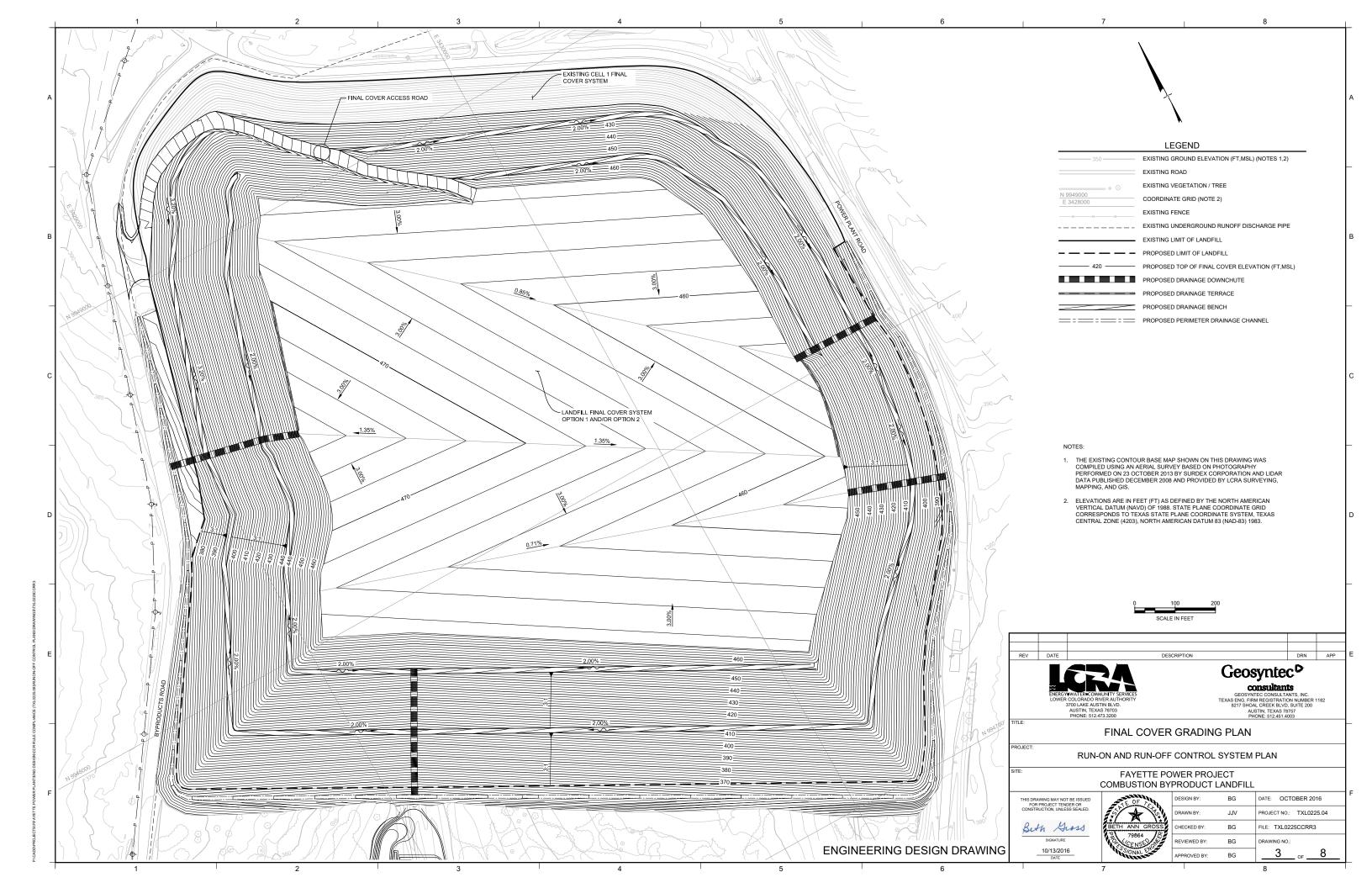
Based on the demonstrations and evaluations presented in this Run-on and Run-off Control System Plan for the Combustion Byproduct Landfill at LCRA's Fayette Power Project, it is my professional opinion that the Plan meets the requirements of 40 CFR §257.81(a) and (b) and 30 TAC §352.811.

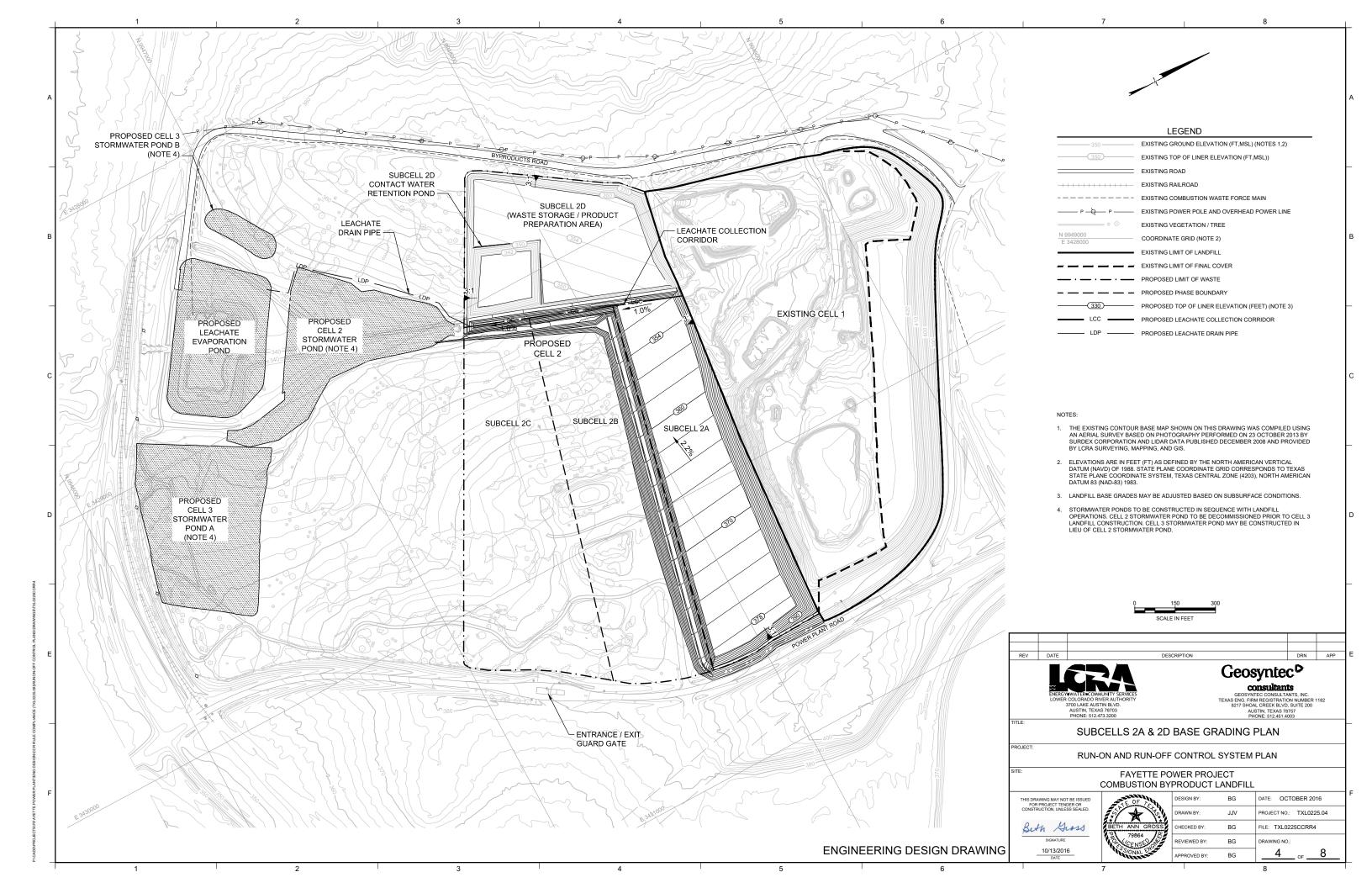


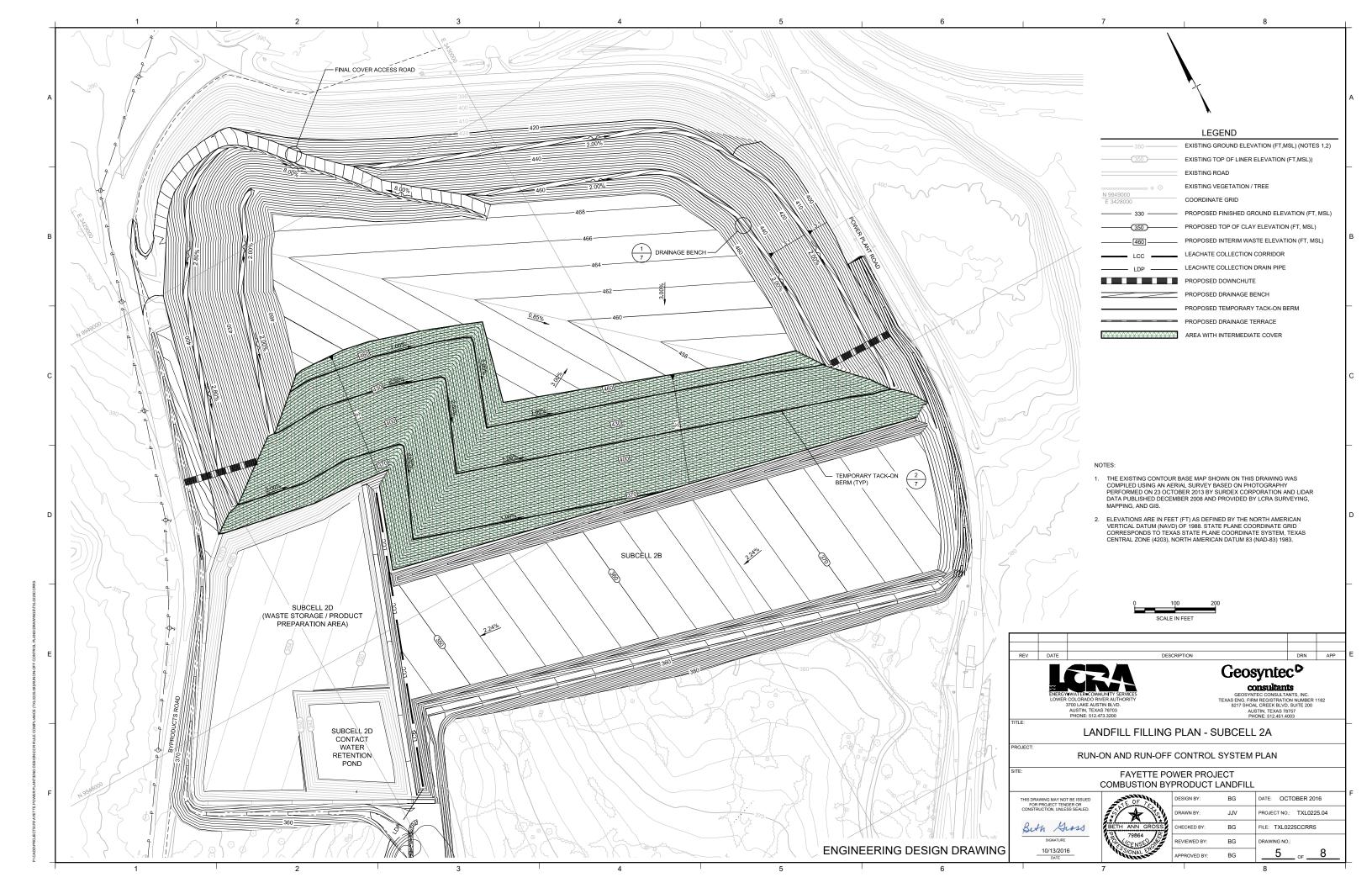
Beth Ann Gross, Ph.D., P.E., D.GE

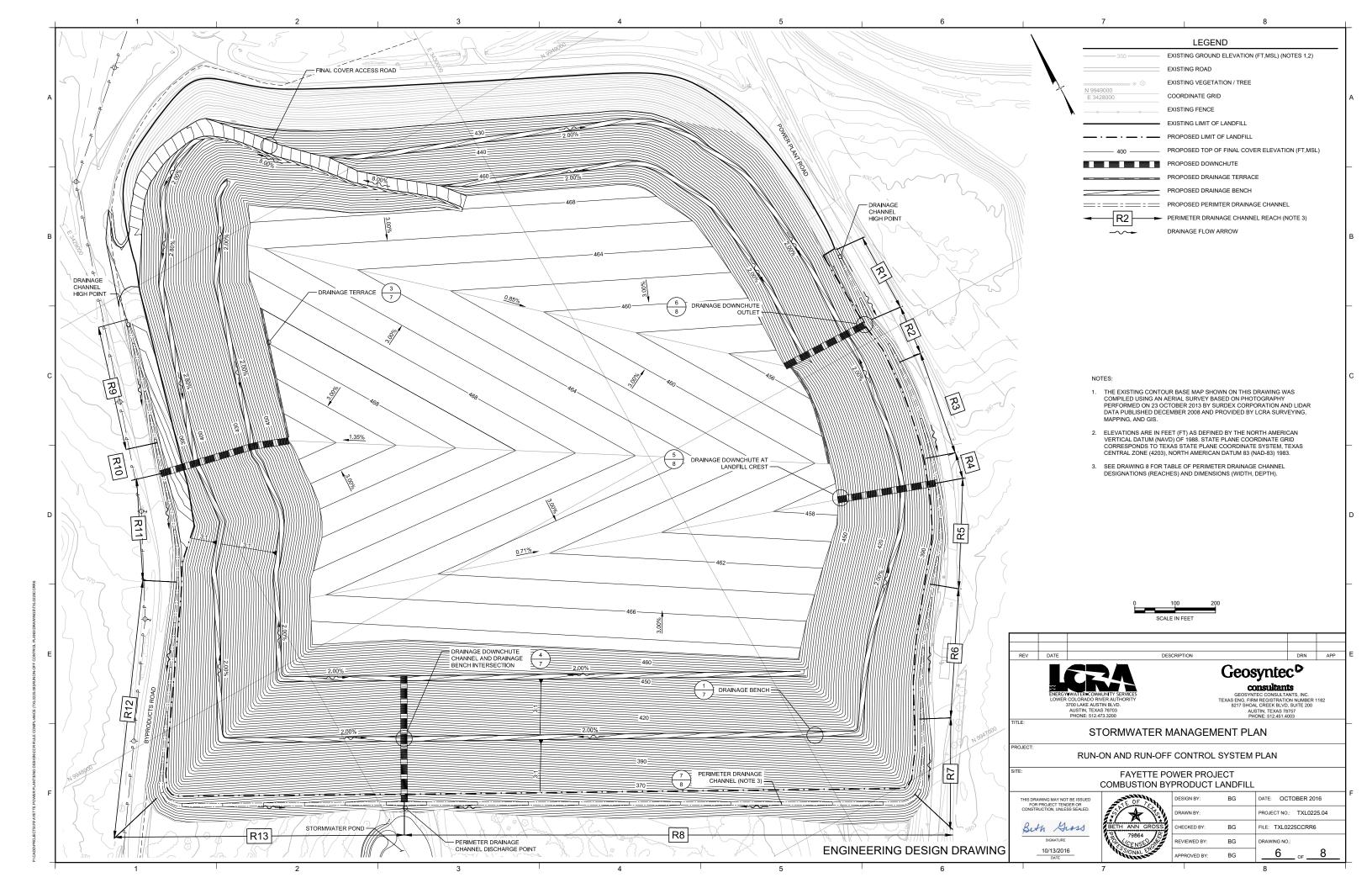

8/11/2021

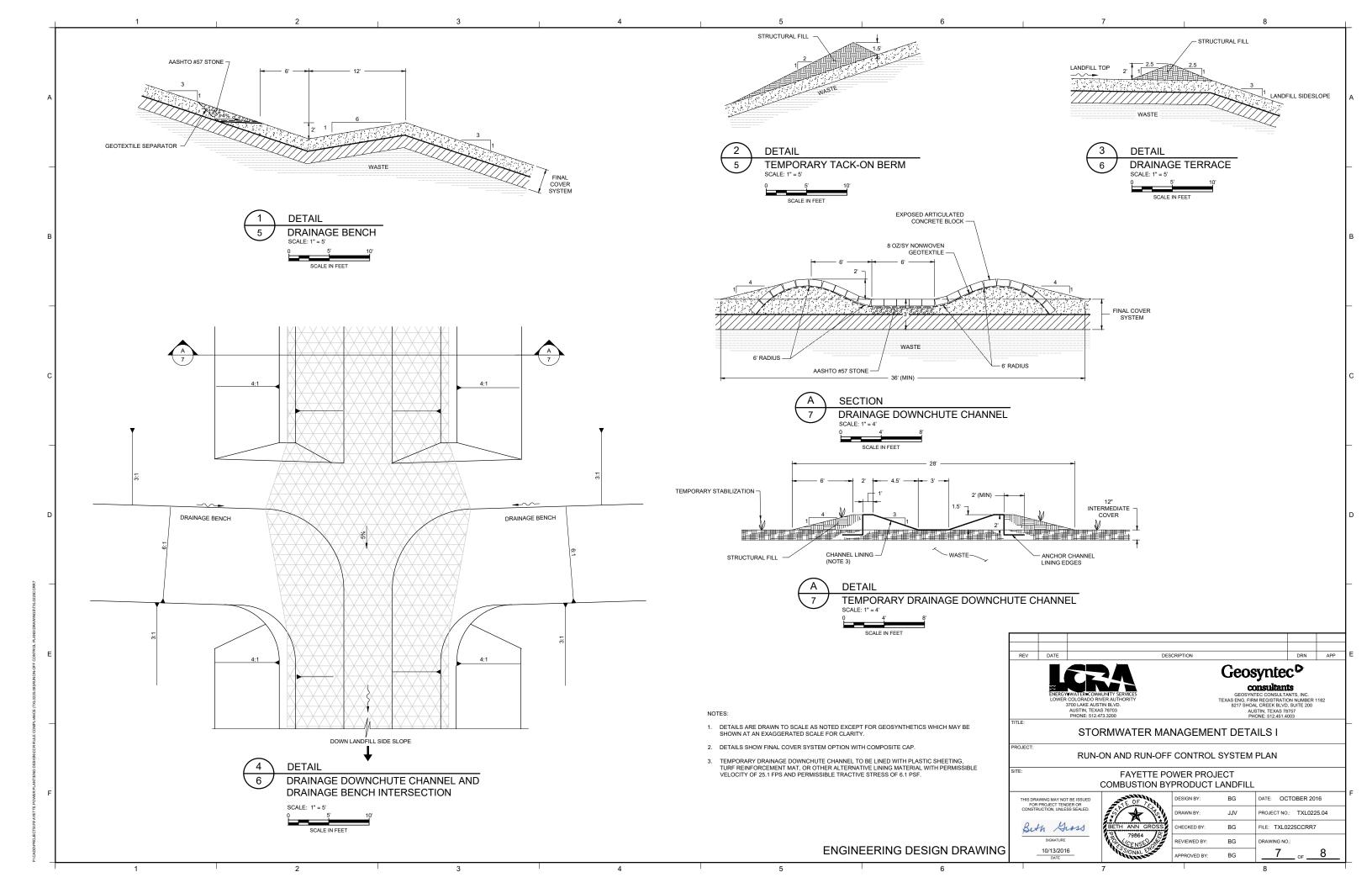

Date

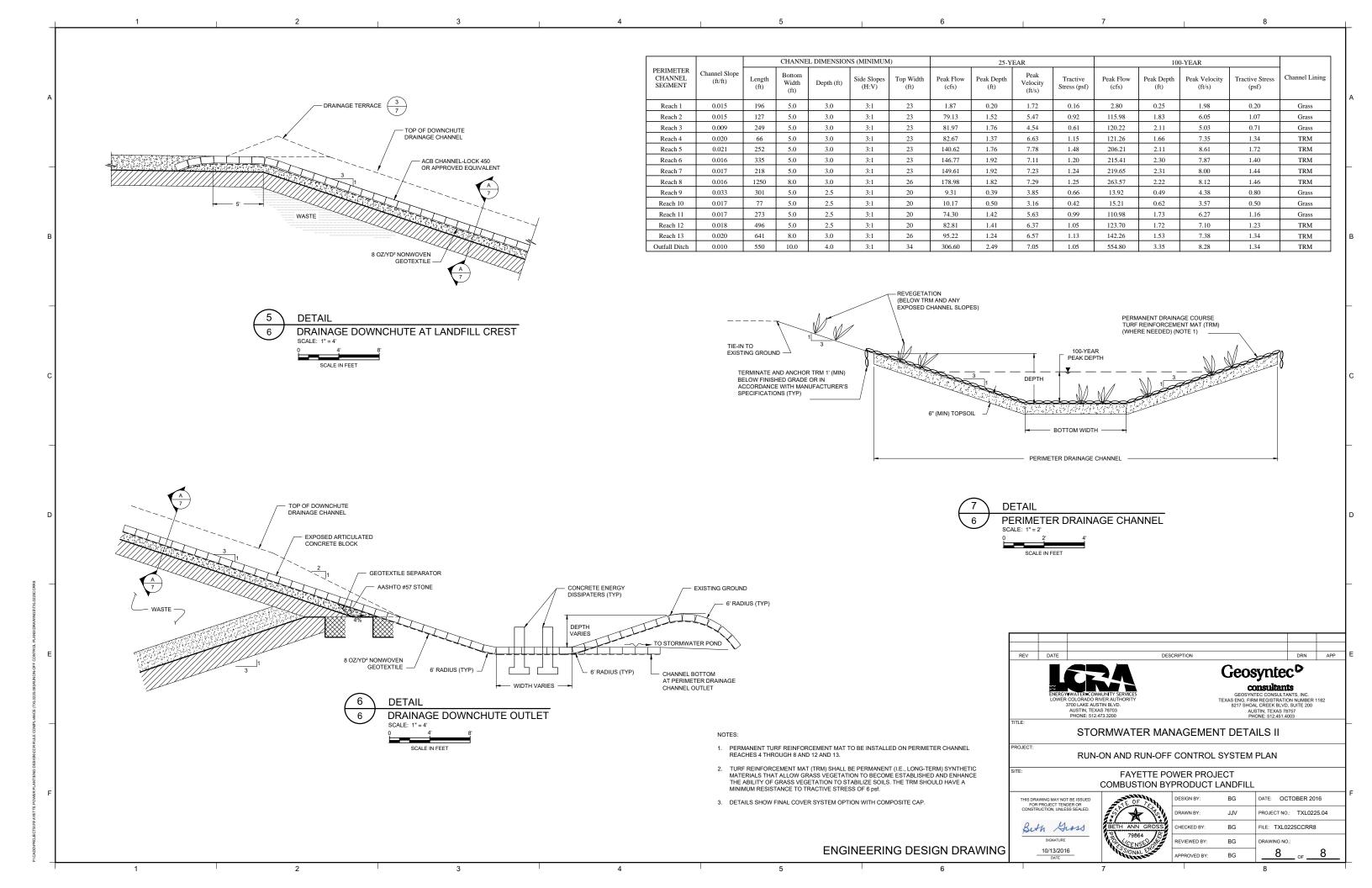

#### 6. REFERENCES


- Geosyntec (2016). Run-on and Run-off Control System Plan for Combustion Byproduct Landfill. Registration No. 31575. October 2016.
- Texas Commission on Environmental Quality (2015). "Nonhazardous Industrial Solid Waste Landfills" Industrial Solid Waste Management, Draft Technical Guideline No. 3.
- Texas Commission on Environmental Quality (2020). "Coal Combustion Residuals Landfill" Waste Permits Division, Draft Technical Guideline No. 30. May 2020.
- Texas Water Commission (1988). Letter from Minor Brooks Hibbs, Permits Section Chief, Hazardous and Solid Waste Division of TWC to Tom Remaley, Director of Environmental Quality, LCRA, indicating that the design of Cell 1 substantially conforms to the TWC Industrial Solid Waste Technical Guidelines, Jan 18.

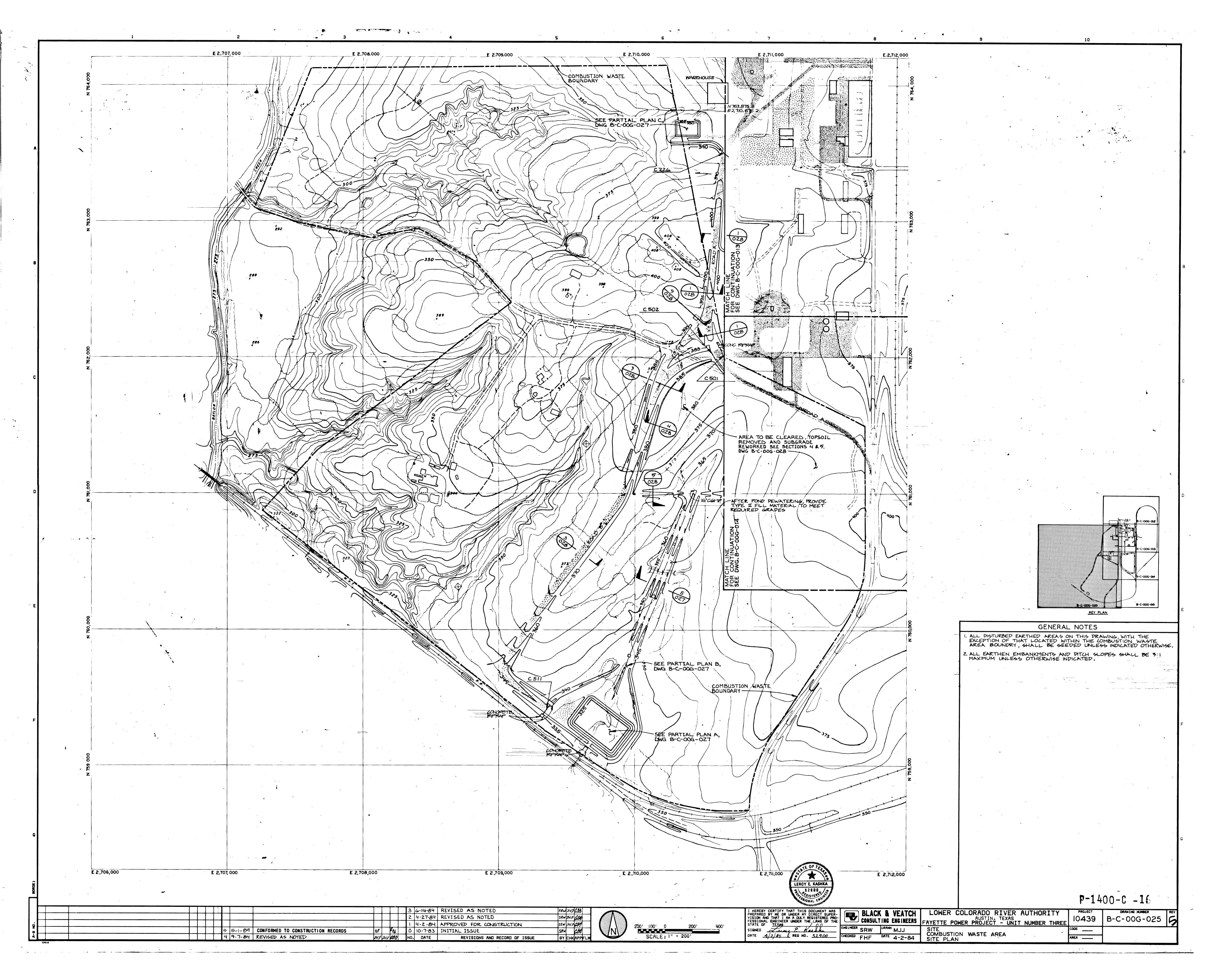

## **DRAWINGS**

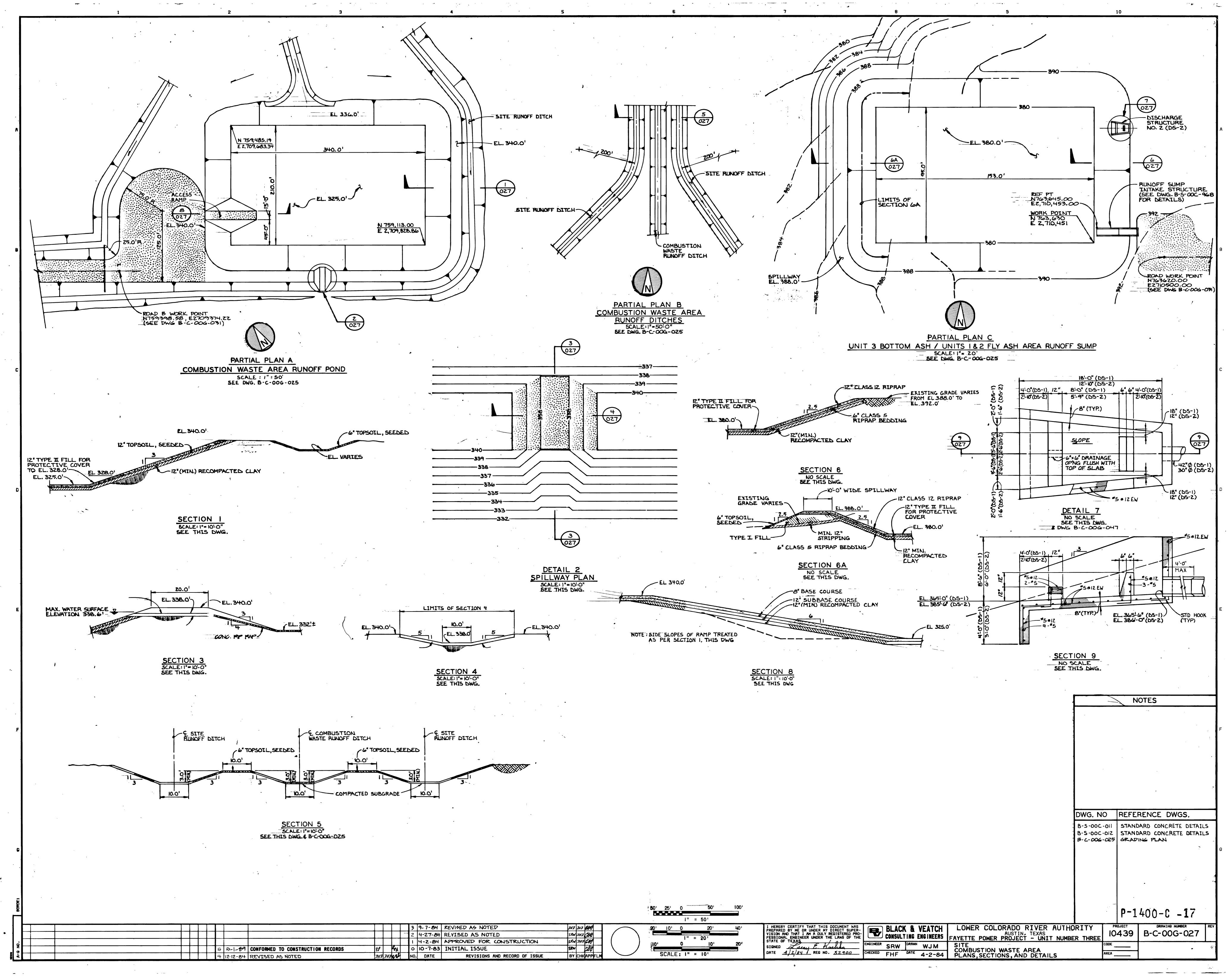


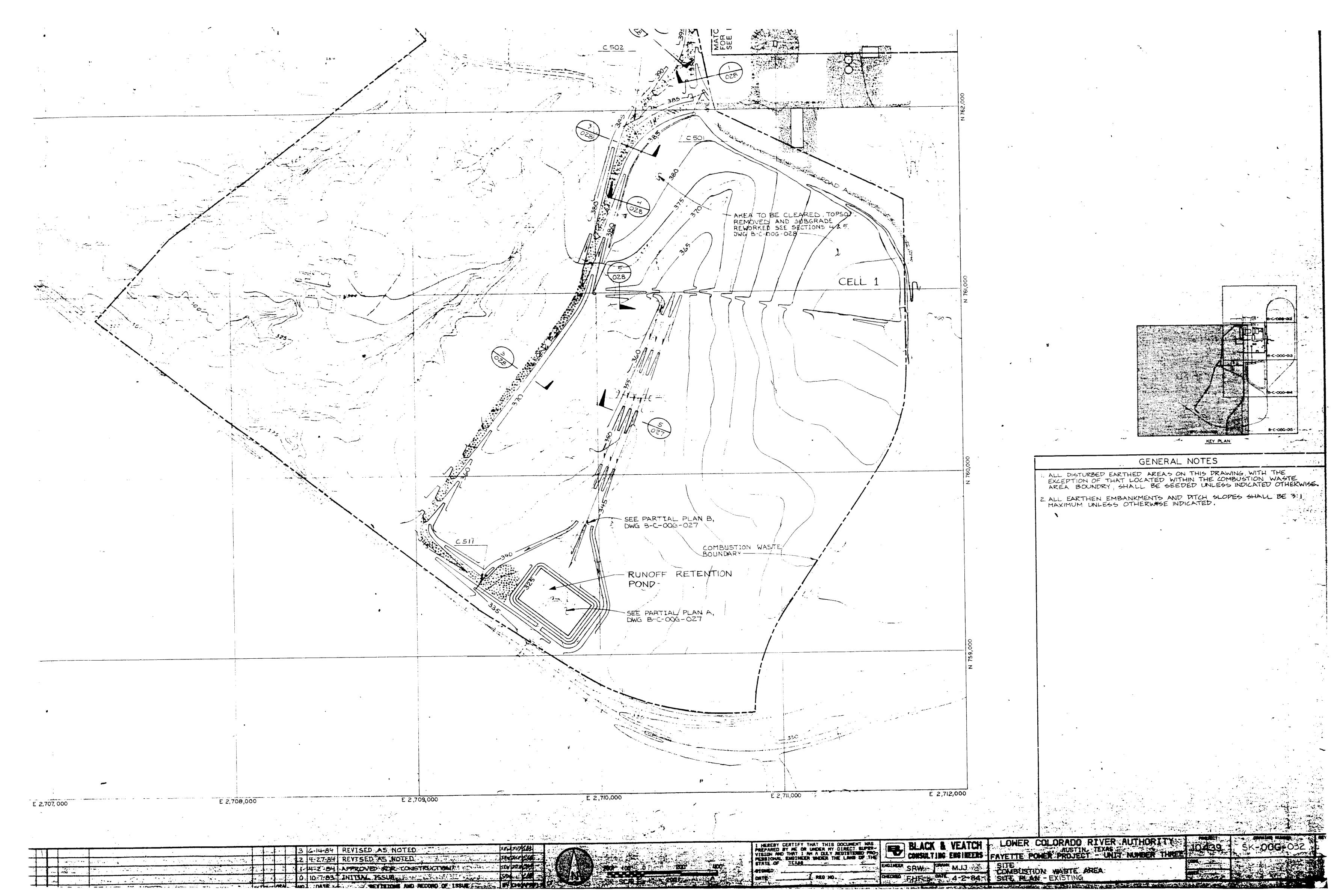



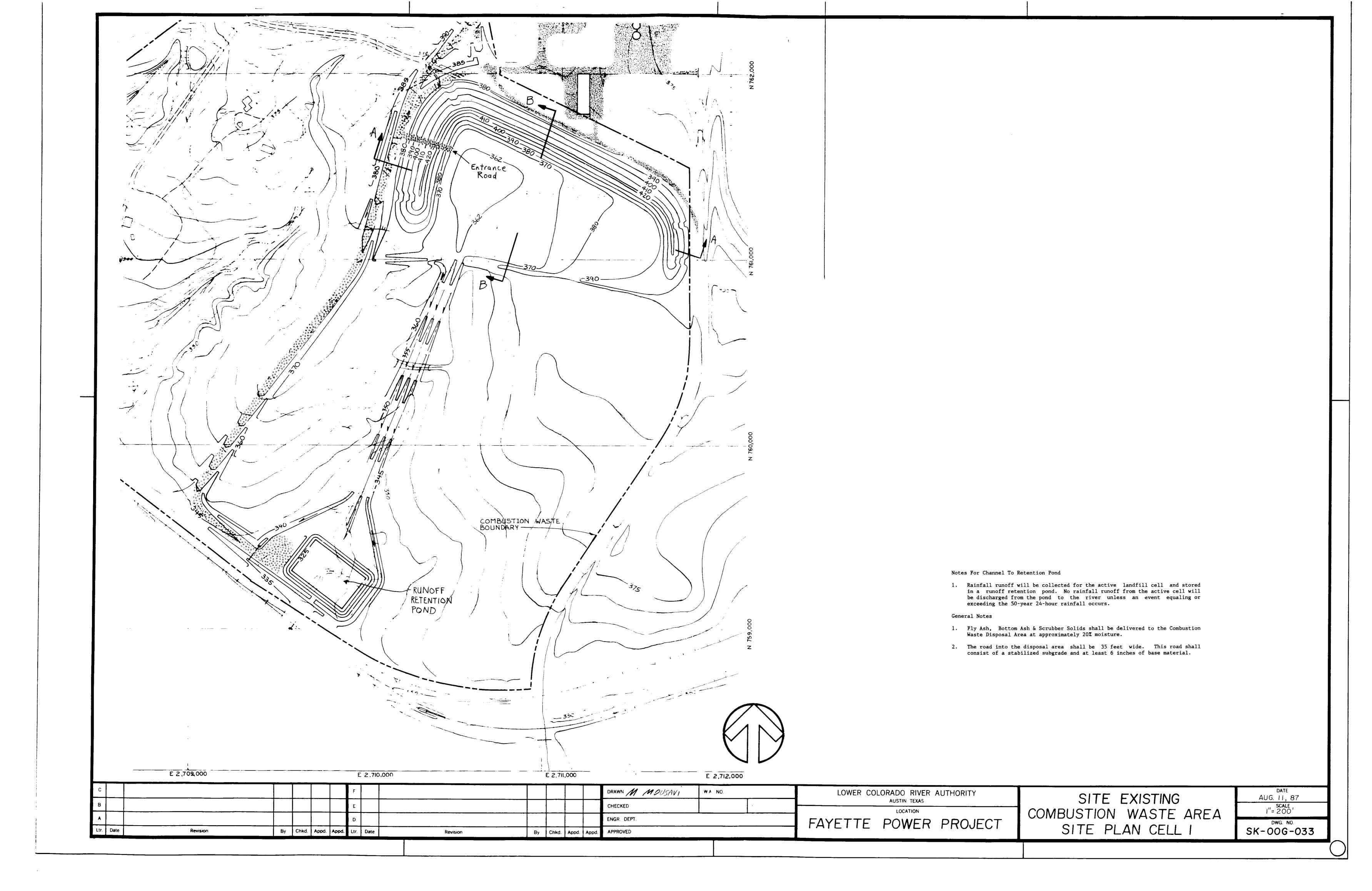



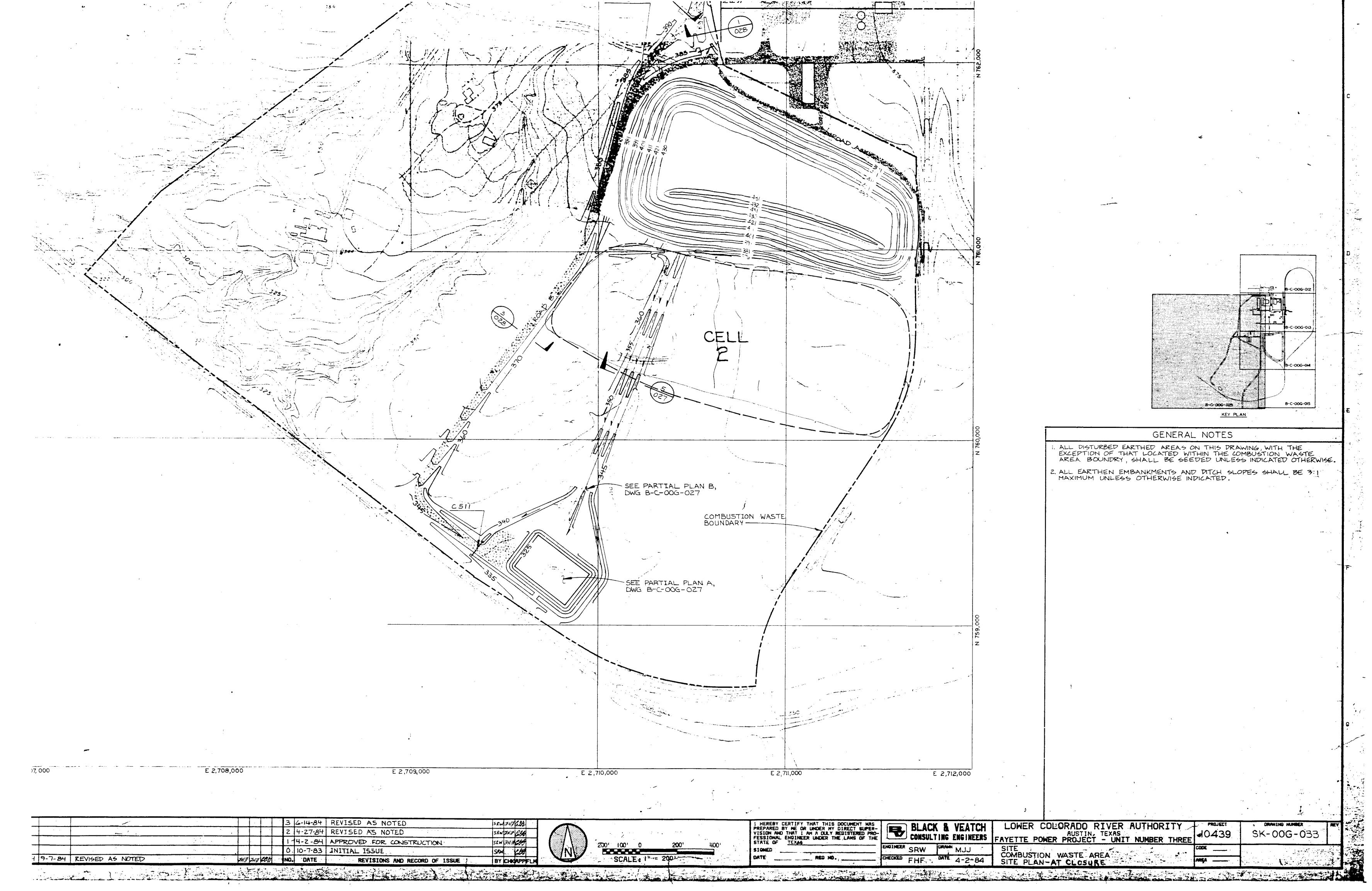


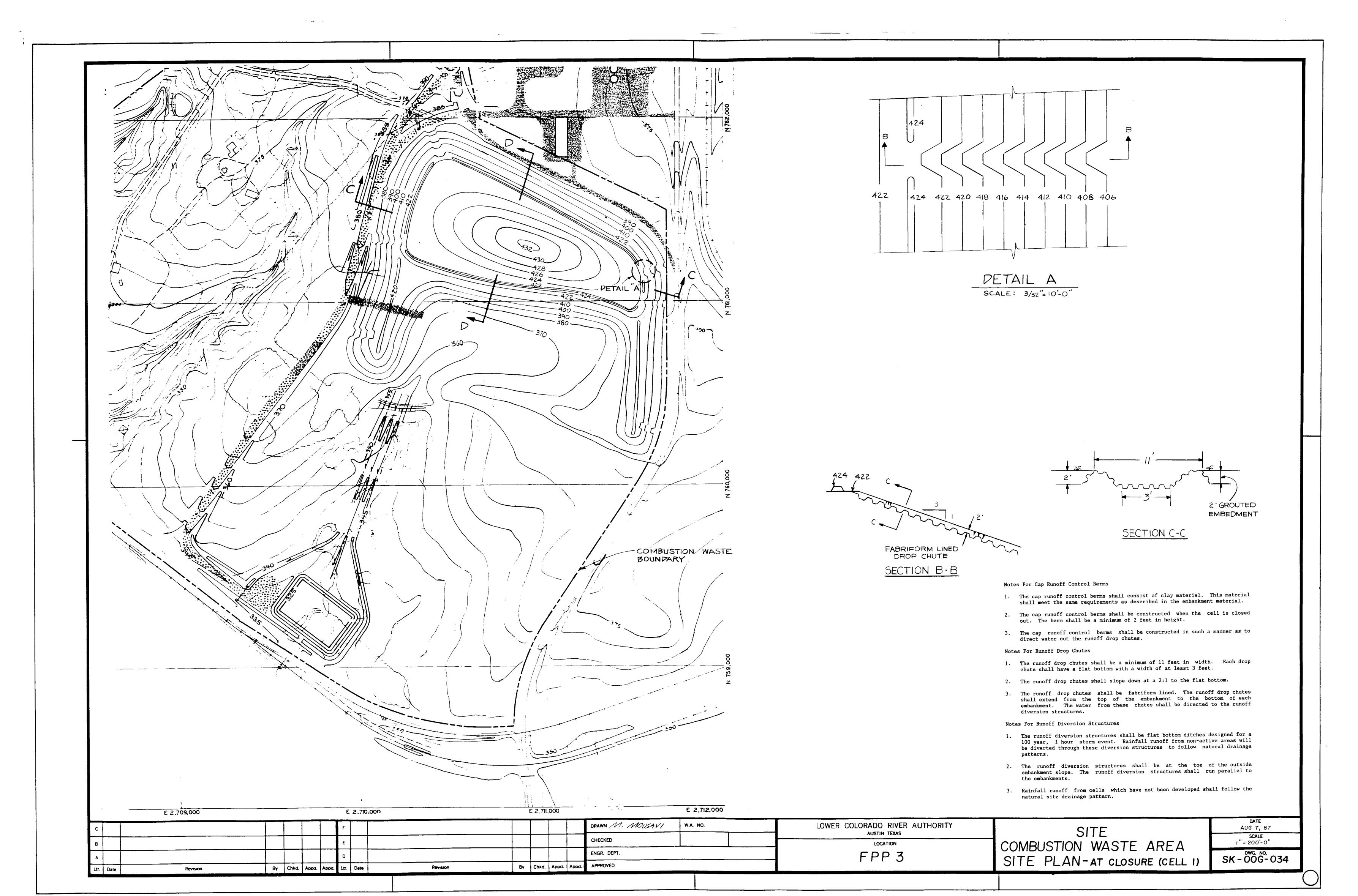



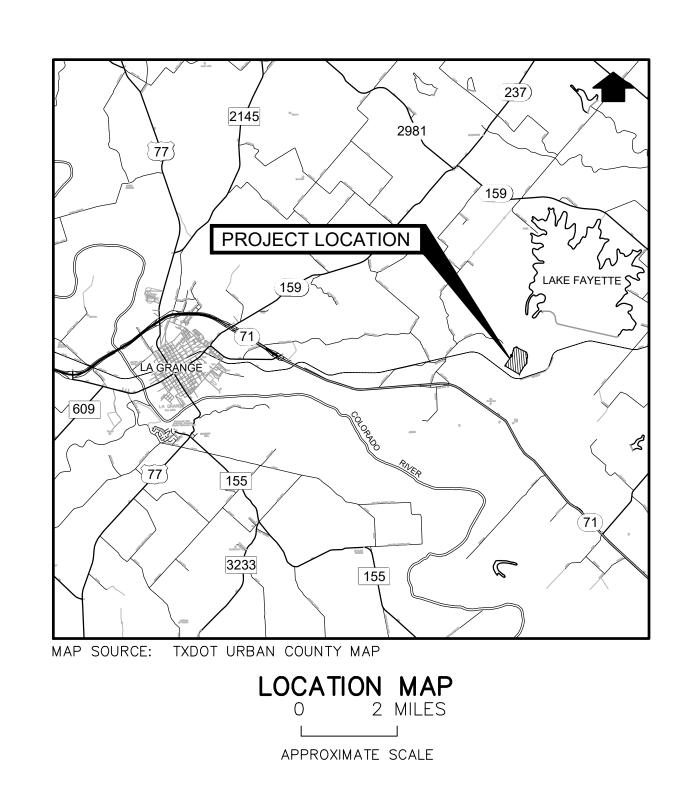





## **SELECT HISTORICAL DRAWINGS**

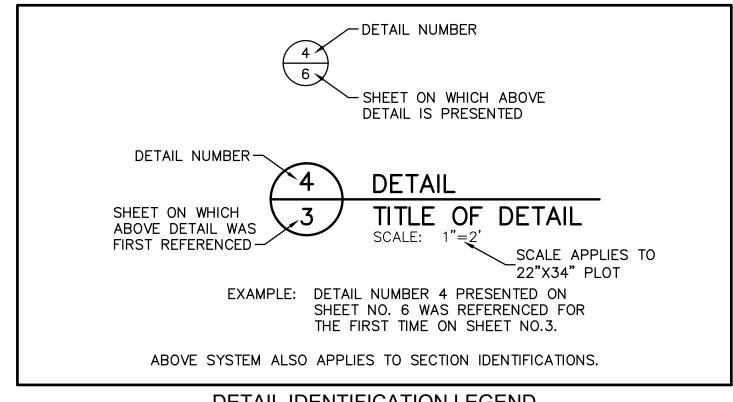









## SUBCELL 2D STORAGE AREA RECORD DRAWINGS

# RECORD DRAWINGS COMBUSTION BYPRODUCT LANDFILL SUBCELL 2D STORAGE AREA FAYETTE POWER PROJECT FAYETTE COUNTY, TEXAS **MARCH 2014**



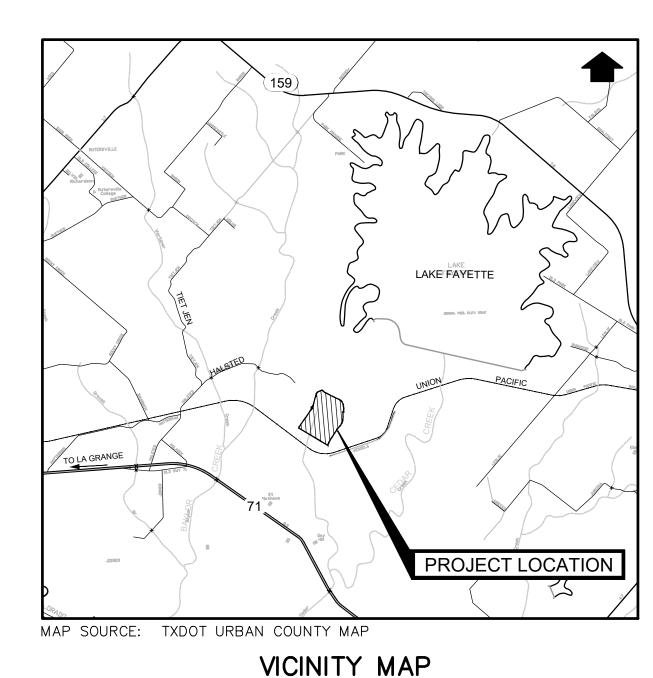
| DRAWING INDEX 3   |                                                |                    |          |  |  |  |
|-------------------|------------------------------------------------|--------------------|----------|--|--|--|
| DRAWING<br>NUMBER | DRAWING TITLE                                  | LATEST<br>REVISION | DATE     |  |  |  |
| B-C-00G-191       | TITLE SHEET                                    | 3                  | NOV 2016 |  |  |  |
| B-C-00G-192       | EXISTING SITE CONDITIONS                       | 1                  | NOV 2016 |  |  |  |
| B-C-00G-193       | SITE DEVELOPMENT PLAN                          | 2                  | NOV 2016 |  |  |  |
| B-C-00G-194       | TOP OF SUBGRADE GRADING PLAN                   | 3                  | NOV 2016 |  |  |  |
| B-C-00G-195       | TOP OF CLAY GRADING PLAN                       | 3                  | NOV 2016 |  |  |  |
| B-C-00G-196       | STORMWATER MANAGEMENT AND OPERATIONS PLAN      | 3                  | NOV 2016 |  |  |  |
| B-C-00G-197       | LINER SYSTEM DETAILS I                         | 2                  | NOV 2016 |  |  |  |
| B-C-00G-198       | LINER SYSTEM DETAILS II                        | 2                  | NOV 2016 |  |  |  |
| B-C-00G-199       | STORMWATER MANAGEMENT AND OPERATION DETAILS I  | 1                  | NOV 2016 |  |  |  |
| B-C-00G-200       | STORMWATER MANAGEMENT AND OPERATION DETAILS II | 2                  | NOV 2016 |  |  |  |
| B-C-00G-201       | CONSTRUCTION CONTROL POINTS                    | 2                  | NOV 2016 |  |  |  |



**DETAIL IDENTIFICATION LEGEND** 

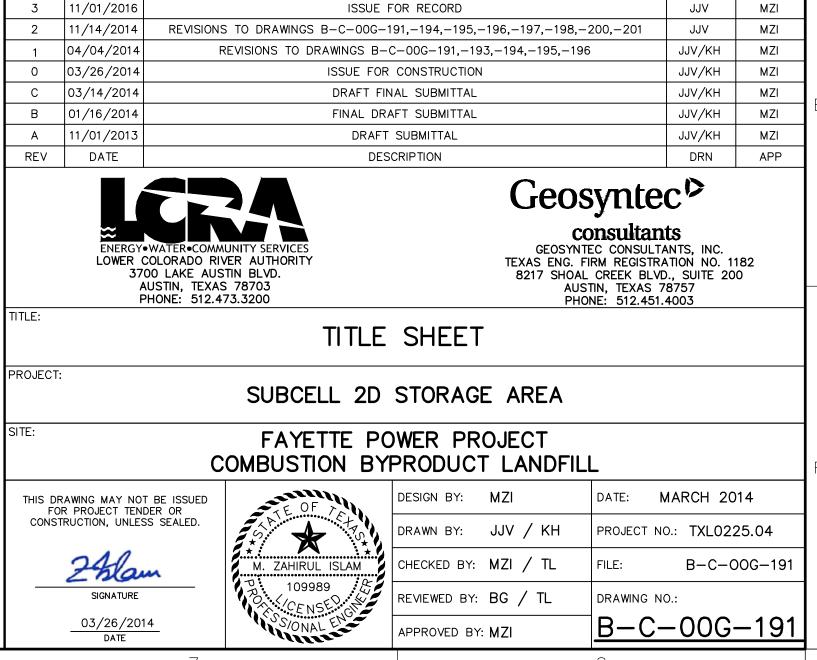
PREPARED FOR:



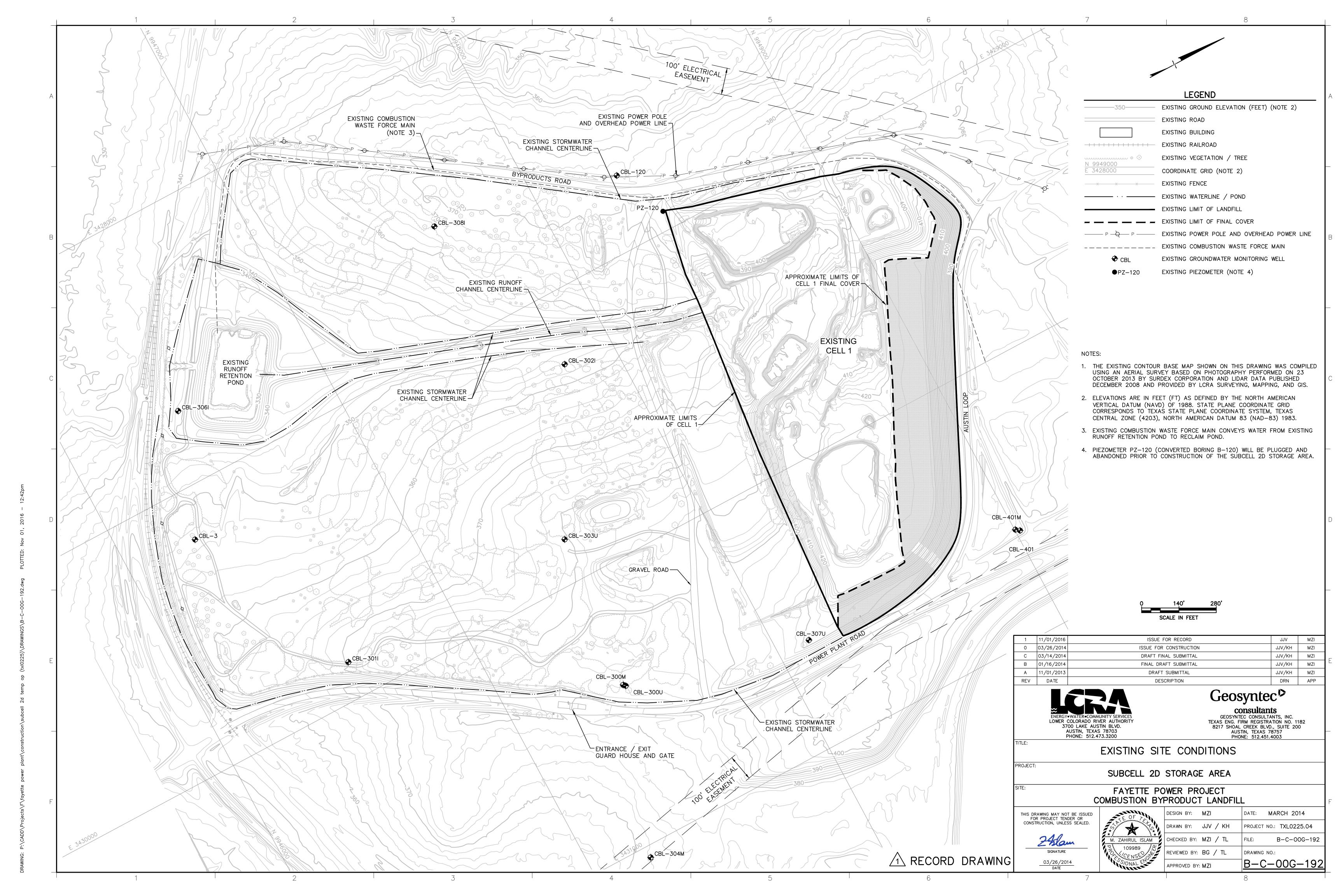

LOWER COLORADO RIVER AUTHORITY 3700 LAKE AUSTIN BLVD. AUSTIN, TEXAS 78703 TELEPHONE: 512.473.3200

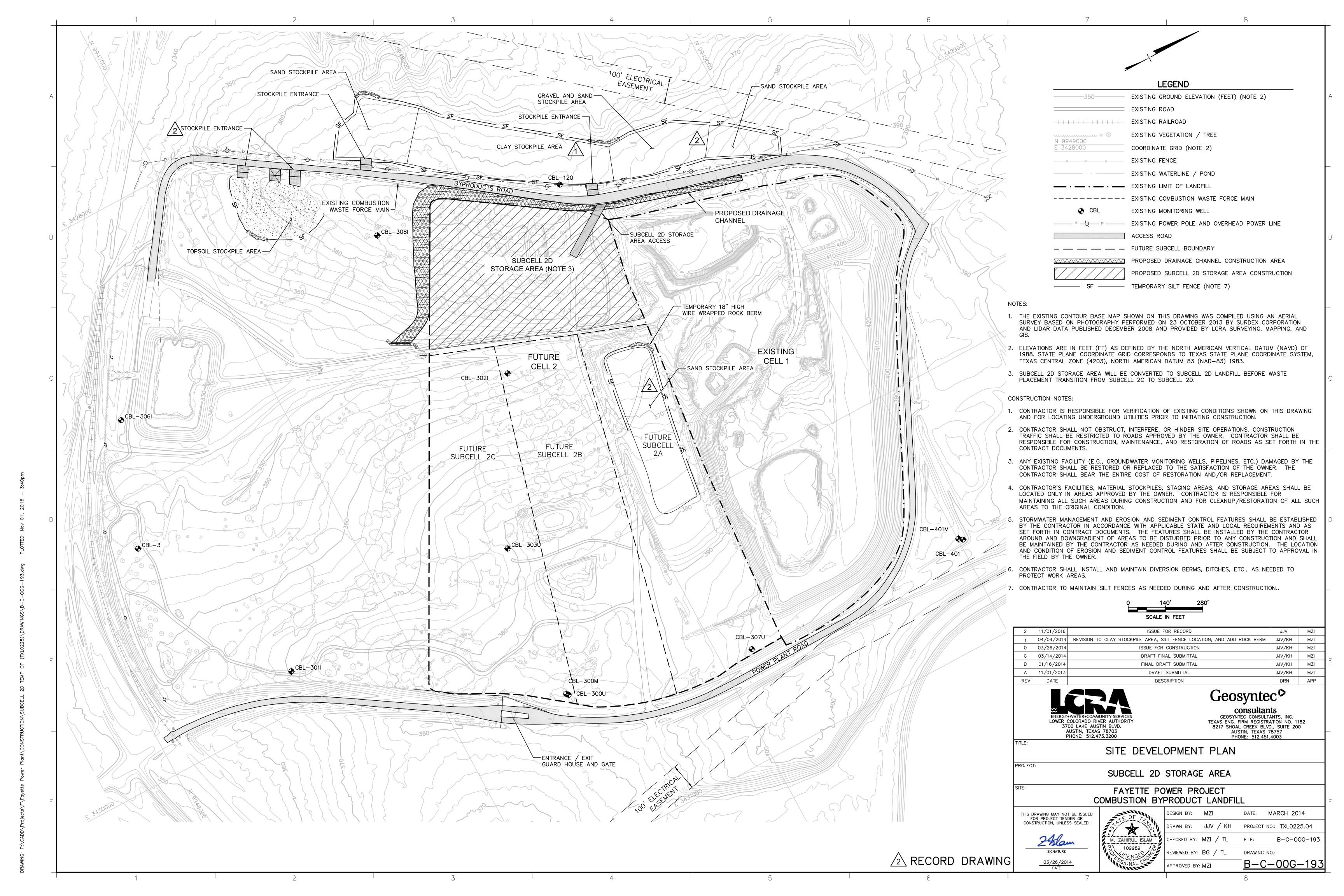
PREPARED BY:

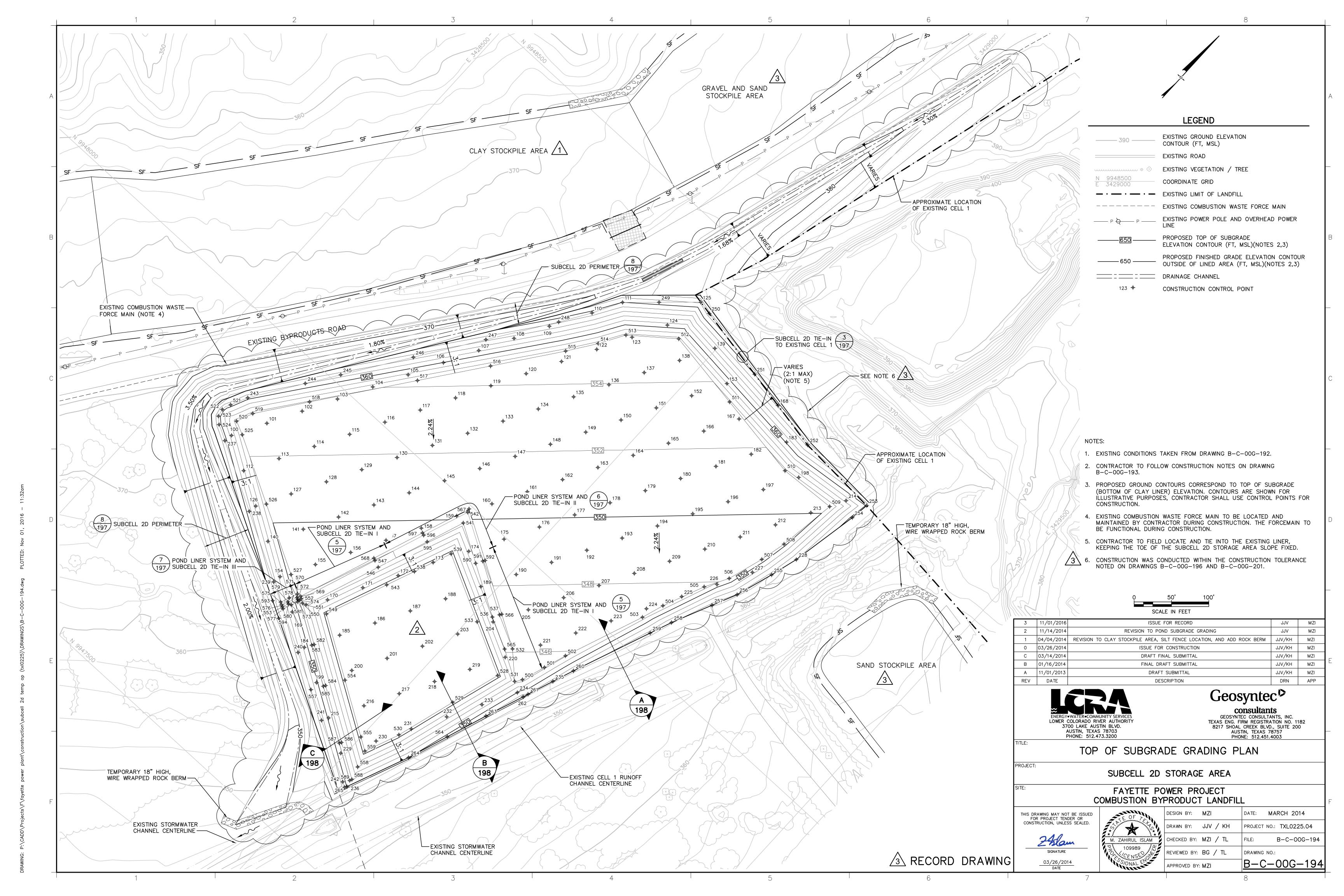
consultants

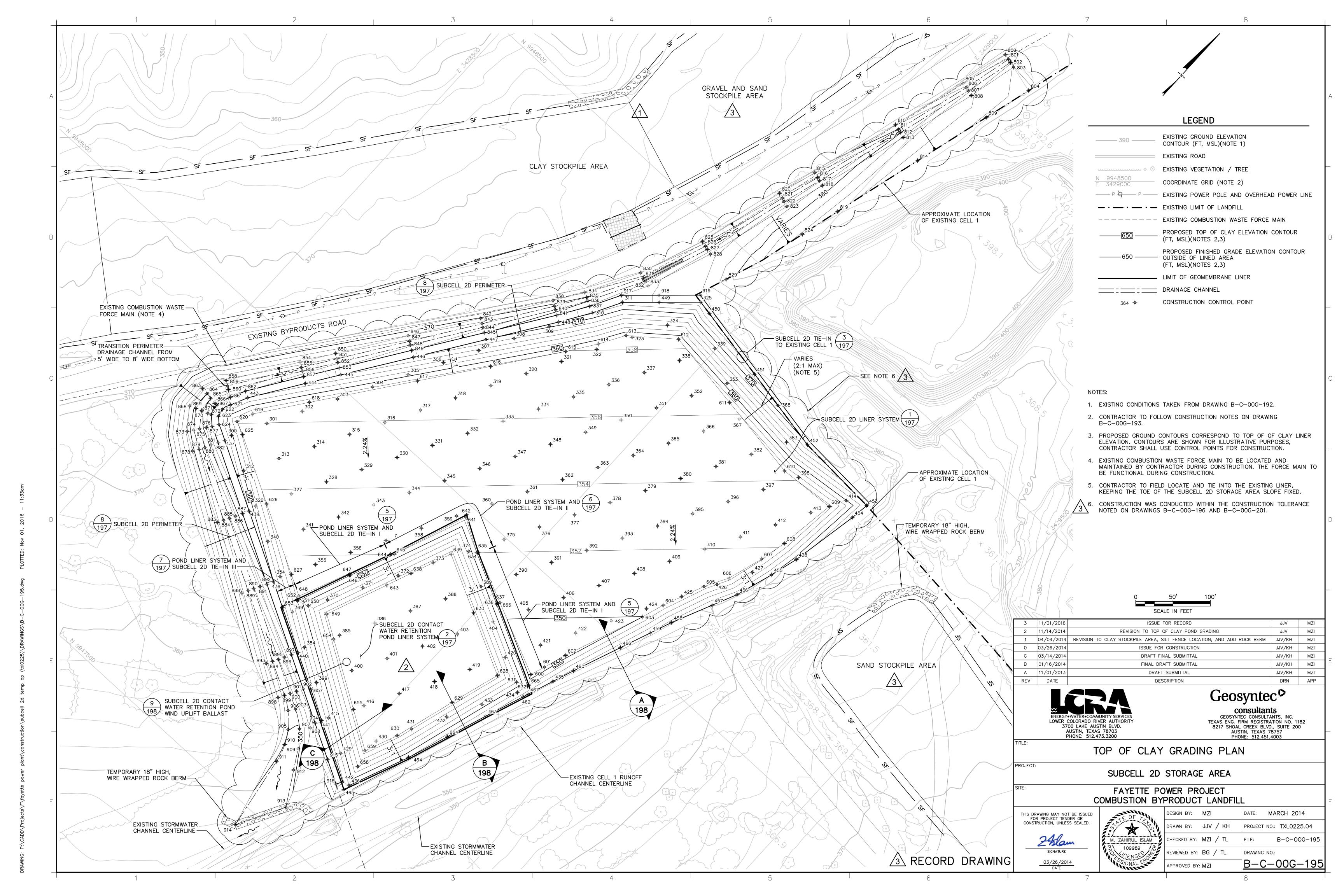

Geosyntec 8217 Shoal Creek BLVD., SUITE 200 TEXAS ENG. FIRM REGISTRATION NO. 1182 AUSTIN, TEXAS 78757

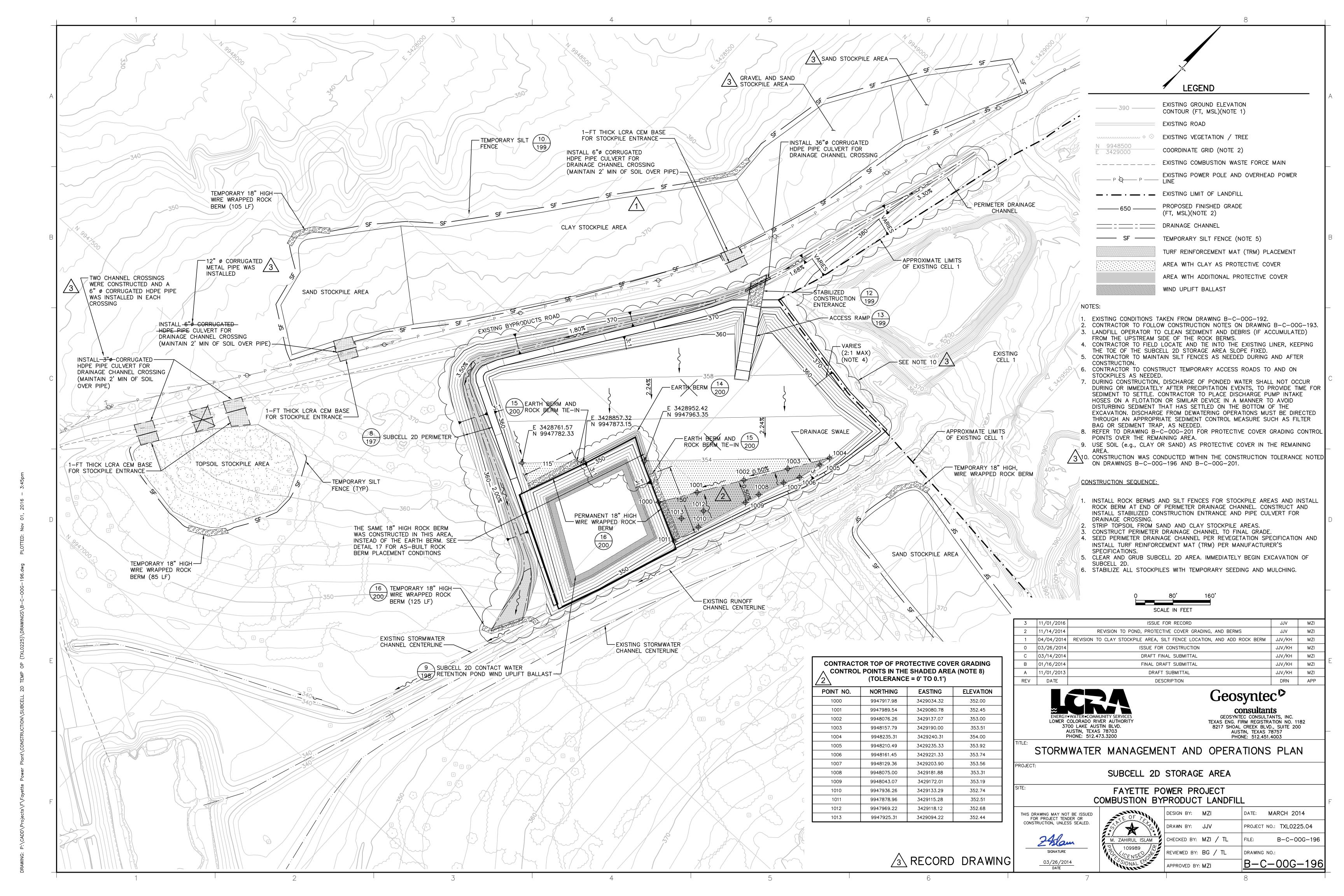
TELEPHONE: 512.451.4003

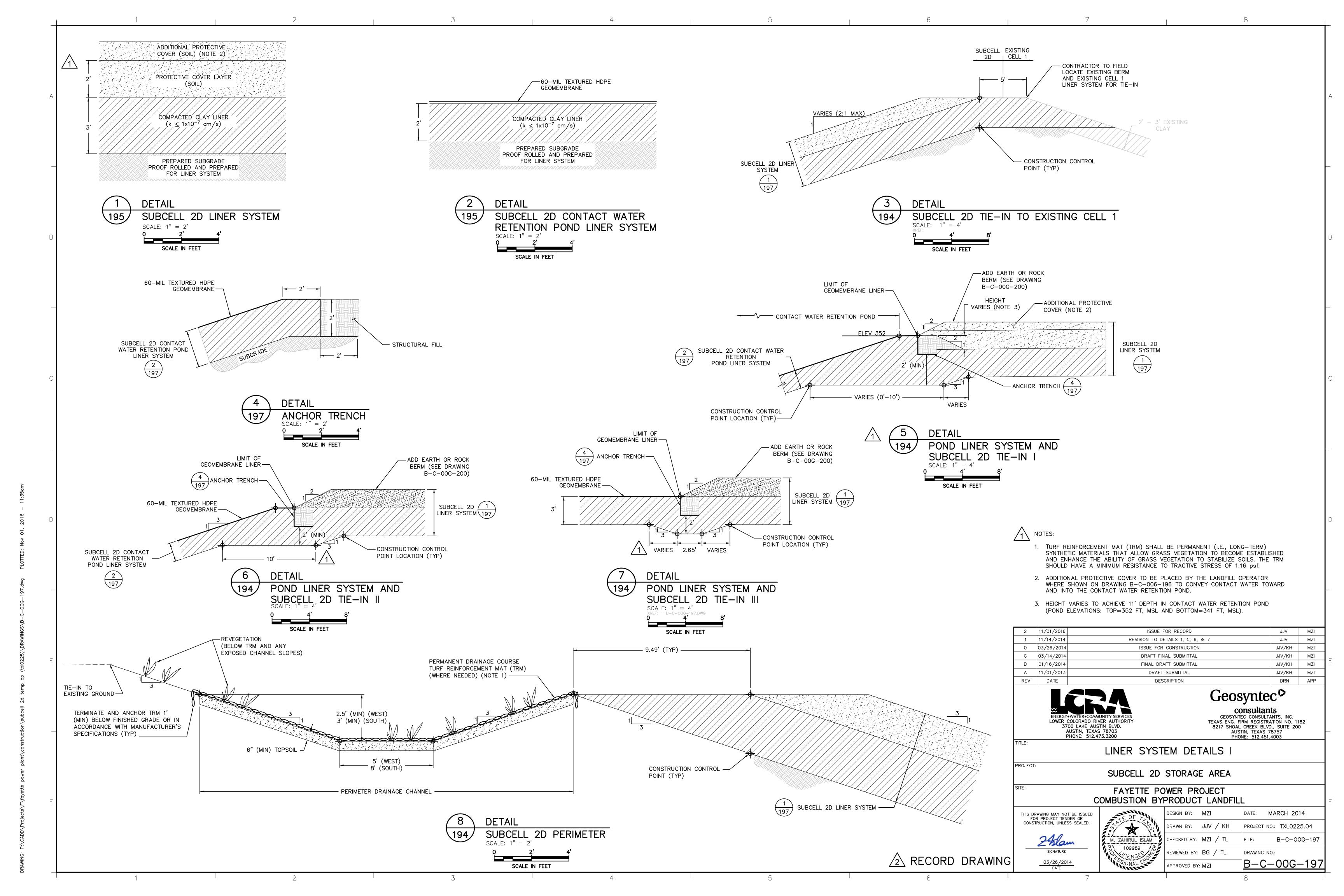


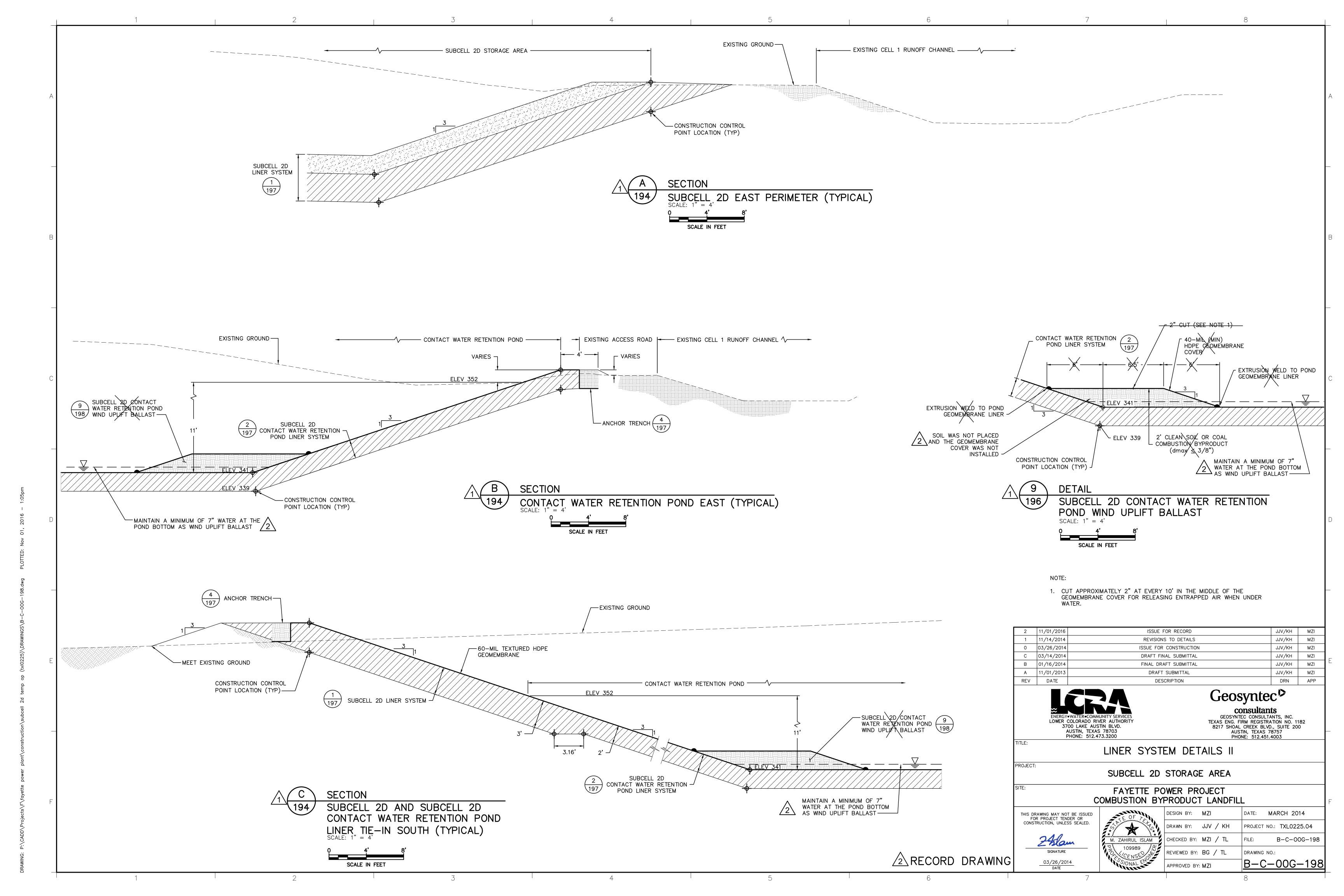


0 1 MILE

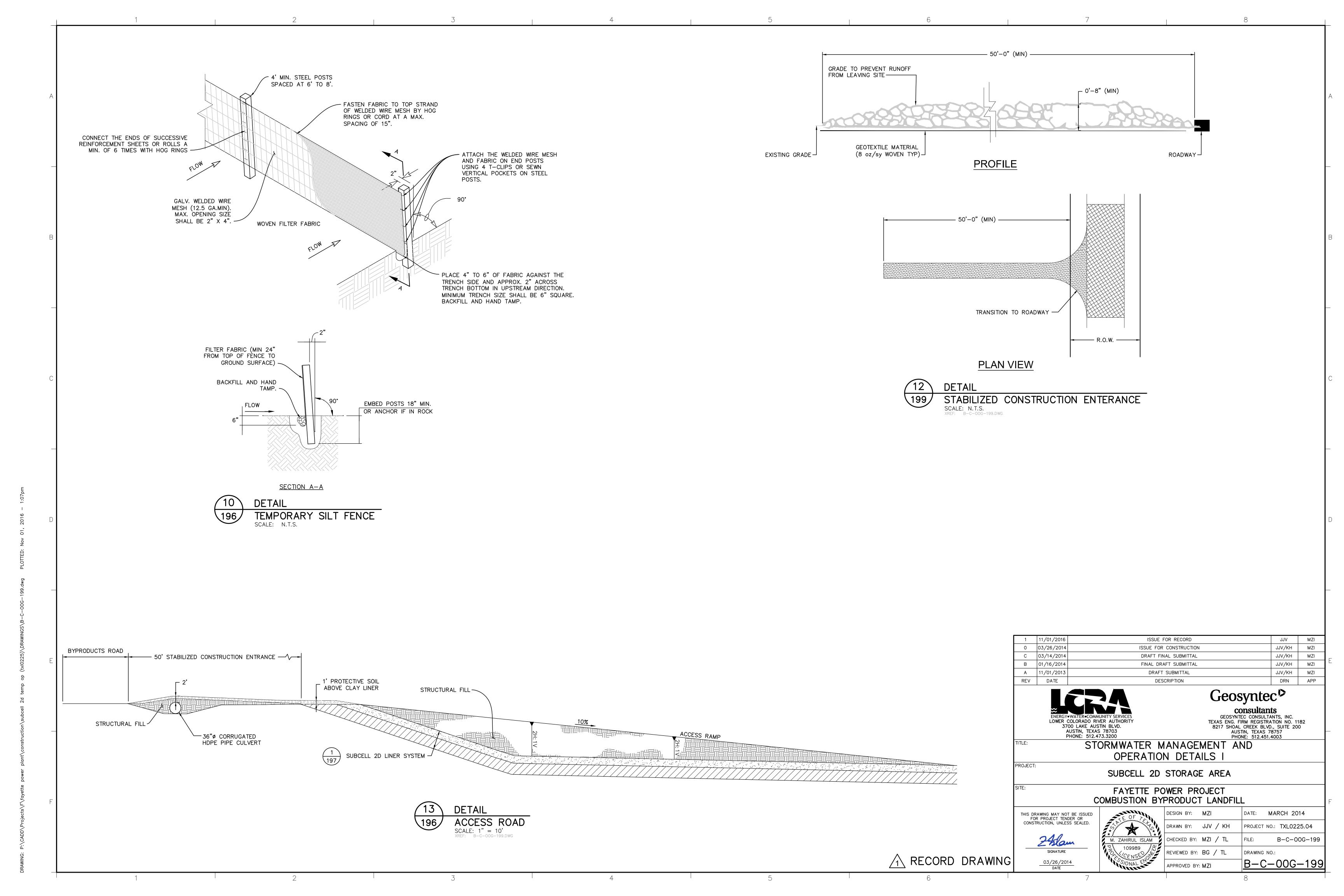

APPROXIMATE SCALE ISSUE FOR RECORD

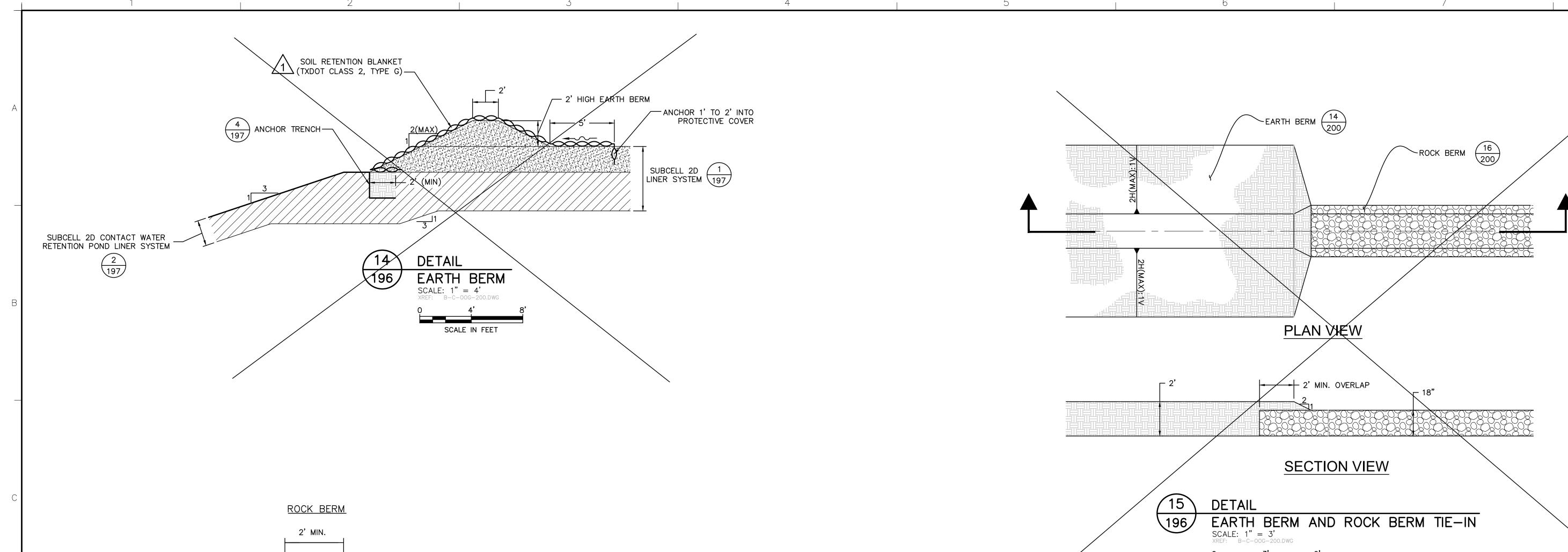


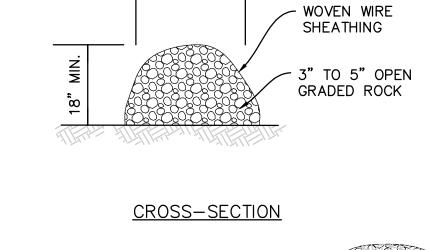


3 RECORD DRAWING

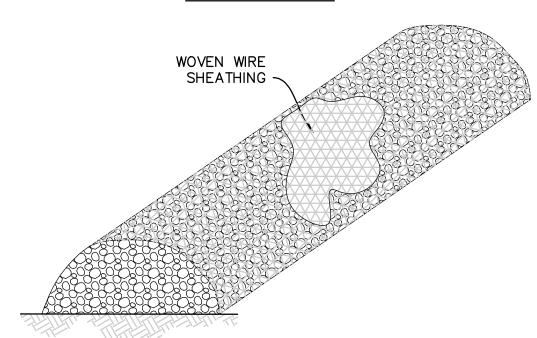




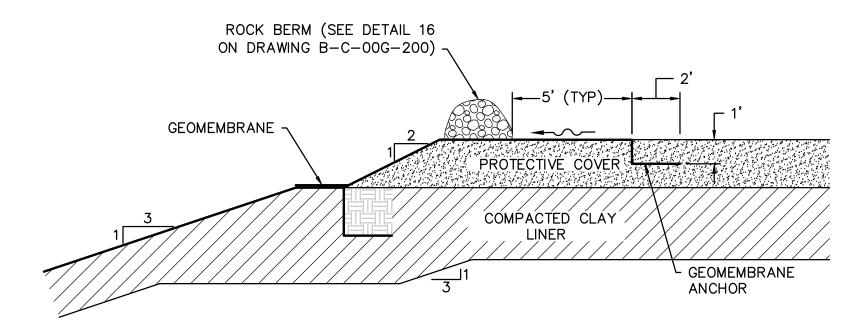


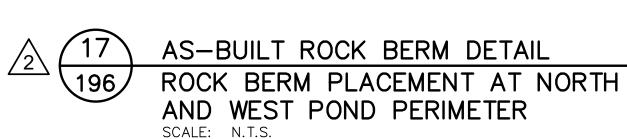


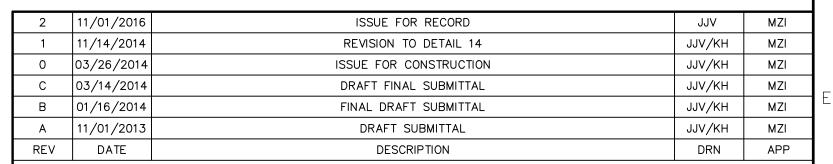








MATERIAL SPECIFICATIONS


THE ROCK BERM SHALL BE CONSTRUCTED OF CLEAN OPEN GRADED 3 — 5 INCH DIAMETER ROCK. THE WIRE SHEATHING SHALL BE MINIMUM 20 GAUGE WOVEN WIRE MESH WITH 1 INCH OPENINGS.


BERM LOCATION

-SEE GRADING LAYOUT FOR BERM LOCATION

-RELOCATE THE ROCK BERM AS NECESSARY TO AVOID UNNECESSARY CLEARING OF VEGETATION.
-CLEAR THE MINIMUM AREA OF DEBRIS, ROCKS OR PLANTS THAT WILL INTERFERE WITH INSTALLATION.
-PLACE WOVEN WIRE FABRIC ON THE GROUND ALONG THE PROPOSED INSTALLATION WITH ENOUGH OVERLAP TO COMPLETELY ENCIRCLE THE FINISHED SIZE OF THE BERM.









Geosyntec >

CONSULTANTS
GEOSYNTEC CONSULTANTS, INC.
TEXAS ENG. FIRM REGISTRATION NO. 1182
8217 SHOAL CREEK BLVD., SUITE 200
AUSTIN, TEXAS 78757
PHONE: 512.451.4003

STORMWATER MANAGEMENT AND OPERATION DETAILS I

SUBCELL 2D STORAGE AREA

FAYETTE POWER PROJECT COMBUSTION BYPRODUCT LANDFILL

THIS DRAWING MAY NOT BE ISSUED FOR PROJECT TENDER OR CONSTRUCTION, UNLESS SEALED.

SIGNATURE

03/26/2014 DATE M. ZAHIRUL ISLAM
D
109989
R
S/ONAL ENGINE

DESIGN BY: MZI

DRAWN BY: JJV / KH

PROJECT NO.: TXL0225.04

CHECKED BY: MZI / TL

REVIEWED BY: BG / TL

APPROVED BY: MZI

DATE: MARCH 2014

PROJECT NO.: TXL0225.04

DRAWING NO.: B-C-00G-200 B-C-00G-200

2 RECORD DRAWING

SCALE IN FEET

|                | SURG                     | RADE                     |                  | RTIFICATION | LAY LINER        |
|----------------|--------------------------|--------------------------|------------------|-------------|------------------|
| (T             | OLERANCE                 |                          | .2')             | (TOLERANC   |                  |
| OINT NO.       | NORTHING                 | EASTING                  | ELEVATION        | POINT NO.   | ELEVATION        |
| 100            | 9947853.00               | 3428599.50               | 357.26           | 300         | 360.42           |
| 101            | 9947896.92               | 3428623.40               | 352.99           | 301         | 355.99           |
| 102            | 9947940.84<br>9947984.76 | 3428647.30<br>3428671.20 | 353.33<br>353.68 | 302<br>303  | 356.33<br>356.68 |
| 103            | 9948028.68               | 3428695.10               | 355.03           | 304         | 358.19           |
| 105            | 9948072.59               | 3428719.00               | 357.47           | 305         | 360.63           |
| 106            | 9948116.51               | 3428742.90               | 359.92           | 306         | 363.08           |
| 107            | 9948160.43               | 3428766.80               | 362.36           | 307         | 365.52           |
| 108            | 9948204.35               | 3428790.70               | 364.81           | 308         | 367.97           |
| 109            | 9948248.27<br>9948300.02 | 3428814.60<br>3428844.73 | 367.26<br>369.16 | 309<br>310  | 370.42<br>372.32 |
| 111            | 9948338.04               | 3428865.35               | 369.16           | 311         | 372.32           |
| 112            | 9947829.10               | 3428643.42               | 356.31           | 312         | 359.47           |
| 113            | 9947873.02               | 3428667.32               | 351.92           | 313         | 354.92           |
| 114            | 9947916.94               | 3428691.22               | 352.27           | 314         | 355.27           |
| 115            | 9947960.86               | 3428715.12               | 352.61           | 315         | 355.61           |
| 116<br>117     | 9948004.78<br>9948048.69 | 3428739.02<br>3428762.92 | 352.96<br>353.30 | 316<br>317  | 355.96<br>356.30 |
| 118            | 9948092.61               | 3428786.82               | 353.65           | 318         | 356.65           |
| 119            | 9948136.53               | 3428810.72               | 353.99           | 319         | 356.99           |
| 120            | 9948180.45               | 3428834.62               | 354.34           | 320         | 357.34           |
| 121            |                          | 3428858.52               |                  | 321         | 357.68           |
| 122            | 9948268.29               | 3428882.42               | 355.03<br>355.37 | 322         | 358.03<br>358.37 |
| 123<br>124     | 9948312.20<br>9948356.12 | 3428906.32<br>3428930.22 | 355.37<br>361.08 | 323<br>324  | 358.37<br>364.24 |
| 125            | 9948409.05               | 3428942.41               |                  | 325         | 375.48           |
| 126            | 9947805.20               | 3428687.34               | 355.34           | 326         | 358.50           |
| 127            | 9947849.12               | 3428711.24               | 350.86           | 327         | 353.86           |
| 128            | 9947893.04               |                          | 351.20           | 328         | 354.20           |
| 129            | 9947936.96               | 3428759.04               | 351.55           | 329         | 354.55           |
| 130<br>131     | 9947980.88               | 3428782.94<br>3428806.84 | 351.89<br>352.24 | 330<br>331  | 354.89<br>355.24 |
| 132            | 9948068.71               | 3428830.74               | 352.58           | 332         | 355.58           |
| 133            | 9948112.63               | 3428854.64               | 352.93           | 333         | 355.93           |
| 134            | 9948156.55               | 3428878.54               | 353.27           | 334         | 356.27           |
| 135            | 9948200.47               | 3428902.44               | 353.62           | 335         | 356.62           |
| 136<br>137     | 9948244.39               | 3428926.34               | 353.96           | 336         | 356.96           |
| 138            | 9948288.30<br>9948332.22 | 3428950.23<br>3428974.13 | 354.31<br>354.65 | 337<br>338  | 357.31<br>357.65 |
| 139            | 9948376.14               | 3428998.03               | 364.52           | 339         | 367.68           |
| 140            | 9947781.30               | 3428731.26               | 354.37           | 340         | 357.53           |
| 141            | 9947825.22               | 3428755.16               | 349.79           | 341         | 352.79           |
| 142            | 9947869.14               | 3428779.06               | 350.14           | 342         | 353.14           |
| 143            | 9947913.06               | 3428802.96<br>3428826.86 | 350.48           | 343         | 353.48           |
| 145            | 9947956.98               | 3428850.76               | 350.83<br>351.17 | 344<br>345  | 353.83<br>354.17 |
| 146            | 9948044.81               | 3428874.66               | 351.52           | 346         | 354.52           |
| 147            | 9948088.73               | 3428898.55               | 351.86           | 347         | 354.86           |
| 148            | 9948132.65               | 3428922.45               | 352.21           | 348         | 355.21           |
| 149            | 9948176.57               | 3428946.35               | 352.55           | 349         | 355.55           |
| 150            | 9948220.49               | 3428970.25               | 352.90           | 350         | 355.90           |
| 151<br>152     | 9948264.40<br>9948308.32 | 3428994.15<br>3429018.05 | 353.24<br>353.59 | 351<br>352  | 356.24<br>356.59 |
| 153            | 9948352.24               | 3429041.95               | 358.00           | 353         | 361.16           |
| 154            | 9947757.40               | 3428775.18               | 353.40           | 354         | 356.56           |
| 155            | 9947801.32               | 3428799.08               | 348.73           | 355         | 351.73           |
| 156            | 9947845.24               | 3428822.97               | 349.08           | 356         | 352.08           |
| 157<br>158     | 9947889.16<br>9947933.08 | 3428846.87<br>3428870.77 | 349.42<br>349.77 | 357<br>358  | 352.42<br>352.77 |
| 158            | 9947933.08               | 3428870.77<br>3428894.67 | 349.77<br>349.85 | 358<br>359  | 352.77           |
| 160            | 9948020.91               | 3428918.57               | 350.45           | 360         | 353.45           |
| 161            | 9948064.83               | 3428942.47               | 350.80           | 361         | 353.80           |
| 162            | 9948108.75               | 3428966.37               | 351.14           | 362         | 354.14           |
| 163            | 9948152.67               | 3428990.27               | 351.49           | 363         | 354.49           |
| 164<br>165     | 9948196.59<br>9948240.50 | 3429014.17<br>3429038.07 | 351.83<br>352.18 | 364<br>365  | 354.83<br>355.18 |
| 166            | 9948240.50               | 3429038.07               | 352.18<br>352.52 | 366         | 355.18<br>355.52 |
| 167            | 9948328.34               | 3429085.87               | 352.87           | 367         | 355.87           |
| 168            | 9948376.79               | 3429112.22               | 368.48           | 368         | 371.64           |
| 169            | 9947733.50               | 3428819.09               | 352.43           | 369         | 355.59           |
| 170            | 9947777.42               |                          | 344.46           | 370         | 346.57           |
| 171            | 9947821.34               |                          |                  | 371         | 344.59           |
| 172<br>173     | 9947865.26<br>9947909.85 | 3428890.79<br>3428913.46 | 340.51<br>339.00 | 372<br>373  | 342.62<br>341.00 |
| 174            | 9947953.10               | 3428938.59               | 346.76           | 374         | 348.86           |
| 175            | 9947997.01               | 3428962.49               | 349.39           | 375         | 352.39           |
| 176            | 9948040.93               | 3428986.39               | 349.74           | 376         | 352.74           |
| 177            | 9948084.85               | 3429010.29               | 350.08           | 377         | 353.08           |
| 178            | 9948128.77               | 3429034.19               | 350.43           | 378         | 353.43           |
| 179            | 9948172.69               | 3429058.09               | 350.77           | 379         | 353.77           |
| 180<br>181     | 9948216.60<br>9948260.52 | 3429081.99<br>3429105.89 | 351.12<br>351.46 | 380<br>381  | 354.12<br>354.46 |
| 182            | 9948260.52               | 3429105.89               | 351.46<br>351.80 | 382         | 354.46           |
| - <del>-</del> |                          |                          |                  | 383         | L                |

| /-             | SUBG                     |                           | 21)              |            | LAY LINER          |
|----------------|--------------------------|---------------------------|------------------|------------|--------------------|
|                | OLERANCE                 |                           |                  | (TOLERANC  | Т                  |
| POINT NO.  184 | 9947709.60               | <b>EASTING</b> 3428863.01 | 351.46           | POINT NO.  | ELEVATIO<br>354.62 |
| 185            | 9947753.52               | 3428886.91                | 339.00           | 385        | 341.00             |
| 186            | 9947797.44               | 3428910.81                | 339.00           | 386        | 341.00             |
| 187            | 9947841.36               | 3428934.71                | 339.00           | 387        | 341.00             |
| 188            | 9947885.28               | 3428958.61                | 339.00           | 388        | 341.00             |
| 189            | 9947929.20               | 3428982.51<br>3429006.41  | 346.18           | 389        | 348.29             |
| 190<br>191     | 9947973.11<br>9948017.03 | 3429030.31                | 348.33<br>348.67 | 390<br>391 | 351.33<br>351.67   |
| 192            | 9948060.95               | 3429054.21                | 349.02           | 392        | 352.02             |
| 193            | 9948104.87               | 3429078.11                | 349.36           | 393        | 352.36             |
| 194            | 9948148.79               | 3429102.01                | 349.71           | 394        | 352.71             |
| 195            | 9948192.71               | 3429125.91                | 350.05           | 395        | 353.05             |
| 196<br>197     | 9948236.62<br>9948280.54 | 3429149.81<br>3429173.71  | 350.40<br>350.74 | 396<br>397 | 353.40<br>353.74   |
| 198            | 9948324.46               | 3429197.61                | 352.49           | 398        | 355.65             |
| 199            | 9947685.71               | 3428906.93                | 350.49           | 399        | 353.65             |
| 200            | 9947729.62               | 3428930.83                | 339.00           | 400        | 341.00             |
| 201            | 9947773.54               | 3428954.73                | 339.00           | 401        | 341.00             |
| 202            | 9947817.46               | 3428978.63                | 339.00           | 402        | 341.00             |
| 203            | 9947861.38<br>9947905.30 | 3429002.53                | 339.00           | 403        | 341.00             |
| 204            | 9947905.30               | 3429026.43<br>3429050.33  | 345.61<br>347.26 | 404<br>405 | 347.71<br>350.26   |
| 206            | 9947993.13               | 3429074.23                | 347.61           | 406        | 350.61             |
| 207            | 9948037.05               | 3429098.13                | 347.95           | 407        | 350.95             |
| 208            | 9948080.97               | 3429122.03                | 348.30           | 408        | 351.30             |
| 209            | 9948124.89               | 3429145.93                | 348.64           | 409        | 351.64             |
| 210            | 9948168.81               | 3429169.83                | 348.99           | 410        | 351.99             |
| 211<br>212     | 9948212.72<br>9948256.64 | 3429193.73<br>3429217.63  | 349.33<br>349.68 | 411<br>412 | 352.33<br>352.68   |
| 213            | 9948300.56               | 3429241.52                | 350.02           | 413        | 353.02             |
| 214            | 9948344.48               | 3429265.42                | 356.69           | 414        | 359.85             |
| 215            | 9947661.81               | 3428950.85                | 349.52           | 415        | 352.68             |
| 216            | 9947705.72               | 3428974.75                | 339.00           | 416        | 341.00             |
| 217            | 9947749.64               | 3428998.65                | 339.00           | 417        | 341.00             |
| 218<br>219     | 9947793.56<br>9947837.48 | 3429022.55<br>3429046.45  | 339.00<br>339.00 | 418<br>419 | 341.00<br>341.00   |
| 220            | 9947881.40               | 3429070.35                | 345.03           | 420        | 347.14             |
| 221            | 9947925.32               | 3429094.25                | 346.20           | 421        | 349.20             |
| 222            | 9947969.23               | 3429118.15                | 346.54           | 422        | 349.54             |
| 223            | 9948013.15               | 3429142.05                | 346.89           | 423        | 349.89             |
| 224            | 9948057.07               | 3429165.94                | 347.23           | 424        | 350.23             |
| 225<br>226     | 9948100.99               | 3429189.84<br>3429213.74  | 347.58<br>348.80 | 425<br>426 | 350.58<br>351.98   |
| 227            | 9948188.82               | 3429237.64                | 351.30           | 427        | 354.47             |
| 228            | 9948241.25               | 3429269.55                | 357.93           | 428        | 361.09             |
| 229            | 9947637.91               | 3428994.77                | 348.55           | 429        | 351.71             |
| 230            | 9947681.82               | 3429018.67                | 339.00           | 430        | 341.00             |
| 231            | 9947725.74               | 3429042.57                | 339.63           | 431        | 341.32             |
| 232            | 9947769.66               | 3429066.47<br>3429090.36  | 343.15<br>346.63 | 432<br>433 | 345.26<br>348.76   |
| 234            | 9947857.50               | 3429114.26                | 350.03           | 434        | 352.16             |
| 235            | 9947900.75               | 3429139.35                | 352.83           | 435        | 355.99             |
| 236            | 9947610.49               | 3429031.01                | 349.89           | 436        | 352.00             |
| 237            | 9947841.80               | 3428597.59                | 360.84           | 437        | 364.00             |
| 238            | 9947794.05               | 3428685.62                | 358.81           | 438        | 361.97             |
| 239            | 9947746.41<br>9947698.77 | 3428773.55                | 356.81<br>354.80 | 439        | 359.97             |
| 240<br>241     | 9947698.77               | 3428861.47<br>3428946.02  | 354.80<br>352.88 | 440<br>441 | 357.96<br>356.04   |
| 242            | 9947611.41               | 3429022.57                | 351.16           | 442        | 354.30             |
| 243            | 9947904.78               | 3428581.43                | 360.63           | 443        | 363.79             |
| 244            | 9947971.00               | 3428625.27                | 362.07           | 444        | 365.23             |
| 245            | 9948011.62               | 3428652.55                | 362.95           | 445        | 366.11             |
| 246            | 9948094.64               | 3428708.31                | 364.75           | 446        | 367.91             |
| 247<br>248     | 9948177.65               | 3428764.07<br>3428820.01  | 366.55<br>368.35 | 447<br>448 | 369.71<br>371.51   |
| 249            | 9948371.16               | 3428901.29                | 371.05           | 449        | 371.51             |
| 250            | 9948405.53               | 3428960.90                | 373.10           | 450        | 376.26             |
| 251            | 9948386.59               | 3429060.63                | 370.05           | 451        | 373.21             |
| 252            | 9948364.50               | 3429176.89                | 366.51           | 452        | 369.67             |
| 253            | 9948358.14               | 3429290.30                | 360.32           | 453        | 363.48             |
| 254<br>255     | 9948333.24               | 3429286.89<br>3429258.97  | 360.65<br>356.85 | 454<br>455 | 363.81<br>360.01   |
| 255<br>256     | 9948203.76<br>9948153.09 | 3429258.97<br>3429242.79  | 356.85<br>356.12 | 455<br>456 | 360.01<br>359.28   |
| 257            | 9948119.82               | 3429227.66                | 356.84           | 457        | 360.00             |
| 258            | 9948066.12               | 3429203.24                | 355.76           | 458        | 358.92             |
| 259            | 9948036.48               | 3429191.67                | 354.84           | 459        | 358.00             |
| 260            | 9947929.71               | 3429150.00                | 353.45           | 460        | 356.61             |
| 261            | 9947865.52               | 3429126.40                | 352.10           | 461        | 355.26             |
| 262<br>263     | 9947858.55<br>9947805.89 | 3429123.83<br>3429104.47  | 353.01<br>351.92 | 462<br>463 | 355.12<br>354.03   |
| 263            | 9947805.89               | 3429104.47                | 351.92<br>349.89 | 463        | 354.03             |
| 265            | 9947694.87               | 3429029.33                | 350.98           | 465        | 352.00             |

| CONTRO                                                                           | L POINTS (TO                                                                                                                                                                                                                 | LERANCE = (                                                                                                                                                                                                      | 0' TO -0.2')                                                                                                                                                                     |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POINT NO.                                                                        | NORTHING                                                                                                                                                                                                                     | EASTING                                                                                                                                                                                                          | ELEVATION                                                                                                                                                                        |
| 500                                                                              | 9947874.88                                                                                                                                                                                                                   | 3429107.69                                                                                                                                                                                                       | 345.17                                                                                                                                                                           |
| 501<br>502                                                                       | 9947906.85                                                                                                                                                                                                                   | 3429118.41<br>3429128.61                                                                                                                                                                                         | 345.53                                                                                                                                                                           |
| 503                                                                              | 9947937.27<br>9948045.05                                                                                                                                                                                                     | 3429128.81                                                                                                                                                                                                       | 345.87<br>346.98                                                                                                                                                                 |
| 504                                                                              | 9948074.90                                                                                                                                                                                                                   | 3429179.56                                                                                                                                                                                                       | 347.31                                                                                                                                                                           |
| 505                                                                              | 9948130.94                                                                                                                                                                                                                   | 3429203.18                                                                                                                                                                                                       | 347.86                                                                                                                                                                           |
| 506                                                                              | 9948161.86                                                                                                                                                                                                                   | 3429220.32                                                                                                                                                                                                       | 348.10                                                                                                                                                                           |
| 507                                                                              | 9948210.16                                                                                                                                                                                                                   | 3429235.28                                                                                                                                                                                                       | 348.65                                                                                                                                                                           |
| 508                                                                              | 9948245.27                                                                                                                                                                                                                   | 3429243.47                                                                                                                                                                                                       | 349.10                                                                                                                                                                           |
| 509<br>510                                                                       | 9948323.69                                                                                                                                                                                                                   | 3429254.57<br>3429178.08                                                                                                                                                                                         | 350.20<br>351.28                                                                                                                                                                 |
| 511                                                                              | 9948336.49                                                                                                                                                                                                                   | 3429061.07                                                                                                                                                                                                       | 353.37                                                                                                                                                                           |
| 512                                                                              | 9948352.81                                                                                                                                                                                                                   | 3428953.72                                                                                                                                                                                                       | 355.29                                                                                                                                                                           |
| 513                                                                              | 9948308.85                                                                                                                                                                                                                   | 3428898.32                                                                                                                                                                                                       | 355.43                                                                                                                                                                           |
| 514                                                                              | 9948275.36                                                                                                                                                                                                                   | 3428878.54                                                                                                                                                                                                       | 355.19                                                                                                                                                                           |
| 515                                                                              | 9948238.51                                                                                                                                                                                                                   | 3428853.22                                                                                                                                                                                                       | 354.98                                                                                                                                                                           |
| 516<br>517                                                                       | 9948155.86<br>9948075.39                                                                                                                                                                                                     | 3428792.52<br>3428733.42                                                                                                                                                                                         | 354.57<br>354.17                                                                                                                                                                 |
| 517                                                                              | 9947956.68                                                                                                                                                                                                                   | 3428646.21                                                                                                                                                                                                       | 353.59                                                                                                                                                                           |
| 519                                                                              | 9947893.73                                                                                                                                                                                                                   | 3428600.64                                                                                                                                                                                                       | 353.27                                                                                                                                                                           |
| 520                                                                              | 9947871.57                                                                                                                                                                                                                   | 3428591.54                                                                                                                                                                                                       | 353.05                                                                                                                                                                           |
| 521                                                                              | 9947882.34                                                                                                                                                                                                                   | 3428570.85                                                                                                                                                                                                       | 360.84                                                                                                                                                                           |
| 522                                                                              | 9947870.27                                                                                                                                                                                                                   | 3428566.85                                                                                                                                                                                                       | 360.84                                                                                                                                                                           |
| 523                                                                              | 9947860.25                                                                                                                                                                                                                   | 3428569.10                                                                                                                                                                                                       | 360.84                                                                                                                                                                           |
| 524                                                                              | 9947852.39                                                                                                                                                                                                                   | 3428577.36                                                                                                                                                                                                       | 360.84                                                                                                                                                                           |
| 525<br>526                                                                       | 9947863.31<br>9947816.68                                                                                                                                                                                                     | 3428609.41<br>3428695.96                                                                                                                                                                                         | 352.66<br>350.57                                                                                                                                                                 |
| 527                                                                              | 9947769.36                                                                                                                                                                                                                   | 3428784.06                                                                                                                                                                                                       | 348.44                                                                                                                                                                           |
| 528                                                                              | 9947856.59                                                                                                                                                                                                                   | 3429079.49                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| 529                                                                              | 9947789.42                                                                                                                                                                                                                   | 3429059.29                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| 530                                                                              | 9947706.03                                                                                                                                                                                                                   | 3429034.83                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| 531                                                                              | 9947866.09                                                                                                                                                                                                                   | 3429101.57                                                                                                                                                                                                       | 345.13                                                                                                                                                                           |
| 532                                                                              | 9947896.27                                                                                                                                                                                                                   | 3429070.12                                                                                                                                                                                                       | 346.10                                                                                                                                                                           |
| 533                                                                              | 9947891.05                                                                                                                                                                                                                   | 3429010.60                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| <del>535</del>                                                                   | 9947877.44<br>9947883.83                                                                                                                                                                                                     | 3428995.68<br>3428998.88                                                                                                                                                                                         | 335.10<br>335.10                                                                                                                                                                 |
| 536                                                                              | 9947909.47                                                                                                                                                                                                                   | 3429021.38                                                                                                                                                                                                       | 346.10                                                                                                                                                                           |
| 537                                                                              | 9947918.16                                                                                                                                                                                                                   | 3429026.38                                                                                                                                                                                                       | 346.10                                                                                                                                                                           |
| 538                                                                              | 9947883.97                                                                                                                                                                                                                   | 3428903.14                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| 539                                                                              | 9947934.69                                                                                                                                                                                                                   | 3428923.37                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| 540                                                                              | 9947918.53                                                                                                                                                                                                                   | <del>3428929.52</del>                                                                                                                                                                                            | <del>335.10</del>                                                                                                                                                                |
| 541<br>542                                                                       | 9947976.06<br>9947990.73                                                                                                                                                                                                     | 3428907.54<br>3428902.25                                                                                                                                                                                         | 348.97<br>349.23                                                                                                                                                                 |
| 543                                                                              | 9947845.74                                                                                                                                                                                                                   | 3428887.89                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| 544                                                                              | 9947838.76                                                                                                                                                                                                                   | <del>3428905.40</del>                                                                                                                                                                                            | 335.10                                                                                                                                                                           |
| 545                                                                              | 9947841.40                                                                                                                                                                                                                   | <del>3428898.76</del>                                                                                                                                                                                            | 335.10                                                                                                                                                                           |
| 546                                                                              | 9947855.44                                                                                                                                                                                                                   | 3428863.56                                                                                                                                                                                                       | 347.73                                                                                                                                                                           |
| 547                                                                              | 9947859.15                                                                                                                                                                                                                   | 3428854.27                                                                                                                                                                                                       | 347.73                                                                                                                                                                           |
| 548                                                                              | 9947772.62                                                                                                                                                                                                                   | 3428885.47                                                                                                                                                                                                       | 337.10                                                                                                                                                                           |
| 549<br>550                                                                       | 9947762.50                                                                                                                                                                                                                   | 3428854.69<br>3428821.26                                                                                                                                                                                         | 339.00<br>347.99                                                                                                                                                                 |
| 551                                                                              | 9947753.17                                                                                                                                                                                                                   | 3428826.27                                                                                                                                                                                                       | 346.64                                                                                                                                                                           |
| 552                                                                              | 9947754.68                                                                                                                                                                                                                   | 3428816.18                                                                                                                                                                                                       | 346.62                                                                                                                                                                           |
| 553                                                                              | 9947729.70                                                                                                                                                                                                                   | 3428804.62                                                                                                                                                                                                       | 354.96                                                                                                                                                                           |
| 554                                                                              | 9947713.86                                                                                                                                                                                                                   | 3428932.88                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| 555                                                                              | 9947672.12                                                                                                                                                                                                                   | 3428999.97                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| <del>556</del>                                                                   | 9947723.80                                                                                                                                                                                                                   | 3428939.06                                                                                                                                                                                                       | <del>335.10</del>                                                                                                                                                                |
| 557<br>558                                                                       | 9947673.64                                                                                                                                                                                                                   | 3428907.86<br>3429023.84                                                                                                                                                                                         | 353.75<br>344.00                                                                                                                                                                 |
| 559                                                                              | 9947659.61                                                                                                                                                                                                                   | 3429016.69                                                                                                                                                                                                       | 339.00                                                                                                                                                                           |
| 560                                                                              | 9947677.08                                                                                                                                                                                                                   | 3429014.14                                                                                                                                                                                                       | 335.10                                                                                                                                                                           |
| 561                                                                              | 9947770.61                                                                                                                                                                                                                   | 3429027.88                                                                                                                                                                                                       | 337.10                                                                                                                                                                           |
| 562                                                                              | 9947768.63                                                                                                                                                                                                                   | 3429033.55                                                                                                                                                                                                       | 335.10                                                                                                                                                                           |
| 563                                                                              | 9947766.26                                                                                                                                                                                                                   | 3429040.30                                                                                                                                                                                                       | <del>335.10</del>                                                                                                                                                                |
| 564                                                                              |                                                                                                                                                                                                                              | 3429085.08                                                                                                                                                                                                       | 350.91                                                                                                                                                                           |
| 565                                                                              | 9947750.58                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                  |
| 565<br>566                                                                       | 9947888.95                                                                                                                                                                                                                   | 3429062.41                                                                                                                                                                                                       | 346.10                                                                                                                                                                           |
| 565<br>566<br>567                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                                                                  |
| 566                                                                              | 9947888.95<br>9947920.84                                                                                                                                                                                                     | 3429062.41<br>3429028.03                                                                                                                                                                                         | 346.10<br>347.15                                                                                                                                                                 |
| 566<br>567                                                                       | 9947888.95<br>9947920.84<br>9947995.22                                                                                                                                                                                       | 3429062.41<br>3429028.03<br>3428900.55                                                                                                                                                                           | 346.10<br>347.15<br>350.32                                                                                                                                                       |
| 566<br>567<br>568                                                                | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44                                                                                                                                                                         | 3429062.41<br>3429028.03<br>3428900.55<br>3428851.05                                                                                                                                                             | 346.10<br>347.15<br>350.32<br>348.89                                                                                                                                             |
| 566<br>567<br>568<br>569<br>570<br>571                                           | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947756.07<br>9947752.16                                                                                                                               | 3429062.41<br>3429028.03<br>3428900.55<br>3428851.05<br>3428813.17<br>3428807.96<br>3428810.72                                                                                                                   | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52                                                                                                               |
| 566<br>567<br>568<br>569<br>570<br>571                                           | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947750.94                                                                                                                               | 3429062.41<br>3429028.03<br>3428900.55<br>3428851.05<br>3428813.17<br>3428807.96<br>3428810.72<br>3428813.09                                                                                                     | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44                                                                                                     |
| 566<br>567<br>568<br>569<br>570<br>571<br>572<br>573                             | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947750.94<br>9947748.16                                                                                                                 | 3429062.41<br>3429028.03<br>3428900.55<br>3428851.05<br>3428813.17<br>3428807.96<br>3428810.72<br>3428813.09<br>3428815.00                                                                                       | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00                                                                                           |
| 566<br>567<br>568<br>569<br>570<br>571                                           | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947750.94                                                                                                                               | 3429062.41<br>3429028.03<br>3428900.55<br>3428851.05<br>3428813.17<br>3428807.96<br>3428810.72<br>3428813.09                                                                                                     | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44                                                                                                     |
| 566<br>567<br>568<br>569<br>570<br>571<br>572<br>573<br>574                      | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947750.94<br>9947748.16<br>9947751.55                                                                                                   | 3429062.41<br>3429028.03<br>3428900.55<br>3428851.05<br>3428813.17<br>3428807.96<br>3428810.72<br>3428813.09<br>3428815.00<br>3428815.23                                                                         | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00<br>347.99                                                                                 |
| 566<br>567<br>568<br>569<br>570<br>571<br>572<br>573<br>574<br>575               | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947750.94<br>9947748.16<br>9947751.55<br>9947732.79                                                                                     | 3429062.41<br>3429028.03<br>3428900.55<br>3428851.05<br>3428813.17<br>3428807.96<br>3428813.09<br>3428815.00<br>3428815.23<br>3428798.68                                                                         | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00<br>347.99<br>356.23                                                                       |
| 566<br>567<br>568<br>569<br>570<br>571<br>572<br>573<br>574<br>575<br>576        | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947750.94<br>9947748.16<br>9947751.55<br>9947732.79<br>9947730.95                                                                       | 3429062.41<br>3429028.03<br>3428900.55<br>3428851.05<br>3428813.17<br>3428807.96<br>3428810.72<br>3428813.09<br>3428815.00<br>3428815.23<br>3428798.68<br>3428802.26                                             | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00<br>347.99<br>356.23<br>355.02                                                             |
| 566<br>567<br>568<br>569<br>570<br>571<br>572<br>573<br>574<br>575<br>576<br>577 | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947752.16<br>9947750.94<br>9947748.16<br>9947751.55<br>9947732.79<br>9947730.95<br>9947728.30                                           | 3429062.41 3429028.03 3428900.55 3428851.05 3428813.17 3428807.96 3428813.09 3428815.00 3428815.23 3428798.68 3428802.26 3428807.08                                                                              | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00<br>347.99<br>356.23<br>355.02<br>355.75                                                   |
| 566 567 568 569 570 571 572 573 574 575 576 577 578 579                          | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947752.16<br>9947751.55<br>9947732.79<br>9947732.79<br>9947730.95<br>9947728.30<br>9947744.76<br>9947739.50<br>9947738.07               | 3429062.41 3429028.03 3428900.55 3428851.05 3428813.17 3428807.96 3428813.09 3428815.00 3428815.23 3428798.68 3428802.26 3428807.08 3428807.08 3428807.96                                                        | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00<br>347.99<br>356.23<br>355.02<br>355.75<br>352.00<br>352.00                               |
| 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581                  | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947750.94<br>9947751.55<br>9947732.79<br>9947732.79<br>9947730.95<br>9947739.50<br>9947739.50<br>9947739.68                             | 3429062.41 3429028.03 3428900.55 3428851.05 3428813.17 3428807.96 3428813.09 3428815.00 3428815.23 3428798.68 3428802.26 3428807.08 3428805.67 3428807.96 3428811.62                                             | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00<br>347.99<br>356.23<br>355.02<br>355.75<br>352.00<br>352.00<br>352.00                     |
| 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582              | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947750.94<br>9947751.55<br>9947732.79<br>9947732.79<br>9947730.95<br>9947728.30<br>9947744.76<br>9947739.50<br>9947739.68<br>9947739.68 | 3429062.41 3429028.03 3428900.55 3428851.05 3428813.17 3428807.96 3428813.09 3428815.00 3428815.23 3428798.68 3428802.26 3428807.08 3428807.08 3428807.08 3428807.08 3428807.08                                  | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00<br>347.99<br>356.23<br>355.02<br>355.75<br>352.00<br>352.00<br>352.00<br>347.99           |
| 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581                  | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947750.94<br>9947751.55<br>9947732.79<br>9947732.79<br>9947730.95<br>9947739.50<br>9947739.50<br>9947739.68                             | 3429062.41 3429028.03 3428900.55 3428851.05 3428813.17 3428807.96 3428813.09 3428815.00 3428815.23 3428798.68 3428802.26 3428807.08 3428805.67 3428807.96 3428811.62                                             | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00<br>347.99<br>356.23<br>355.02<br>355.75<br>352.00<br>352.00<br>352.00                     |
| 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583          | 9947888.95<br>9947920.84<br>9947995.22<br>9947860.44<br>9947756.56<br>9947752.16<br>9947752.16<br>9947751.55<br>9947732.79<br>9947732.79<br>9947730.95<br>9947739.50<br>9947739.50<br>9947739.68<br>9947721.10<br>9947718.42 | 3429062.41 3429028.03 3428900.55 3428851.05 3428813.17 3428807.96 3428813.09 3428815.00 3428815.23 3428798.68 3428807.08 3428807.08 3428807.08 3428807.08 3428807.06 3428807.96 3428807.96 3428870.16 3428868.49 | 346.10<br>347.15<br>350.32<br>348.89<br>347.79<br>348.00<br>347.52<br>347.44<br>349.00<br>347.99<br>356.23<br>355.02<br>355.75<br>352.00<br>352.00<br>352.00<br>347.99<br>347.99 |

9947646.53 3428984.05

|           | 1 CONTRACTOR SUBGRADE GRADING CONTROL POINTS (TOLERANCE = 0' TO -0.2') |            |          |  |  |  |  |
|-----------|------------------------------------------------------------------------|------------|----------|--|--|--|--|
| POINT NO. | NORTHING                                                               | EASTING    | ELEVATIO |  |  |  |  |
| 588       | 9947621.95                                                             | 3429029.54 | 347.99   |  |  |  |  |
| 589       | 9947618.99                                                             | 3429028.33 | 347.99   |  |  |  |  |
| 590       | 9947947.49                                                             | 3428956.26 | 347.72   |  |  |  |  |
| 591       | 9947956.09                                                             | 3428961.35 | 347.72   |  |  |  |  |
| 592       | 9947958.79                                                             | 3428962.95 | 348.76   |  |  |  |  |
| 593       | 9947726.96                                                             | 3428789.52 | 359.50   |  |  |  |  |
| 594       | 9947715.05                                                             | 3428811.51 | 359.00   |  |  |  |  |
| 595       | 9947924.85                                                             | 3428888.87 | 348.47   |  |  |  |  |
| 596       | 9947928.28                                                             | 3428879.48 | 348.47   |  |  |  |  |
| 597       | 9947929.46                                                             | 3428876.22 | 349.62   |  |  |  |  |

1 CONTRACTOR TOP OF CLAY GRADING CONTROL POINTS (TOLERANCE = 0' TO 0.1')

9947907.02

9947937.71

9948045.22

9948075.50

9948131.15

600

601

602

603

604

605

POINT NO. | NORTHING | EASTING | ELEVATION

9947887.57 3429111.37

3429117.94

3429128.23

3429169.29

3429179.23

3429202.73

348.32

348.54

348.88

349.99

350.33

350.87

| 4            | 330.67           | 3429202.73               | 9940131.13               | 003        |
|--------------|------------------|--------------------------|--------------------------|------------|
|              | 351.11           | 3429219.86               | 9948162.06               | 606        |
| 1            | 351.67           | 3429234.88               | 9948210.55               | 607        |
|              | 352.15           | 3429243.18               | 9948246.22               | 608        |
| 1            | 353.20           | 3429254.02               | 9948323.17               | 609        |
| 1            | 354.29           | 3429177.96               | 9948318.22               | 610        |
| 1            | 356.37           | 3429061.54               | 9948335.92               | 611        |
| -            | 358.29           | 3428953.88               | 9948352.28               | 612        |
| -            | 358.43           | 3428898.71               | 9948308.50               | 613        |
| -            |                  |                          |                          |            |
| 4            | 358.19           | 3428878.90               | 9948274.98               | 614        |
|              | 357.98           | 3428853.65               | 9948238.22               | 615        |
| 1            | 357.57           | 3428792.91               | 9948155.51               | 616        |
|              | 357.18           | 3428733.82               | 9948075.07               | 617        |
|              | 356.59           | 3428646.48               | 9947956.18               | 618        |
| 1            | 356.27           | 3428601.09               | 9947893.47               | 619        |
| 1            | 356.06           | 3428592.21               | 9947871.78               | 620        |
| 1            | 364.00           | 3428570.85               | 9947882.34               | 621        |
| -            | 364.00           | 3428566.85               |                          | 622        |
| -            |                  |                          | 9947870.27               |            |
| 4            | 364.00           | 3428569.10               | 9947860.25               | 623        |
|              | 364.00           | 3428577.36               | 9947852.39               | 624        |
|              | 355.66           | 3428609.64               | 9947863.72               | 625        |
|              | 353.57           | 3428696.19               | 9947817.09               | 626        |
|              | 351.45           | 3428784.29               | 9947769.78               | 627        |
| 1            | 341.00           | 3429079.10               | 9947856.42               | 628        |
| 1            | 341.00           | 3429058.74               | 9947788.69               | 629        |
|              | 341.00           | 3429034.55               | 9947706.23               | 630        |
| 1            | 348.00           | 3429104.27               | 9947867.16               | 631        |
| 1            | 352.00           |                          | 9947873.16               |            |
| -            |                  | 3429118.51               |                          | 632        |
| -            | 341.00           | 3428998.91               | 9947896.54               | 633        |
|              | 352.00           | 3428947.83               | 9947959.00               | 634        |
|              | 352.00           | 3428949.37               | 9947960.46               | 635        |
|              | 352.00           | 3429013.67               | 9947926.06               | 636        |
|              | 352.00           | 3429014.57               | 9947927.84               | 637        |
|              | 341.00           | 3428901.48               | 9947878.95               | 638        |
|              | 341.00           | 3428923.54               | 9947934.25               | 639        |
| 1            | 337.10           | <del>3428929.69</del>    | 9947918.09               | 640        |
| 1            | 353.08           | 3428904.50               | 9947984.29               | 641        |
| 1            | 353.14           | 3428903.44               | 9947987.23               | 642        |
| 1            | 341.00           | 3428888.19               | 9947845.62               | 643        |
| 1            |                  |                          |                          |            |
| 4            | 352.00           | 3428864.02               | 9947879.51               | 644        |
| 4            | 352.00           | 3428867.49               | 9947882.79               | 645        |
|              | 352.00           | 3428843.10               | 9947821.65               | 646        |
|              | 352.00           | 3428841.24               | 9947822.39               | 647        |
| $\vdash$     | 350.80           | 3428811.27               | 9947755.28               | 648        |
|              | 341.00           | 3428855.08               | 9947762.63               | 649        |
| 1            | 348.00           | 3428829.06               | 9947754.09               | 650        |
|              | 352.00           | 3428814.20               | 9947749.21               | 651        |
|              | 352.00           | 3428812.47               | 9947750.29               | 652        |
| 1            | 359.24           | 3428805.35               | 9947729.18               | 653        |
| ı            | 341.00           | 3428884.58               | 9947744.28               | 654        |
| 1            |                  |                          | 9947744.28               |            |
| 1            | 341.00           | 3428967.66               |                          | 655        |
| Ŧ            | 337.10           | 3428939.23               | 9947724.07               | 656        |
| ł            | 356.91           | 3428907.86               | 9947673.64               | 657        |
|              | 346.00           | 3429023.68               | 9947640.09               | 658        |
|              | 341.00           | 3429016.53               | 9947662.20               | 659        |
| }            | 337.10           | 3429013.27               | 9947678.00               | 660        |
| <del> </del> | 339.10           | 3429028.19               | 9947770.50               | 661        |
| ľ            | 337.10           | 3429033.86               | 9947768.52               | 662        |
| 1            | 337.10           | 3429040.00               | 9947766.37               | 663        |
| 4            |                  | 3429085.08               | 9947750.58               | 664        |
|              | 35.5 OV          | ,                        | 23 , , , 20.00           | 55.        |
|              | 353.02<br>352.00 | 3429119 10               | 9947875 11               | 665        |
|              | 352.00<br>350.49 | 3429119.10<br>3429015.92 | 9947875.11<br>9947930.55 | 665<br>666 |

| 001 | 3340327.03 | 3+23020.01 | 303.57 |
|-----|------------|------------|--------|
| 802 | 9948925.92 | 3429031.47 | 385.57 |
| 803 | 9948924.15 | 3429038.76 | 388.07 |
| 804 | 9948914.31 | 3429074.85 | 389.14 |
| 805 | 9948862.60 | 3429003.27 | 385.83 |
| 806 | 9948860.84 | 3429010.56 | 383.33 |
| 807 | 9948859.66 | 3429015.42 | 383.33 |
| 808 | 9948857.90 | 3429022.71 | 385.83 |
| 809 | 9948849.55 | 3429057.18 | 388.36 |
| 810 | 9948760.24 | 3428974.10 | 382.33 |
| 811 | 9948758.19 | 3428981.32 | 379.83 |
| 812 | 9948756.82 | 3428986.13 | 379.83 |
| 813 | 9948754.78 | 3428993.34 | 382.33 |
|     |            |            |        |
| 814 | 9948744.76 | 3429028.60 | 387.09 |
| 815 | 9948639.89 | 3428937.91 | 378.19 |
| 816 | 9948637.71 | 3428945.09 | 375.69 |
| 817 | 9948636.26 | 3428949.88 | 375.69 |
| 818 | 9948634.08 | 3428957.05 | 378.19 |
| 819 | 9948622.39 | 3428995.57 | 385.42 |
| 820 | 9948587.79 | 3428921.84 | 377.27 |
| 821 | 9948585.41 | 3428928.95 | 374.77 |
| 822 | 9948583.82 | 3428933.69 | 374.77 |
| 823 | 9948581.43 | 3428940.80 | 377.27 |
| 824 | 9948567.84 | 3428981.29 | 384.41 |
| 825 | 9948470.41 | 3428889.18 | 375.24 |
| 826 | 9948468.42 | 3428896.41 | 372.74 |
| 827 | 9948467.09 | 3428901.23 | 372.74 |
| 828 | 9948465.09 | 3428908.46 | 375.24 |
|     |            | 3428946.71 |        |
| 829 | 9948454.52 |            | 378.74 |
| 830 | 9948383.63 | 3428856.65 | 373.66 |
| 831 | 9948381.00 | 3428863.67 | 371.16 |
| 832 | 9948379.25 | 3428868.36 | 371.16 |
| 833 | 9948377.38 | 3428875.66 | 373.68 |
| 834 | 9948314.08 | 3428818.81 | 372.31 |
| 835 | 9948310.50 | 3428825.40 | 369.81 |
| 836 | 9948308.12 | 3428829.79 | 369.81 |
| 837 | 9948304.54 | 3428836.39 | 372.31 |
| 838 | 9948276.71 | 3428795.10 | 371.51 |
| 839 | 9948272.70 | 3428801.44 | 369.01 |
| 840 | 9948270.02 | 3428805.66 | 369.01 |
| 841 | 9948266.01 | 3428812.00 | 371.51 |
| 842 | 9948194.09 | 3428739.59 | 369.71 |
| 843 | 9948189.91 | 3428745.81 | 367.21 |
| 844 | 9948187.02 | 3428749.89 | 367.21 |
| 845 | 9948182.94 | 3428756.19 | 369.71 |
| 846 | 9948111.08 | 3428683.83 | 367.91 |
| 847 | 9948106.90 | 3428690.05 | 365.41 |
|     |            |            |        |
| 848 | 9948104.11 | 3428694.20 | 365.41 |
| 849 | 9948099.93 | 3428700.43 | 367.91 |
| 850 | 9948028.06 | 3428628.07 | 366.11 |
| 851 | 9948023.88 | 3428634.30 | 363.61 |
| 852 | 9948021.10 | 3428638.45 | 363.61 |
| 853 | 9948016.91 | 3428644.67 | 366.11 |
| 854 | 9947987.42 | 3428600.77 | 365.23 |
| 855 | 9947983.24 | 3428607.00 | 362.73 |
| 856 | 9947980.45 | 3428611.15 | 362.73 |
| 857 | 9947976.27 | 3428617.37 | 365.23 |
| 858 | 9947902.42 | 3428544.49 | 363.39 |
|     | 1          |            |        |

CONTRACTOR PERIMETER GRADING CONTROL POINTS (TOLERANCE = 0' TO 0.2')

POINT NO. | NORTHING | EASTING | ELEVATION 9948928.86 3429019.32

9948927.09 3429026.61

388.07

385.57

| POINT NO. | NORTHING   | EASTING    | ELEVATIO |
|-----------|------------|------------|----------|
| 860       | 9947895.51 | 3428554.91 | 360.89   |
| 861       | 9947889.64 | 3428563.80 | 363.97   |
| 862       | 9947909.45 | 3428573.13 | 363.78   |
| 863       | 9947873.16 | 3428528.39 | 362.98   |
| 864       | 9947871.95 | 3428537.31 | 359.98   |
| 865       | 9947870.88 | 3428545.24 | 359.98   |
| 866       | 9947869.67 | 3428554.15 | 362.98   |
| 867       | 9947869.83 | 3428557.22 | 364.00   |
| 868       | 9947844.35 | 3428531.61 | 362.24   |
| 869       | 9947847.46 | 3428540.04 | 359.24   |
| 870       | 9947850.23 | 3428547.54 | 359.24   |
| 871       | 9947853.34 | 3428555.98 | 362.24   |
| 872       | 9947855.19 | 3428560.70 | 364.00   |
| 873       | 9947817.03 | 3428551.92 | 361.37   |
| 874       | 9947824.24 | 3428557.31 | 358.37   |
| 875       | 9947830.65 | 3428562.10 | 358.37   |
| 876       | 9947837.86 | 3428567.49 | 361.37   |
| 877       | 9947844.41 | 3428571.95 | 364.00   |
| 878       | 9947802.40 | 3428575.17 | 360.70   |
| 879       | 9947810.02 | 3428579.97 | 357.70   |
| 880       | 9947816.79 | 3428584.23 | 357.70   |
| 881       | 9947825.17 | 3428587.81 | 360.73   |
| 882       | 9947825.17 | 3428593.03 | 364.00   |
|           |            |            |          |
| 883       | 9947754.27 | 3428664.11 | 358.72   |
| 884       | 9947762.19 | 3428668.39 | 355.72   |
| 885       | 9947769.23 | 3428672.20 | 355.72   |
| 886       | 9947777.14 | 3428676.48 | 358.72   |
| 887<br>   | 9947785.71 | 3428681.11 | 361.97   |
| 888       | 9947706.71 | 3428752.07 | 356.75   |
| 889       | 9947714.62 | 3428756.36 | 353.75   |
| 890       | 9947721.66 | 3428760.16 | 353.75   |
| 891       | 9947729.58 | 3428764.44 | 356.75   |
| 892       | 9947738.07 | 3428769.03 | 359.96   |
| 893       | 9947659.14 | 3428840.04 | 354.77   |
| 894       | 9947667.06 | 3428844.32 | 351.77   |
| 895       | 9947674.09 | 3428848.12 | 351.77   |
| 896       | 9947682.01 | 3428852.40 | 354.77   |
| 897       | 9947690.43 | 3428856.96 | 357.96   |
| 898       | 9947636.17 | 3428882.51 | 353.82   |
| 899       | 9947644.09 | 3428886.80 | 350.82   |
| 900       | 9947651.12 | 3428890.60 | 350.82   |
| 901       | 9947659.04 | 3428894.88 | 353.82   |
| 902       | 9947667.41 | 3428899.43 | 357.00   |
| 903       | 9947640.51 | 3428910.22 | 350.38   |
| 904       | 9947644.63 | 3428941.48 | 0.00     |
| 905       | 9947613.70 | 3428921.51 | 350.02   |
| 906       | 9947632.51 | 3428904.06 | 350.46   |
| 907       | 9947624.63 | 3428931.97 | 349.88   |
| 908       | 9947635.19 | 3428941.74 | 354.67   |
| 909       | 9947603.51 | 3428948.70 | 349.36   |
| 910       | 9947595.88 | 3428931.62 | 349.67   |
| 911       | 9947571.90 | 3428938.74 | 349.24   |
| 912       | 9947578.75 | 3428963.36 | 348.87   |
| 913       | 9947534.86 | 3428989.35 | 348.00   |
| 914       | 9947471.92 | 3428955.17 | 348.00   |
| 915       | 9947619.77 | 3428987.35 | 355.00   |
| 916       | 9947603.10 | 3429017.99 | 354.30   |
| 917       | 9948343.95 | 3428857.76 | 373.07   |
| 918       | 9948378.13 | 3428894.86 | 374.21   |
| 310       | J970J/0.1J | UTZUU34.00 | 5/4.21   |

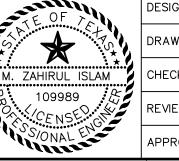
CONTRACTOR PERIMETER GRADING

REV DATE ————SHADING REPRESENTS REVISED POINTS (TYP)

PROJECT:

2 11/01/2016 ISSUE FOR RECORD REVISION TO SURVEY CONTROL POINTS MZI 1 11/14/2014 JJV 0 03/26/2014 ISSUE FOR CONSTRUCTION JJV/KH MZI C 03/14/2014 DRAFT FINAL SUBMITTAL MZI JJV/KH B 01/16/2014 FINAL DRAFT SUBMITTAL JJV/KH A 11/01/2013 DRAFT SUBMITTAL JJV/KH MZI DESCRIPTION DRN APP

LOWER COLORADO RIVER AUTHORITY
3700 LAKE AUSTIN BLVD.
AUSTIN, TEXAS 78703
PHONE: 512.473.3200


CONSULTANTS
GEOSYNTEC CONSULTANTS, INC.
TEXAS ENG. FIRM REGISTRATION NO. 1182
8217 SHOAL CREEK BLVD., SUITE 200
AUSTIN, TEXAS 78757
PHONE: 512.451.4003

CONSTRUCTION CONTROL POINTS

SUBCELL 2D STORAGE AREA

FAYETTE POWER PROJECT COMBUSTION BYPRODUCT LANDFILL

THIS DRAWING MAY NOT BE ISSUED FOR PROJECT TENDER OR CONSTRUCTION, UNLESS SEALED. 2 Slam



|          | DESIGN BY:   | MZI      | DATE:        | MARCH 2014      |  |
|----------|--------------|----------|--------------|-----------------|--|
|          | DRAWN BY:    | JJV / KH | PROJECT      | NO.: TXL0225.04 |  |
|          | CHECKED BY:  | MZI / TL | FILE:        | B-C-00G-20      |  |
| <b>'</b> | REVIEWED BY: | BG / TL  | DRAWING NO.: |                 |  |
|          | APPROVED BY  | M7I      | B-C          | -00G-20         |  |

| NOI | E:                                                                                                                                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1.  | PROTECTIVE COVER SHALL BE PLACED A MINIMUM OF 2-FOOT THICK OVER SUBCELL 2D STORAGE AREA CLAY LINER. PROTECTIVE COVER IS NOT NEEDED OVER THE  |
|     | SUBCELL 2D CONTACT WATER RETENTION POND GEOMEMBRANE LINER. CONTRACTOR TOP OF PROTECTIVE COVER GRADING CONTROL POINTS SHALL BE AT THE SAME    |
|     | LOCATIONS AS THE SUBGRADE AND TOP OF CLAY LINER CQA CERTIFICATION POINTS PROVIDED ON THIS SHEET EXCEPT FOR POINTS 421-426, AND 600-607 WHICH |
|     | FALL UNDER THE ADDITIONAL PROTECTIVE COVER AREA SHOWN IN DRAWING B-C-00G-196. TO PROVIDE A PROTECTIVE COVER THICKNESS OF 2' ON 3:1           |
|     | SIDESLOPES, THE VERTICAL DISTANCE BETWEEN THE TOP OF CLAY ELEVATION AND THE TOP OF PROTECTIVE COVER ELEVATION SHALL BE 2.11' (MIN).          |

2 RECORD DRAWING

— STRIKE-THROUGH REPRESENTS

OMITTED POINTS (TYP)

03/26/2014 DATE

APPROVED BY: MZI

### **APPENDICES**

### **APPENDIX A**

# Stormwater Management System Design - Final Conditions

## Geosyntec consultants

|                              |                                   |                            | Page     | 1 of       | 8         |
|------------------------------|-----------------------------------|----------------------------|----------|------------|-----------|
| Written by: O. Bramlet       | Date: 6/10/2021                   | Reviewed<br>_& Revised by: | B. Gross | Date:      | 6/30/2021 |
| Client: <u>LCRA</u> Project: | FPP Run-on Run-off<br>Plan Update | _Project No.:              | TXW8067  | Phase No.: | 03        |

#### **ADDENDUM**

## SURFACE WATER MANAGEMENT SYSTEM DESIGN – FINAL CONDITIONS



GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. F-1182

#### **PURPOSE**

The purpose of this addendum is to summarize the updates to the Run-on and Run-off Control System Plan (Plan) final conditions surface water management system for the Combustion Byproduct Landfill (CBL) at LCRA's Fayette Power Project (FPP). The initial Plan was prepared by Geosyntec in August 2016 (Geosyntec, 2016) and has been reviewed and revised as necessary to comply with the 40 CFR 257 and 30 TAC 352 regulations and TCEQ guidance. As discussed in Section 4.3 of the initial Plan and as demonstrated in the initial calculations presented in Appendix A, a copy of which follows this addendum, the surface water management features for the CBL were designed to convey a 100-year, 24-hour storm event in the initial Plan.

Precipitation frequency estimates published by the United States Geological Survey (USGS) have increased since the submittal of the initial Plan. However, the stormwater components for the final cover system were designed in the initial Plan for a 100-year, 24-hour storm event per TCEQ guidance for industrial waste landfills (TCEQ, 2015) and the new Texas Commission on Environmental Quality (TCEQ) rule for Coal Combustion Residuals (CCR) waste management (30 TAC 352) and TCEQ guidance (TCEQ, 2000) only requires that components be able to convey flows from a 25-year, 24-hour storm The latest 25-year, 24-hour storm event is of lower intensity than the previously used 100-year, 24-hour storm. The precipitation



|                   |             |                                   |                        | Page     | <b>2</b> of | 8         |
|-------------------|-------------|-----------------------------------|------------------------|----------|-------------|-----------|
| Written by:       | O. Bramlet  | Date: <u>6/10/2021</u>            | Reviewed & Revised by: | B. Gross | Date:       | 6/30/2021 |
| Client: <u>LC</u> | RA Project: | FPP Run-on Run-off<br>Plan Update | Project No.:           | TXW8067  | Phase No.:  | 03        |

estimates used in the initial design and the latest available precipitation estimates are described and compared in detail below.

#### DISCUSSION

Rainfall depths used in the initial design of the final conditions stormwater management system were collected from the USGS's *Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas*. Published rainfall depths for the CBL area in that atlas were 7.80 inches and 10.50 inches for the 25-year, 24-hour and 100-year, 24-hour storm events, respectively (USGS, 2004). Since that time, precipitation frequency estimates for Texas have been updated. The latest available estimates can be obtained from the National Oceanic Atmospheric Administration (NOAA) Precipitation Frequency Data Server (PFDS). Current rainfall depths for the CBL are 9.36 inches and 13.60 inches for the 25-year, 24-hour and 100-year, 24-hour storm events, respectively, as shown in Table 1 (NOAA, 2018). The previous and current rainfall depth estimates are summarized in Table 2. The previous 100-year, 24-hour rainfall depth estimate of 10.50 inches used in the initial design of the final condition storm water management system is larger than the current 25-year, 24-hour rainfall depth estimate of 9.36 inches.

Previous rainfall intensity estimates used in the initial design were calculated based on guidance from TxDOT (2011) using the depth of rainfall specified for the 100-year design storm event from USGS (2004) and the storm duration from the design time of concentration (Tc) for each subcatchment at the CBL. As shown in the attached initial calculations, the highest rainfall intensities (calculated as depth of rainfall for design storm of duration Tc divided by Tc) were generated for the lowest Tc values. The minimum design Tc was estimated as 10 minutes, which yielded calculated rainfall intensities of 7.60 in./hr and 10.00 in./hr for the 25-year and 100-year storm events, respectively. From Table 3, current rainfall intensities for the CBL corresponding to the initial design's minimum Tc duration of 10 minutes are 8.61 in./hr and 10.60 in./hr for the 25-year and 100-year storm events, respectively.

The previous and current rainfall intensity estimates are summarized in Table 4. The maximum 100-year storm event intensity of 10.00 in./hr previously used in the initial design is larger than the current 25-year storm event intensity of 8.61 in./hr.

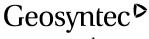


|         |     |      |          |                   |                        |                           | Page     | 3 of       | 8         |
|---------|-----|------|----------|-------------------|------------------------|---------------------------|----------|------------|-----------|
| Written | by: | O. B | ramlet   | _Date:            | 6/10/2021              | Reviewed<br>& Revised by: | B. Gross | _Date:     | 6/30/2021 |
| Client: | LCI | RA   | Project: | FPP Ru<br>Plan Uj | in-on Run-off<br>odate | Project No.:              | TXW8067  | Phase No.: | 03        |

#### CONCLUSIONS

As described, the stormwater components for the final cover system detailed in Appendix A were previously designed for the 100-year, 24-hour storm event per TCEQ guidance (TCEQ, 2015), and the new TCEQ CCR rule and guidance (TCEQ, 2000) specify that components be able to convey flows from a 25-year, 24-hour storm, which is of lower intensity than the previously used 100-year, 24-hour storm. Under this case, modifications to the engineering calculations and drawings presented for the final conditions surface water management system in the initial Plan are not required to be updated as the design meets and exceeds the requirements of 40 CFR 257.81(c)(4), 30 TAC 352.811, and current TCEQ guidance.

#### REFERENCES


- Geosyntec (2016). Run-on and Run-off Control System Plan for Combustion Byproduct Landfill. Registration No. 31575. October 2016.
- NOAA (2018). *Precipitation-Frequency Atlas of the United States*, National Oceanic and Atmospheric Administration, Volume 9, Version 2.0. Available online: https://hdsc.nws.noaa.gov/hdsc/pfds/, accessed May 2021. La Grange, Texas Latitude: 29.9075°, longitude: -96.7565°.
- Texas Commission on Environmental Quality (2015). "Nonhazardous Industrial Solid Waste Landfills" Industrial Solid Waste Management, Draft Technical Guideline No. 3.
- Texas Commission on Environmental Quality (2020). "Coal Combustion Residuals Landfill" Waste Permits Division, Draft Technical Guideline No. 30. May 2020.
- TxDOT (2011). Hydraulic Design Manual, Texas Department of Transportation, Austin, Texas, revised October 2011.
- USGS (2004). Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas, Scientific Investigations Report 2004-5041, United States Geological Survey, authors William H. Asquith and Meghan C. Roussel.



|             |            |                                   |                         | Page     | <b>4</b> of | 8         |
|-------------|------------|-----------------------------------|-------------------------|----------|-------------|-----------|
| Written by: | O. Bramlet | Date: <u>6/10/2021</u>            | Reviewed  & Revised by: | B. Gross | Date:       | 6/30/2021 |
| Client: LC  | Project:   | FPP Run-on Run-off<br>Plan Update | Project No.:            | TXW8067  | Phase No.:  | 03        |

### **TABLES**

- Table 1 NOAA Precipitation Depth Estimates for the CBL (from NOAA, 2018)
- Table 2 Precipitation Depth Comparison
- Table 3 NOAA Precipitation Intensity Estimates for the CBL (from NOAA, 2018)
- Table 4 Precipitation Intensity Comparison



#### consultants

|                  |               |                                   |                         | Page     | <b>5</b> of | 8         |
|------------------|---------------|-----------------------------------|-------------------------|----------|-------------|-----------|
| Written by:      | O. Bramlet    | Date: <u>6/10/2021</u>            | Reviewed  & Revised by: | B. Gross | _Date:      | 6/30/2021 |
| Client: <u>I</u> | .CRA Project: | FPP Run-on Run-off<br>Plan Update | Project No.:            | TXW8067  | Phase No.:  | 03        |

### Table 1 – NOAA Precipitation Depth Estimates for the CBL (from NOAA, 2018)



NOAA Atlas 14, Volume 11, Version 2 Location name: La Grange, Texas, USA\* Latitude: 29.9075°, Longitude: -96.7565° Elevation: 381.96 ft\*\* \*source: ESRI Maps \*\* source: USGS



#### POINT PRECIPITATION FREQUENCY ESTIMATES

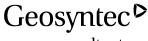
Sanja Perioa, Sandra Pavlovio, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

#### PF tabular

| Duration |               |               |               | Average      | recurrence   | interval ()  | /ears)       | 24 - 140000000000000000000000000000000000 |              |             |
|----------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|-------------------------------------------|--------------|-------------|
| Duration | 1             | 2             | 5             | 10           | 25           | 50           | 100          | 200                                       | 500          | 1000        |
| 5-min    | 0.470         | 0.543         | 0.665         | 0.764        | 0.898        | 1.00         | 1.10         | 1.21                                      | 1.35         | 1.45        |
|          | (0.356-0.621) | (0.416-0.713) | (0.507-0.874) | (0.573-1.02) | (0.652-1.23) | (0.707-1.41) | (0.759-1.60) | (0.810-1.79)                              | (0.874-2.07) | (0.920-2.30 |
| 10-min   | 0.746         | 0.864         | 1.06          | 1.22         | 1.44         | 1.60         | 1.76         | 1.92                                      | 2.13         | 2.28        |
|          | (0.565-0.988) | (0.661-1.13)  | (0.807-1.39)  | (0.914-1.62) | (1.04-1.97)  | (1.13-2.26)  | (1.22-2.58)  | (1.29-2.86)                               | (1.38-3.27)  | (1.44-3.60  |
| 15-min   | 0.946         | 1.09          | 1.33          | 1.53         | 1.79         | 1.99         | 2.19         | 2.39                                      | 2.66         | 2.87        |
|          | (0.716-1.25)  | (0.835-1.43)  | (1.01-1.75)   | (1.15-2.03)  | (1.30-2.46)  | (1.41-2.81)  | (1.51-3.17)  | (1.61-3.56)                               | (1.73-4.10)  | (1.82-4.54  |
| 30-min   | 1.35          | 1.55          | 1.88          | 2.15         | 2.51         | 2.78         | 3.05         | 3.34                                      | 3.73         | 4.05        |
|          | (1.02-1.78)   | (1.18-2.03)   | (1.43-2.47)   | (1.61-2.86)  | (1.82-3.43)  | (1.96-3.91)  | (2.10-4.42)  | (2.24-4.97)                               | (2.43-5.76)  | (2.56-6.39  |
| 60-min   | 1.76          | 2.03          | 2.49          | 2.86         | 3.36         | 3.73         | 4.12         | 4.55                                      | 5.15         | 5.64        |
|          | (1.33-2.32)   | (1.56-2.67)   | (1.90-3.27)   | (2.15-3.81)  | (2.43-4.60)  | (2.64-5.26)  | (2.84-5.97)  | (3.06-6.77)                               | (3.35-7.94)  | (3.57-8.91  |
| 2-hr     | 2.13          | 2.52          | 3.15          | 3.69         | 4.43         | 5.01         | 5.62         | 6.33                                      | 7.38         | 8.25        |
|          | (1.62-2.79)   | (1.94-3.26)   | (2.42-4.11)   | (2.79-4.88)  | (3.23-6.02)  | (3.55-7.00)  | (3.90-8.09)  | (4.28-9.37)                               | (4.81-11.3)  | (5.24-13.0  |
| 3-hr     | 2.33          | 2.81          | 3.57          | 4.22         | 5.16         | 5.89         | 6.69         | 7.64                                      | 9.06         | 10.3        |
|          | (1.79-3.04)   | (2.16-3.60)   | (2.74-4.62)   | (3.20-5.56)  | (3.78-6.98)  | (4.20-8.21)  | (4.66-9.60)  | (5.18-11.3)                               | (5.92-13.8)  | (6.53-16.1  |
| 6-hr     | 2.67          | 3.32          | 4.29          | 5.17         | 6.46         | 7.52         | 8.71         | 10.1                                      | 12.2         | 14.0        |
|          | (2.06-3.46)   | (2.54-4.17)   | (3.32-5.50)   | (3.95-6.76)  | (4.77-8.71)  | (5.40-10.4)  | (6.09-12.4)  | (6.88-14.8)                               | (8.03-18.6)  | (8.97-21.8  |
| 12-hr    | 2.99          | 3.82          | 5.00          | 6.13         | 7.85         | 9.32         | 11.0         | 13.0                                      | 16.0         | 18.6        |
|          | (2.32-3.85)   | (2.91-4.69)   | (3.89-6.35)   | (4.72-7.96)  | (5.86-10.5)  | (6.76-12.9)  | (7.75-15.6)  | (8.88-18.9)                               | (10.5-24.2)  | (11.9-28.7  |
| 24-hr    | 3.33          | 4.36          | 5.77          | 7.18         | 9.36         | 11.3         | 13.6         | 16.1                                      | 19.9         | 23.1        |
|          | (2.61-4.25)   | (3.31-5.24)   | (4.52-7.26)   | (5.57-9.25)  | (7.06-12.5)  | (8.28-15.6)  | (9.59-19.1)  | (11.0-23.2)                               | (13.2-29.8)  | (14.9-35.5  |
| 2-day    | 3.73          | 4.98          | 6.66          | 8.38         | 11.1         | 13.6         | 16.4         | 19.4                                      | 23.6         | 26.9        |
|          | (2.94-4.73)   | (3.79-5.88)   | (5.25-8.31)   | (6.55-10.7)  | (8.48-14.8)  | (10.1-18.7)  | (11.7-22.9)  | (13.3-27.7)                               | (15.6-34.9)  | (17.4-41.0  |
| 3-day    | 4.05          | 5.41          | 7.26          | 9.12         | 12.0         | 14.7         | 17.7         | 20.8                                      | 25.1         | 28.5        |
|          | (3.21-5.11)   | (4.14-6.38)   | (5.75-9.01)   | (7.16-11.6)  | (9.24-16.0)  | (10.9-20.2)  | (12.6-24.6)  | (14.4-29.6)                               | (16.7-37.1)  | (18.4-43.3  |
| 4-day    | 4.34          | 5.74          | 7.69          | 9.61         | 12.6         | 15.3         | 18.3         | 21.4                                      | 25.8         | 29.2        |
|          | (3.45-5.46)   | (4.44-6.80)   | (6.12-9.53)   | (7.57-12.2)  | (9.66-16.7)  | (11.3-20.8)  | (13.0-25.3)  | (14.8-30.4)                               | (17.1-38.0)  | (19.0-44.3  |
| 7-day    | 5.04          | 6.49          | 8.57          | 10.5         | 13.5         | 16.1         | 19.0         | 22.1                                      | 26.6         | 30.3        |
|          | (4.04-6.30)   | (5.10-7.74)   | (6.87-10.6)   | (8.35-13.3)  | (10.4-17.7)  | (12.0-21.7)  | (13.6-26.2)  | (15.4-31.3)                               | (17.8-39.1)  | (19.7-45.7  |
| 10-day   | 5.62          | 7.11          | 9.29          | 11.3         | 14.3         | 16.8         | 19.6         | 22.8                                      | 27.3         | 31.1        |
|          | (4.52-7.00)   | (5.65-8.52)   | (7.49-11.4)   | (8.99-14.2)  | (11.0-18.6)  | (12.5-22.6)  | (14.1-27.0)  | (15.9-32.1)                               | (18.3-40.0)  | (20.2-46.7  |
| 20-day   | 7.31          | 8.93          | 11.4          | 13.6         | 16.8         | 19.3         | 22.0         | 24.9                                      | 29.2         | 32.7        |
|          | (5.92-9.04)   | (7.25-10.8)   | (9.32-14.0)   | (10.9-17.0)  | (12.9-21.6)  | (14.4-25.6)  | (15.9-30.0)  | (17.5-35.0)                               | (19.7-42.5)  | (21.4-48.7  |
| 30-day   | 8.71          | 10.4          | 13.2          | 15.6         | 18.8         | 21.4         | 24.0         | 26.8                                      | 30.8         | 33.9        |
|          | (7.09-10.7)   | (8.57-12.7)   | (10.8-16.2)   | (12.5-19.3)  | (14.6-24.1)  | (16.0-28.2)  | (17.4-32.6)  | (18.9-37.4)                               | (20.8-44.6)  | (22.2-50.5  |
| 45-day   | 10.7          | 12.6          | 15.8          | 18.4         | 21.8         | 24.4         | 27.0         | 29.7                                      | 33.4         | 36.2        |
|          | (8.78-13.2)   | (10.5-15.4)   | (13.0-19.3)   | (14.8-22.7)  | (16.9-27.8)  | (18.3-32.1)  | (19.7-36.5)  | (21.0-41.3)                               | (22.6-48.1)  | (23.8-53.6  |
| 60-day   | 12.6          | 14.6          | 18.1          | 20.9         | 24.5         | 27.2         | 29.8         | 32.4                                      | 35.8         | 38.3        |
|          | (10.3-15.3)   | (12.2-17.8)   | (15.0-22.0)   | (16.9-25.7)  | (19.1-31.2)  | (20.5-35.6)  | (21.8-40.2)  | (22.9-44.9)                               | (24.3-51.5)  | (25.2-56.6  |

<sup>&</sup>lt;sup>1</sup> Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.



|           |     |      |           |                   |                        |                           | Page     | <b>6</b> of | 8         |
|-----------|-----|------|-----------|-------------------|------------------------|---------------------------|----------|-------------|-----------|
| Written b | oy: | O. B | ramlet    | Date:             | 6/10/2021              | Reviewed<br>& Revised by: | B. Gross | _Date:      | 6/30/2021 |
| Client:   | LC  | RA   | _Project: | FPP Ru<br>Plan Up | nn-on Run-off<br>odate | _Project No.:             | TXW8067  | _Phase No.: | 03        |

**Table 2 – Precipitation Depth Comparison** 

| Storm Event       | Previous Rainfall<br>Depth Estimate<br>(in.) | Current Rainfall<br>Depth Estimate<br>(in.) |
|-------------------|----------------------------------------------|---------------------------------------------|
| 25-year, 24-hour  | 7.80                                         | 9.36                                        |
| 100-year, 24-hour | 10.50                                        | 13.60                                       |



#### consultants

|   | Page       | 7 | of | 8 |  |
|---|------------|---|----|---|--|
| T | Darriannad |   |    |   |  |

Reviewed

Written by: O. Bramlet Date: 6/10/2021 & Revised by: B. Gross Date: 6/30/2021

FPP Run-on Run-off

Client: LCRA Project: Plan Update Project No.: TXW8067 Phase No.: 03

### Table 3 – NOAA Precipitation Intensity Estimates for the CBL (from NOAA, 2018)



NOAA Atlas 14, Volume 11, Version 2 Location name: La Grange, Texas, USA\* Latitude: 29.9075°, Longitude: -96.7565° Elevation: 381.96 ft\*\* \*source: ESRI Maps \*source: USGS



#### POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

#### PF tabular

| Duration |               | 6 1           |               | Avera         | ge recurren            | ce interval ( | years)        |               |               |              |
|----------|---------------|---------------|---------------|---------------|------------------------|---------------|---------------|---------------|---------------|--------------|
| Duration | 1             | 2             | 5             | 10            | 25                     | 50            | 100           | 200           | 500           | 1000         |
| 5-min    | 5.64          | 6.52          | 7.98          | 9.17          | 10.8                   | 12.0          | 13.2          | 14.5          | 16.2          | 17.4         |
|          | (4.27-7.45)   | (4.99-8.56)   | (6.08-10.5)   | (6.88-12.2)   | (7.82-14.8)            | (8.48-16.9)   | (9.11-19.2)   | (9.72-21.5)   | (10.5-24.9)   | (11.0-27.6)  |
| 10-min   | 4.48          | 5.18          | 6.35          | 7.31          | 8.61                   | 9.61          | 10.6          | 11.5          | 12.8          | 13.7         |
|          | (3.39-5.92)   | (3.97-6.80)   | (4.84-8.35)   | (5.48-9.74)   | (6.26-11.8)            | (6.80-13.6)   | (7.29-15.3)   | (7.75-17.1)   | (8.29-19.6)   | (8.64-21.6)  |
| 15-min   | 3.78          | 4.36          | 5.32          | 6.10          | 7.16                   | 7.96          | 8.75          | 9.56          | 10.7          | 11.5         |
|          | (2.86-5.00)   | (3.34-5.72)   | (4.06-7.00)   | (4.58-8.13)   | (5.20-9.82)            | (5.63-11.2)   | (6.03-12.7)   | (6.43-14.2)   | (6.92-16.4)   | (7.27-18.1)  |
| 30-min   | 2.69          | 3.09          | 3.75          | 4.29          | 5.02                   | 5.55          | 6.09          | 6.67          | 7.47          | 8.09         |
|          | (2.04-3.56)   | (2.37-4.06)   | (2.86-4.94)   | (3.22-5.72)   | (3.64-6.87)            | (3.92-7.82)   | (4.20-8.83)   | (4.49-9.94)   | (4.85-11.5)   | (5.12-12.8)  |
| 60-min   | 1.76          | 2.03          | 2.49          | 2.86          | 3.36                   | 3.73          | 4.12          | 4.55          | 5.15          | 5.64         |
|          | (1.33-2.32)   | (1.56-2.67)   | (1.90-3.27)   | (2.15-3.81)   | (2.43-4.60)            | (2.64-5.26)   | (2.84-5.97)   | (3.06-6.77)   | (3.35-7.94)   | (3.57-8.91)  |
| 2-hr     | 1.06          | 1.26          | 1.58          | 1.84          | 2.22                   | 2.50          | 2.81          | 3.17          | 3.69          | 4.13         |
|          | (0.812-1.40)  | (0.968-1.63)  | (1.21-2.05)   | (1.39-2.44)   | (1.62-3.01)            | (1.78-3.50)   | (1.95-4.05)   | (2.14-4.68)   | (2.41-5.66)   | (2.62-6.48)  |
| 3-hr     | 0.776         | 0.937         | 1.19          | 1.41          | 1.72                   | 1.96          | 2.23          | 2.54          | 3.02          | 3.42         |
|          | (0.594-1.01)  | (0.719-1.20)  | (0.914-1.54)  | (1.07-1.85)   | (1.26-2.32)            | (1.40-2.73)   | (1.55-3.20)   | (1.72-3.75)   | (1.97-4.61)   | (2.17-5.35)  |
| 6-hr     | 0.446         | 0.554         | 0.717         | 0.863         | 1.08                   | 1.26          | 1.45          | 1.69          | 2.04          | 2.35         |
|          | (0.344-0.578) | (0.425-0.696) | (0.554-0.919) | (0.660-1.13)  | (0.797-1.45)           | (0.902-1.74)  | (1.02-2.07)   | (1.15-2.47)   | (1.34-3.10)   | (1.50-3.65)  |
| 12-hr    | 0.248         | 0.317         | 0.415         | 0.509         | 0.651                  | 0.774         | 0.915         | 1.08          | 1.33          | 1.54         |
|          | (0.193-0.319) | (0.242-0.389) | (0.323-0.527) | (0.392-0.661) | (0.486-0.875)          | (0.561-1.07)  | (0.643-1.30)  | (0.737-1.57)  | (0.875-2.01)  | (0.989-2.38) |
| 24-hr    | 0.139         | 0.182         | 0.241         | 0.299         | 0.390                  | 0.471         | 0.565         | 0.672         | 0.831         | 0.964        |
|          | (0.109-0.177) | (0.138-0.218) | (0.188-0.302) | (0.232-0.385) | (0.294-0.522)          | (0.345-0.650) | (0.400-0.795) | (0.460-0.968) | (0.549-1.24)  | (0.620-1.48) |
| 2-day    | 0.078         | 0.104         | 0.139         | 0.174         | 0.231                  | 0.283         | 0.342         | 0.404         | 0.491         | 0.560        |
|          | (0.061-0.098) | (0.079-0.122) | (0.109-0.173) | (0.136-0.223) | (0.177-0.309)          | (0.209-0.389) | (0.243-0.478) | (0.278-0.577) | (0.325-0.728) | (0.362-0.854 |
| 3-day    | 0.056         | 0.075         | 0.101         | 0.127         | 0.167                  | 0.204         | 0.246         | 0.289         | 0.349         | 0.396        |
|          | (0.045-0.071) | (0.058-0.089) | (0.080-0.125) | (0.099-0.161) | (0.128-0.223)          | (0.152-0.280) | (0.176-0.342) | (0.199-0.412) | (0.232-0.515) | (0.256-0.602 |
| 4-day    | 0.045         | 0.060         | 0.080         | 0.100         | 0.131                  | 0.159         | 0.190         | 0.223         | 0.268         | 0.305        |
|          | (0.036-0.057) | (0.046-0.071) | (0.064-0.099) | (0.079-0.127) | (0.101-0.174)          | (0.118-0.217) | (0.136-0.264) | (0.154-0.316) | (0.179-0.396) | (0.197-0.462 |
| 7-day    | 0.030         | 0.039         | 0.051         | 0.063         | 0.080                  | 0.096         | 0.113         | 0.132         | 0.159         | 0.180        |
|          | (0.024-0.038) | (0.030-0.046) | (0.041-0.063) | (0.050-0.079) | (0.082-0.108)          | (0.071-0.129) | (0.081-0.156) | (0.092-0.186) | (0.106-0.233) | (0.117-0.272 |
| 10-day   | 0.023         | 0.030         | 0.039         | 0.047         | 0.060                  | 0.070         | 0.082         | 0.095         | 0.114         | 0.129        |
|          | (0.019-0.029) | (0.024-0.035) | (0.031-0.048) | (0.037-0.059) | (0.046-0.078)          | (0.052-0.094) | (0.059-0.112) | (0.066-0.134) | (0.076-0.167) | (0.084-0.194 |
| 20-day   | 0.015         | 0.019         | 0.024         | 0.028         | 0.035                  | 0.040         | 0.046         | 0.052         | 0.061         | 0.068        |
|          | (0.012-0.019) | (0.015-0.022) | (0.019-0.029) | (0.023-0.035) | (0.027-0.045)          | (0.030-0.053) | (0.033-0.062) | (0.036-0.073) | (0.041-0.088) | (0.044-0.102 |
| 30-day   | 0.012         | 0.014         | 0.018         | 0.022         | 0.026                  | 0.030         | 0.033         | 0.037         | 0.043         | 0.047        |
|          | (0.010-0.015) | (0.012-0.018) | (0.015-0.022) | (0.017-0.027) | (0.020-0.033)          | (0.022-0.039) | (0.024-0.045) | (0.026-0.052) | (0.029-0.062) | (0.031-0.070 |
| 45-day   | 0.010         | 0.012         | 0.015         | 0.017         | 0.020                  | 0.023         | 0.025         | 0.028         | 0.031         | 0.033        |
|          | (0.008-0.012) | (0.010-0.014) | (0.012-0.018) | (0.014-0.021) | (0.016-0.026)          | (0.017-0.030) | (0.018-0.034) | (0.019-0.038) | (0.021-0.045) | (0.022-0.050 |
| 60-day   | 0.009         | 0.010         | 0.013         | 0.014         | 0.017<br>(0.013-0.022) | 0.019         | 0.021         | 0.022         | 0.025         | 0.027        |

<sup>1</sup> Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.



|             |              |                                   |                         | Page     | <b>8</b> of | 8         |
|-------------|--------------|-----------------------------------|-------------------------|----------|-------------|-----------|
| Written by: | O. Bramlet   | Date: <u>6/10/2021</u>            | Reviewed  & Revised by: | B. Gross | _Date:      | 6/30/2021 |
| Client: Lo  | CRA Project: | FPP Run-on Run-off<br>Plan Update | _Project No.:           | TXW8067  | Phase No.:  | 03        |

**Table 4 – Precipitation Intensity Comparison** 

| Storm Event      | Previous Rainfall<br>Intensity Estimate<br>(in/hr) | Current Rainfall<br>Intensity Estimate<br>(in/hr) |
|------------------|----------------------------------------------------|---------------------------------------------------|
| 25-year, 10-min  | 7.60                                               | 8.61                                              |
| 100-year, 10-min | 10.00                                              | 10.60                                             |



|           |     |                    |                  |        |              |                        | Page           | <b>1</b> 0 | f    | 58        |
|-----------|-----|--------------------|------------------|--------|--------------|------------------------|----------------|------------|------|-----------|
| Written b | hv. |                    | ouglas<br>McNash | Date:  | 7/14/2015    | Reviewed & Revised by: | B. Klenzendorf | Date:      |      | 10/6/2016 |
| Wille     | oy. | <del>~ ~ ~ ~</del> | IVICI (USII      | _Butc. | 7711/2010    | _ & revised by:        | w z. isium     | _Bute.     | -    | 10/0/2010 |
| Client:   | LCI | RA                 | Project:         | FPP C  | BL Expansion | Project No.:           | TXL0225        | Phase No   | .: _ | 08        |

### SURFACE WATER MANAGEMENT SYSTEM DESIGN – FINAL CONDITIONS



#### **PURPOSE**

The purpose of this calculation package is to present the analysis and design of the surface water management system for the final cover system of the Combustion Byproduct Landfill (CBL) at LCRA's Fayette Power Project (FPP) in La Grange, Texas. This package assumes Cells 1 and 2 of the CBL will be constructed and provides calculations of peak design discharges (i.e., hydrology) and design of surface water management system components (i.e., hydraulic design), which include:

- drainage downchutes;
- mid-slope drainage benches;
- top deck drainage terraces;
- a perimeter drainage channel;
- an access road channel; and
- a chambered sediment/stormwater detention pond.

#### **CALCULATION METHODOLOGY**

#### **Surface Water Management System Components**

The final cover system of the CBL consists of a shallowly sloped (3% minimum) top deck and exterior 3 horizontal to 1 vertical (3H:1V) side slopes. Storm water runoff from the final cover will be conveyed off the landfill through a series of components, including drainage



consultants

|           |     |      |          |       |              |               | Page           | <b>2</b> of | f 58      |
|-----------|-----|------|----------|-------|--------------|---------------|----------------|-------------|-----------|
|           |     | H. D | ouglas   |       |              | Reviewed      | B. Klenzendorf | Î           |           |
| Written b | by: | & J. | McNash   | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:       | 10/6/2016 |
|           | -   |      |          | _     |              | _             |                | _           |           |
| Client:   | LCF | RA   | Project: | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No.   | : 08      |
| 2 3110.   |     |      |          |       | zz znpanoron |               |                |             |           |

benches and terraces orientated approximately parallel to the final cover system side slopes, and drainage downchutes that intersect the drainage benches and are designed to convey runoff to a perimeter drainage channel and then to a chambered sediment/stormwater The downchutes will be lined with articulated concrete block (ACB), detention pond. drainage benches and terraces will be grass-lined, the access road channel will be lined with long-term turf reinforcement mat (TRM), and the perimeter drainage will be lined with grass or long-term TRM.

The pond is designed with an upstream sediment chamber to capture the "first flush" of runoff and allow sediment to settle out. The sediment chamber discharges to a downstream detention chamber through a controlled skimmer outlet structure. Flows greater than the volume of the sediment chamber are designed to bypass the chamber and enter the detention pond. The stormwater detention pond is comprised of a lower retention storage volume and an upper detention storage volume. The permanent pond within the retention volume can be used on-Flows from the chambered site for dust suppression and other beneficial uses. sediment/stormwater detention pond will be discharged through two culverts with an outlet riser structure and/or an overflow spillway and to a permanent drainage channel located adjacent to the east perimeter of the leachate evaporation pond. Discharge will leave the site at the southern site perimeter and through the existing culvert beneath the existing off-site railroad.

#### **Design Storm Return Period**

The United States Environmental Protection Agency (USEPA) coal combustion residuals (CCR) rule (40 CFR 257.81(a)) requires that runoff control systems be designed to collect and control flow from a 24-hour, 25-year storm. Texas Commission on Environmental Quality (TCEQ) Technical Guideline No. 3 (2015) recommends that runoff control systems for industrial landfills be designed for a 100-year, 24-hour rainfall event, a storm that would result in greater peak discharge and require larger drainage features than a 24-hour, 25-year storm. TCEQ Technical Guideline No. 3 does not address the design of detention ponds. However, TCEQ's 2006 guideline for municipal solid waste landfills recommends the 25year, 24-hour design storm event for peak flow and volume sizing of stormwater ponds. In designing the stormwater management system for the CBL, Geosyntec followed the TCEQ (2006, 2015) guidelines.



|            |                    |             |               |                        | Page                         | <b>3</b> of | 58        |
|------------|--------------------|-------------|---------------|------------------------|------------------------------|-------------|-----------|
| Written by | H. Dougle & J. McN |             | 7/14/2015     | Reviewed & Revised by: | B. Klenzendorf<br>& Z. Islam | _Date:      | 10/6/2016 |
| Client:    | LCRA Pro           | ject: FPP ( | CBL Expansion | Project No.:           | TXL0225                      | Phase No.:  | 08        |

#### **Rainfall Information**

The design rainfall distribution of the site is selected from the rainfall distribution map of the United States in Figure 1 (USDA, 1986). The site is located in an area categorized by Soil Conservation Service (SCS) Type III Rainfall Distribution. This rainfall distribution is used as input to the hydrologic model and is converted into a runoff hydrograph.

The 2-year, 25-year, and 100-year rainfall depths for a 24-hour storm event utilized for analyses were obtained from the USGS *Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas* (USGS, 2004) as specified in the Texas Department of Transportation (TxDOT) Hydraulic Design Manual (TxDOT, 2011). A 2-year, 24-hour rainfall depth of 3.7 inches is used in the hydrologic model to estimate travel times for sheet flow conditions for the times of concentration for each subarea (Figure 2). Similarly, rainfall depths of 7.8 inches and 10.5 inches were selected for 25-year, 24-hour and 100-year, 24-hour rainfall events, respectively (Figure 3 and Figure 4).

#### **Hydrology**

Intensity of rainfall for design is based on calculations for times of concentration and intensity-duration-frequency relationships using the procedures outlined by the TxDOT *Hydraulic Design Manual* (TxDOT, 2011). Peak design discharges are calculated based on the Rational Method recommended for small basins for either undeveloped or developed lands. The Rational Method is appropriate for estimating peak discharges for drainage areas less than 200 acres (TxDOT, 2011).

The Rational Method is useful for estimating peak flow rates but does not estimate runoff volumes. Therefore, the SCS Curve Number method outlined in TR-55 (USDA, 1986) is used to estimate runoff volumes as recommended by TCEQ (2006) and to check the design of the stormwater detention pond.

#### **Hydraulic Design**

Hydraulic design of the mid-slope drainage benches, drainage downchutes, and perimeter drainage channels are performed using Manning's equation (Chow, 1959). HydroCAD version 8.5 (HydroCAD, 2006) was used to develop an outflow curve for the detention pond riser structure, culverts, and overflow spillway. HydroCAD allows for complex outlet structures and models the structure using orifice and weir equations. The outlet structure



|           |       |         |        |       |              |               | Page           | <b>4</b> of | 58        |
|-----------|-------|---------|--------|-------|--------------|---------------|----------------|-------------|-----------|
| ·         | I     | H. Doug | glas   |       |              | Reviewed      | B. Klenzendorf |             | _         |
| Written b | by: & | & J. Mc | Nash   | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:       | 10/6/2016 |
|           | _     |         |        | _     |              | _             | -              | _           |           |
| Client:   | LCR   | A Pr    | oject: | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No.:  | 08        |
|           |       |         | - 3 •• |       |              |               |                | _           |           |

outflow curve was used as input to the pond structure in the hydrologic model, HEC-HMS version 3.5 (USACE, 2000). Average tractive shear stresses are calculated for each hydraulic feature. The channel lining was selected such that the calculated tractive stress for a 25-year design storm event is less than the permissible tractive stress for the lining material. In addition, the depth of the hydraulic feature is selected to convey the calculated 100-year design storm depth.

#### **COMPUTATIONS**

#### Rational Method for Hydrologic Design

The Rational Method was applied to design the stormwater drainage features (downchutes, mid-slope berms, and perimeter channels). The Rational Method is expressed as follows:

$$Q = C \times I \times A$$

where: Q = flow rate (cfs);

*C* = runoff coefficient;

I = rainfall intensity (in./hr); and

A =contributing drainage area (acres).

#### **Estimation of Contributing Drainage Areas**

Figure 5 delineates the contributing drainage areas for each of the surface water management system components. Table 1 provides the calculated area, in acres, for each of the drainage areas (subcatchments) labeled on Figure 5. The area of each subcatchment was calculated from the design drawings using computer-aided design (CAD) software. The proposed final cover system drainage areas are divided based on the surface water management component. Additional areas draining to the detention pond and the down gradient discharge channel were estimated based on existing contours provided by LCRA.

#### **Estimation of Runoff Coefficient for Rational Method**

The runoff coefficient is estimated from the TxDOT *Hydraulic Design Manual* (TxDOT, 2011) for rural watersheds as presented in Table 2. The total runoff coefficient is estimated based on the following equation:

$$C = C_r + C_i + C_v + C_s$$

|           |       |           |      |       |              |               | Page           | 5 of       | 58        |
|-----------|-------|-----------|------|-------|--------------|---------------|----------------|------------|-----------|
|           | ]     | H. Dougla | ıs   |       |              | Reviewed      | B. Klenzendorf |            |           |
| Written b | by: d | & J. McN  | ash  | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:      | 10/6/2016 |
|           | _     |           |      | _     |              | _             | -              | _          |           |
| Client:   | LCR   | A Proi    | ect: | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No.: | 08        |
|           |       |           |      |       |              | ,             |                | _          |           |

where: C = total runoff coefficient;

 $C_r$  = relief runoff coefficient;

 $C_i$  = soil infiltration runoff coefficient;

 $C_{v}$  = vegetal cover runoff coefficient; and

 $C_s$  = surface runoff coefficient.

The total runoff coefficient equation above applies to design storm events of less than or equal to a 10-year frequency. For higher frequency events, the runoff coefficient is modified due to infiltration and other abstractions having a proportionally smaller effect on runoff. Adjustment factors for the Rational Method,  $C_f$ , are given by TxDOT (2011) as 1.10, 1.20, and 1.25 for 25-year, 50-year, and 100-year recurrence intervals, respectively.

#### **Estimation of Time of Concentration for Rational Method**

The time of concentration is defined as the time for runoff to flow from the most hydraulically remote point of the drainage area to the point under investigation. The time of concentration  $(T_c)$  is a summation of sheet flow travel time, shallow concentrated flow travel time, and open channel flow travel time.

The method to estimate the sheet flow travel time was obtained from the U.S. Department of Agriculture (USDA) document *Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55)* (USDA, 1986). Manning's kinematic solution is used for estimating travel time for sheet flow for flow distances less than 300 ft (USDA, 1986):

$$T_{t} = \frac{0.007(nL)^{0.8}}{P_{2-24}^{0.5} S^{0.4}}$$

where:  $T_t$  = travel time for overland sheet flow (hr);

*n* = Manning's roughness coefficient;

L = flow length (ft);

 $P_{2-24} = 2$ -year, 24-hour rainfall (in.); and

S = slope of hydraulic grade line (land slope, ft/ft).

To estimate sheet flow travel time  $(T_t)$ , a Manning's roughness coefficient (n) of 0.15 was selected for short grass prairie surfaces as shown in Table 3 (USDA, 1986). Maximum flow

|           |     |      |          |       |              |               | Page           | <b>6</b> of | 58        |
|-----------|-----|------|----------|-------|--------------|---------------|----------------|-------------|-----------|
|           |     | H. D | Oouglas  |       |              | Reviewed      | B. Klenzendorf |             |           |
| Written 1 | by: | & J. | McNash   | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:       | 10/6/2016 |
|           |     |      |          |       |              | _             |                | _           |           |
| Client:   | LCI | RA   | Project: | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No.:  | 08        |
|           |     |      | _ ,      |       | •            |               |                | _           |           |

lengths (L) were measured for each subcatchment area of the final cover system. The rainfall depth for the 2-year, 24-hour frequency ( $P_{2-24}$ ) is provided as 3.7 inches (USGS, 2004). The slope of the hydraulic grade line, or land slope (S), for all subcatchment areas of the final cover system is shown in Table 1.

Based on the designed conveyance system, runoff will be converted from sheet flow to open channel flow quickly, and shallow concentrated flow is negligible. Surface water runoff within each subcatchment area will sheet flow along the top deck or side slopes of the final cover system until the water reaches either a drainage bench or the perimeter drainage channel, at which point the flow will be classified as open channel flow. For the undeveloped areas to the south of the landfill which drain directly to the detention pond or drainage channel, shallow concentrated flow will not be negligible. The Upland Method (USDA, 1986) is used to estimate the shallow concentrated flow velocities using Table 4 and the equation below.

$$V = K_{v} \sqrt{S}$$

where:

V = average velocity (ft/sec),

 $K_{\nu}$  = shallow concentrated flow velocity factor (ft/sec) based on surface type (see Table 4), and

S = land slope (ft/ft).

A velocity factor of  $K_{\nu} = 7.0$  ft/sec was selected for the undeveloped areas based on a short grass pasture surface description. The land slopes were estimated from the existing conditions topographic maps.

The method selected to estimate the shallow concentrated flow and open channel flow travel time is based on guidance provided in TR-55 (USDA, 1986). Travel time for shallow concentrated flow and open channel flow is estimated by dividing the longest drainage path by the velocity of runoff:

$$T_{t} = \frac{L}{V} \left( \frac{1}{60} \right)$$

where:

 $T_t$  = travel time (min);

L = flow length (ft); and

|           |     |      |          |          |              |               | Page           | <b>7</b> o | f <b>58</b> |
|-----------|-----|------|----------|----------|--------------|---------------|----------------|------------|-------------|
|           |     | H. D | ouglas   |          |              | Reviewed      | B. Klenzendorf |            |             |
| Written l | by: | & J. | McNash   | Date:    | 7/14/2015    | & Revised by: | & Z. Islam     | Date:      | 10/6/2016   |
|           | -   |      |          | <u> </u> |              | _             |                | =          |             |
| Client:   | LCR | A    | Project: | FPP C    | BL Expansion | Project No.:  | TXL0225        | Phase No.  | : 08        |
|           |     |      | _        |          |              | _             |                | _          |             |

V = average velocity (ft/sec).

The shallow concentrated flow velocities are defined above. The open channel flow velocities were estimated using Manning's equation based on guidance provided in TR-55 (USDA, 1986). The average flow velocities were determined for bank-full elevation as:

$$V = \frac{1.49}{n} R_h^{2/3} S^{1/2}$$

where:

V = average velocity (ft/sec);

n = Manning's roughness coefficient;

 $R_h$  = hydraulic radius (ft) = A/P;

 $A = cross sectional area (ft^2);$ 

P =wetted perimeter (ft); and

S = slope of hydraulic grade line (channel slope, ft/ft).

To estimate open channel flow travel time ( $T_t$ ), a Manning's roughness coefficient (n) was selected for clean and straight earthen open channels as shown in Table 5 (Chow, 1959). A Manning's roughness coefficient value of 0.027 was selected for the mid-slope drainage benches and some perimeter channel reaches which are proposed to be grass-lined, and a value of 0.030 was selected (see Table 6 from FHWA, 2005) for the remaining perimeter channel reaches and the access road channel which are proposed to be lined with TRM. The mid-slope drainage benches are designed with a minimum of 2% slope, the access road channel is designed with a slope of 8%, and the perimeter drainage channels are designed with slopes ranging from 0.9% to 3.3%.

The velocities and times of concentration used in the design are presented in Table 1. A minimum time of concentration of 10 minutes was used to calculate the rainfall intensity as recommended by the TxDOT Hydraulic Design Manual (TxDOT, 2011) and TCEQ RG-417 (TCEQ, 2006) because small areas with exceedingly short times of concentration could result in design rainfall intensities that are unrealistically high.



|           |     |      |          |       |              |               | Page           | <b>8</b> of | f 58      |
|-----------|-----|------|----------|-------|--------------|---------------|----------------|-------------|-----------|
|           |     | H. D | Oouglas  |       |              | Reviewed      | B. Klenzendorf | 1           |           |
| Written 1 | by: | & J. | McNash   | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:       | 10/6/2016 |
|           |     |      |          |       |              | _             |                | =           |           |
| Client:   | LCI | RA   | Project: | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No.   | : 08      |
|           |     |      | _ ,      | -     | •            |               |                | _           |           |

#### **Estimation of Peak Rainfall Intensity for Rational Method**

Rainfall intensity was estimated based on guidance provided in the TxDOT Hydraulic Design Manual (TxDOT, 2011). The design rainfall intensity was calculated from the following equation:

$$I = \frac{P_d}{T_c}$$

where: I = design rainfall intensity (in/hr);

 $T_c$  = computed time of concentration (hr); and

 $P_d$  = depth of rainfall (inches) for design storm of duration  $T_c$ .

The values of  $P_d$  for each design storm event were obtained from the USGS (2004) for both the 25-year and the 100-year rainfall events for various storm durations. The storm durations represented are 15 and 30 minutes for both the 25-year and 100-year storm events as shown in Figure 6 through Figure 9, respectively. The depth for the desired duration is calculated by performing an interpolation between depth-duration pairs provided in the figures. For times of concentration less than 15 minutes, the depth of rainfall is taken as a fraction of the 15 minute rainfall depth.

#### **Estimation of Peak Design Discharges for Rational Method**

The Rational Method was used to estimate peak discharge rates for each drainage area as described above. The runoff coefficients for each drainage area on the final cover system and the calculated peak discharges for the 25-year, 24-hour and 100-year, 24-hour rainfall events for each drainage area are shown in Table 1.

To obtain the design discharge for a specific point in the surface water management system, the peak discharges for each drainage area upstream of the point were added at the point of interest. This technique slightly overestimates peak discharge because peak flows from upstream drainage areas will likely combine downstream at different times. However, this technique is conservative and appropriate for design given the small drainage areas and short times of concentration. The drainage areas upstream of each surface water management system component area are shown in Table 7. The calculated design discharges for the downstream end of each surface water management system component are provided in Table 8.



#### consultants

|                  |                    |                   |               | Page           | <b>9</b> of | 58        |
|------------------|--------------------|-------------------|---------------|----------------|-------------|-----------|
|                  | H. Douglas         |                   | Reviewed      | B. Klenzendorf |             |           |
| Written by:      | & J. McNash        | Date: 7/14/2015   | & Revised by: | & Z. Islam     | Date:       | 10/6/2016 |
| -                |                    |                   |               |                | _           |           |
| Client: LC       | <b>RA</b> Project: | FPP CBL Expansion | Project No.:  | TXL0225        | Phase No.:  | - 08      |
| 2.1 <b>4</b> 11. | 110,000.           | 111 CDL LADAMSION |               | 111110220      |             |           |

#### SCS Curve Number Method for Hydrologic Design

The TCEQ RG-417 (TCEQ, 2006) indicates that the Rational Method is insufficient in modeling the volume of stormwater runoff and hydrograph development. Therefore, it is recommended (TCEQ, 2006) to use TR-55 SCS Curve Number Method to compute runoff volumes for detention pond sizing. Stormwater discharges for the landfill expansion are estimated using the computer program HEC-HMS (USACE, 2000). HEC-HMS applies hydrology design methods, such as the SCS Curve Number Method, as presented in TR-55 (USDA, 1986). Hydrographs generated within the computer program are routed through a user-specified network of reaches and ponds using documented hydraulic routing techniques.

HEC-HMS simulations were conducted to calculate surface water runoff volumes, peak flow rates, and flow characteristics for the surface water management features. performed using HEC-HMS included the following procedures built-in within the program.

- Runoff volumes were calculated within HEC-HMS using the SCS Curve Number Method as required by TR-55.
- Time-response of runoff (i.e., the process of converting a volume of runoff into a runoff hydrograph) was calculated within HEC-HMS using time of concentration, lag time, and unit hydrograph methods as required by TR-55 using a Type III rainfall distribution (see Figure 1).
- Runoff hydrographs generated within HEC-HMS were routed through a user specified network of reaches using industry standard hydraulic routing techniques such as: Kinematic Wave method for reach routing and an Outflow Curve method for routing through ponds. The Outflow Curve method was used for the detention pond since the outlet structure has a complex design with a combination of orifices, weirs, and culverts. The Outflow Curve was calculated using HydroCAD software that allows for a combination of multiple outflow structures as previously mentioned (HydroCAD, 2006).

The design storm event for peak flow and volume sizing of stormwater ponds is the 25-year, 24-hour storm (TCEQ, 2006). In addition, the pond outflow structure is designed to convey the peak flow rate of a 100-year, 24-hour event without overtopping the pond berm. Analyses of the post-development conditions for both a 25-year and 100-year design storm event are presented below.



| consu | ltants |
|-------|--------|
| COHSU | uanto  |

|           |     |      |          |       |              |               | Page           | <b>10</b> of | f 58      |
|-----------|-----|------|----------|-------|--------------|---------------|----------------|--------------|-----------|
|           |     | H. D | ouglas   |       |              | Reviewed      | B. Klenzendorf | ?            |           |
| Written b | by: | & J. | McNash   | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:        | 10/6/2016 |
|           |     |      |          |       | -            |               |                | _            |           |
| Client:   | LCR | 2A   | Project: | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No.    | : 08      |
|           |     |      |          |       | 22 2punoron  |               |                |              |           |

For post-development conditions, the contributing drainage area to the detention pond outfall is approximately 84.8 acres as shown in Figure 5 based on the design contours developed by Geosyntec. The landfill area draining to the detention pond is approximately 71.6 acres and is classified as pasture, grassland, or range under fair condition with 50% to 75% ground cover which corresponds to a curve number 84 for hydrologic soil group (HSG) D used for analysis as shown in Table 9 (USDA, 1986). The remaining undeveloped area south of the landfill which drains directly to the detention pond consists of 13.2 acres. This undeveloped area was based on the USGS topography map for brush under good condition with greater than 75% ground cover which corresponds to a curve number of 73 for HSG D used for analysis as shown in Table 9. This additional area is accounted for in the detention pond design. Additional undeveloped areas to the south of the detention pond drain directly to the down gradient drainage channel and site outfall and consist of an additional 30.9 acres. The same undeveloped curve number of 73 is applied to this area which is accounted for in the drainage channel design.

#### **Estimation of Time of Concentration for SCS Curve Number Method**

The equations used to estimate the time of concentration described above for the Rational Method apply to the SCS Curve Number Method. The lag times calculated for each drainage area are presented in Table 10 for use in the SCS Curve Number Method and HEC-HMS software. The lag time is estimated as 0.6 times the time of concentration (USDA, 2010).

For the undeveloped contributing areas, shallow concentrated flow will occur after the allowable 300 ft of sheet flow but prior to open channel flow. The travel time for shallow concentrated flow is estimated using the Upland Method (USDA, 1986) as described above.

#### Surface Water Management System Components Hydraulic Design

Manning's equation was used to estimate the average velocity for the mid-slope drainage benches, downchutes, and perimeter channels. Manning's equation for velocity (Chow, 1959) is presented earlier. Manning's roughness coefficient was selected from Table 5 for a grasslined channel. Average discharge is equal to the average velocity times the area of crosssection of flow (i.e., Q = VA). The mid-slope drainage benches, downchutes, and perimeter channels were designed to accommodate the peak discharge from the 100-year, 24-hour design storm without overtopping consistent with TCEQ TG-3 (TCEQ, 2009).



|           |     |                 |          |        |              |                | Page           | <b>11</b> 0 | f <b>58</b> |
|-----------|-----|-----------------|----------|--------|--------------|----------------|----------------|-------------|-------------|
|           |     |                 | ouglas   |        |              | Reviewed       | B. Klenzendorf |             |             |
| Written b | oy: | <u>&amp; J.</u> | McNash   | _Date: | 7/14/2015    | _& Revised by: | & Z. Islam     | Date:       | 10/6/2016   |
| Client:   | LCF | RA              | Project: | FPP C  | BL Expansion | Project No.:   | TXL0225        | Phase No.   | : <u>08</u> |

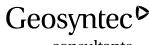
The tractive stresses in the mid-slope drainage benches, downchutes, and drainage channel outlets for various depths of flow are estimated using the following equation (Chow, 1959):

$$\tau_0 = \gamma_w R_h S$$

where:  $\tau_o$  = average tractive stress (lb/ft<sup>2</sup>);

 $\gamma_w = \text{unit weight of water (lb/ft}^3);$ 

 $R_h$  = hydraulic radius of flow (ft); and


S = channel slope (ft/ft).

The tractive stress at the 25-year design discharge for the mid-slope drainage benches, downchutes, and perimeter drainage channel outlets was calculated using the tractive stress equation. Permissible tractive stresses for grass-lined channels range from 0.35 psf to 3.70 psf depending on the retardation class of vegetation. Retardation Class C (which includes Bermuda and Crab grasses among others) is selected for the design of grass-lined channels (Table 11) and has a maximum permissible tractive stress of 1.0 psf (Table 12) according to TxDOT (2011). Where the calculated tractive stress was greater than 1.0 psf, TRM was used. In the TxDOT (2011) reference (see Table 12), the maximum permissible tractive stress of synthetic mat is 2.00 psf. However, there are TRMs available that provide resistance against higher tractive stresses. TxDOT Class 2, Type G TRMs have maximum permissible stresses up to 6 psf, and Type H TRMs have maximum permissible stresses up to 8 psf (TxDOT, 2015).

The allowable tractive stress for the ACB-lined downchutes is documented in published research data (e.g., Ayres, 2001) and selected for design. The ACB-lined downchute is designed to accommodate the design storm event without shifting of the blocks or any loss of embankment soil beneath the ACB system. The maximum allowable tractive stress, or shear stress, for the ACB-lined downchutes ranges from approximately 9.1 to 10.7 psf (Ayres, 2001), as shown in Table 13 with an average value of 9.9 psf which is recommended as the maximum allowable tractive stress.

#### **RESULTS**

Hydraulic design calculations for mid-slope benches, downchutes, and perimeter channels were performed using the spreadsheets presented in Appendix A-1 of this calculation package for the hydraulic elements with the largest design flow rates. HEC-HMS output results are provided in Appendix A-2. The design parameters and results of the hydraulic design of each



#### consultants

|           |     |      |          |          |              |               | Page           | <b>12</b> of | 58        |
|-----------|-----|------|----------|----------|--------------|---------------|----------------|--------------|-----------|
|           |     | H. D | ouglas   |          |              | Reviewed      | B. Klenzendorf |              |           |
| Written l | by: | & J. | McNash   | Date:    | 7/14/2015    | & Revised by: | & Z. Islam     | Date:        | 10/6/2016 |
|           | _   |      |          | <u> </u> |              | _             |                | =            |           |
| Client:   | LCR | A    | Project: | FPP C    | BL Expansion | Project No.:  | TXL0225        | Phase No.    | : 08      |
|           |     |      | _        |          | -            | _             |                | _            |           |

component of the surface water management system are summarized below. Additionally, the mid-slope drainage benches and the perimeter channel dimensions are summarized in Table 14 and Table 15 at the end of this document. The Reach ID corresponds with the drainage area contributing to the adjacent surface water management component.

#### Summary of Mid-Slope Drainage Benches (Table 14)

- 100-year Rainfall Design Discharge = 4.72 to 32.56 cfs
- Top Width = 18 ft
- Channel Slope = 2.0 to 2.8%
- Manning's n = 0.027 (Table 5)
- Side Slopes = 6H:1V and  $3H:1V^a$
- Bottom Width = 0 ft
- Available Depth of Flow = 2.0 ft
- 100-year Calculated Depth of Flow = 0.56 to 1.12 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 1.0 psf (Table 12)
- 25-year Calculated Average Tractive Stress = 0.29 to 0.80 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

<sup>a</sup>Note: The mid-slope drainage benches are graded channels. A 2.0 ft deep (minimum) channel with 6H:1V slopes provides the outer slope of the channel. The 3H:1V slope of the landfill provides the inner slope of the channel.

#### Summary of Access Road Channel (Table 14)

- 100-year Rainfall Design Discharge = 13.04 cfs
- Top Width = 12 ft
- Channel Slope = 8.0%
- Manning's n = 0.030 (Table 5)
- Side Slopes = 3H:1V
- Bottom Width = 0 ft
- Available Depth of Flow = 2.0 ft
- **100-year Calculated Depth of Flow** = 0.78 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 2.0 psf (Table 12) or 6 to 8 psf for TxDOT Class 2, Type G or H TRM (TxDOT, 2015)

## Geosyntec D

| consu | ltants |
|-------|--------|
|       |        |

|           |     |      |          |       |              |               | Page           | <b>13</b> of | 58        |
|-----------|-----|------|----------|-------|--------------|---------------|----------------|--------------|-----------|
|           | ]   | H. D | ouglas   |       |              | Reviewed      | B. Klenzendorf |              |           |
| Written b | by: | & J. | McNash   | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:        | 10/6/2016 |
|           | _   |      |          | _     |              | _             |                | -            |           |
| Client:   | LCR | A    | Project: | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No.:   | 08        |
|           |     |      | _ 3      |       | <u>r</u>     | _             |                | -            |           |

- 25-year Calculated Average Tractive Stress = 1.58 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

#### Summary of Drainage Downchutes<sup>a</sup> (Table 14)

- 100-year Rainfall Design Discharge = 57.84 to 111.34 cfs
- Top Width =  $18 \text{ ft}^b$
- Channel Slope = 33.3%
- Manning's n = 0.036 (Table 13)
- Side Slopes = 6 ft radius
- Bottom Width = 6.0 ft<sup>b</sup>
- Available Depth of Flow = 2.0 ft
- 100-year Calculated Depth of Flow = 0.55 to 0.73 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 9.9 psf (Table 13)
- **25-year Calculated Average Tractive Stress** = 7.55 to 9.62 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

<sup>a</sup>Note: Downchutes will be lined with ACB and constructed with a 6 ft radius of curvature. The downchutes were conservatively designed as trapezoidal channels with a 6 ft bottom width (except Downchute 1 as noted below) and 3H:1V side slopes.

<sup>b</sup>Note: Downchute 1 will be constructed with a bottom width of 8.0 ft and a resulting top width of 20 ft.

#### Eastern Perimeter Drainage Channel (Reach 1 to Reach 7)

- 100-year Rainfall Design Discharge = 2.80 to 219.65 cfs
- Top Width = 23 ft
- Channel Slope = 0.9 to 2.1% (Table 15)
- Manning's n = 0.030 to 0.033 (Table 5 and Table 6)
- Side Slopes = 3H:1V
- Bottom Width = 5 ft
- Available Depth of Flow = 3.0 ft
- 100-year Calculated Depth of Flow = 0.25 to 2.31 ft
- Calculated Depth of Flow < Available Depth of Flow

## Geosyntec<sup>o</sup>

#### consultants

|           |     |      |          |       |              |               | Page           | <b>14</b> 0 | of         | 58        |
|-----------|-----|------|----------|-------|--------------|---------------|----------------|-------------|------------|-----------|
|           |     | H. D | ouglas   |       |              | Reviewed      | B. Klenzendorf |             |            |           |
| Written b | oy: | & J. | McNash   | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:       |            | 10/6/2016 |
|           |     |      |          |       |              |               |                |             |            |           |
| Client:   | LCR | A    | Project: | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No    | ) <u>:</u> | 08        |
|           |     |      |          |       |              |               |                |             |            |           |

- Allowable Tractive Stress = 1.0 psf (grass-lined) or 2.0 psf (turf reinforcement mat) (Table 12)
- **25-year Calculated Average Tractive Stress** = 0.16 to 1.48 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

#### Western Perimeter Drainage Channel (Reach 9 to Reach 12)

- 100-year Rainfall Design Discharge = 13.92 to 123.70 cfs
- Top Width = 20 ft
- Channel Slope = 1.7 to 3.3% (Table 15)
- Manning's n = 0.030 to 0.033 (Table 5 and Table 6)
- Side Slopes = 3H:1V
- Bottom Width = 5 ft
- Available Depth of Flow = 2.5 ft
- **100-year Calculated Depth of Flow** = 0.49 to 1.73 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 1.0 psf (grass-lined) or 2.0 psf (turf reinforcement mat) (Table 12)
- 25-year Calculated Average Tractive Stress = 0.42 to 1.05 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

#### Southern Perimeter Drainage Channel (Reach 8 and Reach 13)

- 100-year Rainfall Design Discharge = 142.26 to 263.57 cfs
- Top Width = 26 ft
- Channel Slope = 1.6 to 2.0% (Table 15)
- Manning's n = 0.030 (Table 6)
- Side Slopes = 3H:1V
- Bottom Width = 8 ft
- Available Depth of Flow = 3.0 ft
- **100-year Calculated Depth of Flow** = 1.53 to 2.22 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 2.0 psf (turf reinforcement mat) (Table 12)
- 25-year Calculated Average Tractive Stress = 1.13 to 1.25 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress



|           |     |      |          |       |              |               | Page           | <b>15</b> of | 58        |
|-----------|-----|------|----------|-------|--------------|---------------|----------------|--------------|-----------|
|           |     | H. D | ouglas   |       |              | Reviewed      | B. Klenzendorf |              |           |
| Written b | by: | & J. | McNash   | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:        | 10/6/2016 |
|           | •   |      |          | _     |              | _             |                | _            |           |
| Client:   | LCI | RA   | Project: | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No.:   | 08        |
|           |     |      |          |       | DE Emparion  |               | 11120220       |              |           |

#### Chambered Sediment/Stormwater Detention Pond Hydraulic Design

The SCS Curve Number method is used for hydrologic design of the chambered sediment/stormwater detention pond. This method is evaluated with HEC-HMS software and is used as input for the hydraulic design of the stormwater detention pond. Stormwater runoff is routed through the detention pond which is sized to detain water from a 25-year, 24-hour rainfall event. The pond outlet structure was sized to convey the peak flow rate for the 100-year, 24-hour storm event without overtopping the pond berm. The primary pond outlet structure consists of two 36 inch diameter pipes with an invert elevation of 340-ft. A tiered concrete headwall is designed up gradient from the outlet culverts to manage outflows from the pond. The headwall consists of a tiered weir design with a lower weir crest at elevation 342.25-ft and length of 15 ft. The upper weir crest is at elevation 343.0-ft and has a length of 20 ft. A series of low flow orifices are spaced within the headwall structure. The orifices are six inches in diameter and spaced eight inches apart vertically in two rows and four columns (for a total of eight orifices). An emergency overflow spillway is modeled as a broad-crested weir at elevation 345-ft with a crest length of 100 ft and crest breadth of 13 ft.

The proposed chambered sediment/stormwater detention pond is designed to convey the peak flow rate for the 100-year, 24-hour storm event as required by TCEQ TG-3 (TCEQ, 2009). The 100-year, 24-hour peak flow rate is conveyed through the overflow spillway keeping 1.0 feet of freeboard. Modeling results for the peak flow rates and maximum water surface elevations are presented in Table 16 of this calculation package.

#### CONCLUSIONS

Results from calculations presented in this calculation package indicate that the surface water management system for the proposed Cell 1 vertical expansion and Cell 2 lateral expansion of the Coal Combustion Byproduct Landfill at the LCRA Fayette Power Project site in La Grange, Texas will collect and control the runoff resulting from a 100-year, 24-hour design storm event. The proposed surface water management system includes drainage downchutes, mid-slope drainage benches, perimeter drainage channels, an access road channel, and a chambered sediment/stormwater detention pond which will collect runoff from the landfill final cover system and adjacent up gradient undeveloped areas. Stormwater runoff will be routed to the facility's site outfall point.



|           |     |    |                   |        |              |                        | Page                         | <b>16</b> of | f 58      |
|-----------|-----|----|-------------------|--------|--------------|------------------------|------------------------------|--------------|-----------|
| Written b | by: |    | Oouglas<br>McNash | _Date: | 7/14/2015    | Reviewed & Revised by: | B. Klenzendorf<br>& Z. Islam | Date:        | 10/6/2016 |
| Client:   | LC  | RA | Project:          | FPP C  | BL Expansion | Project No.:           | TXL0225                      | Phase No.    | . 08      |

#### REFERENCES

- Ayres (2001). *Hydraulic Stability of the Channel-Lock 450 Concrete Block Revetment System*, Ayres Associates, August 2001.
- Chow, V.T. (1959). *Open-Channel Hydraulics*, McGraw-Hill Book Company, Inc., New York, NY.
- FHWA (2005). *Design of Roadside Channels with Flexible Linings*, Federal Highway Administration, Hydraulic Engineering Circular No. 15, Third Edition, National Highway Institute, September 2005.
- Geosyntec (2016). Final Cover Erosion Analysis, Lower Colorado River Authority, Fayette Power Project Coal Combustion Byproducts Landfill Expansion, 31 August, Austin, Texas.
- HydroCAD (2006). *Stormwater Modeling System Owner's Manual*, Version 8.5, HydroCAD Software Solutions, Chocorua, New Hampshire.
- TCEQ (2006). Guidelines for Preparing a Surface Water Drainage Report for a Municipal Solid Waste Facility, Waste Permits Division, Texas Commission on Environmental Quality, Publication RG-417.
- TCEQ (2015). *Technical Guideline No. 3: Landfills*, Industrial Solid Waste Management, Texas Commission on Environmental Quality.
- TxDOT (2011). *Hydraulic Design Manual*, Texas Department of Transportation, Austin, Texas, revised October 2011.
- TxDOT (2015). Approved Product List Item 169 "Soil Retention Blanket", Texas Department of Transportation, Austin, Texas, Revised June 2015.
- USACE (2000). *Hydraulic Modeling System HEC-HMS Technical Reference Manual*, US Army Corps of Engineers, Hydrologic Engineering Center, CPD-74B, March 2000.



|           |      |           |       |              |               | Page           | <b>17</b> of | 58        |
|-----------|------|-----------|-------|--------------|---------------|----------------|--------------|-----------|
|           | Н    | . Douglas |       |              | Reviewed      | B. Klenzendorf |              |           |
| Written b | y: & | J. McNash | Date: | 7/14/2015    | & Revised by: | & Z. Islam     | Date:        | 10/6/2016 |
|           |      |           |       |              | _             |                | _            |           |
| Client:   | LCRA | Project:  | FPP C | BL Expansion | Project No.:  | TXL0225        | Phase No.:   | 08        |
|           |      |           |       | •            |               | -              | _            |           |

- USDA (1986). *Urban Hydrology for Small Watersheds*, Technical Release 55, Natural Resources Conservation Service, United States Department of Agriculture, Washington, D.C.
- USDA (2010). *National Engineering Handbook Part 630 Hydrology*, Natural Resources Conservation Service, United States Department of Agriculture, Chapter 15 Time of Concentration, Washington, D.C., issued May 2010.
- USGS (2004). *Atlas of Depth-Duration Frequency of Precipitation Annual Maxima for Texas*, Scientific Investigations Report 2004-5041, United States Geological Survey, authors William H. Asquith and Meghan C. Roussel.

#### **TABLES**

- Table 1 Subcatchment Areas, Time of Concentration, and Peak Discharge Calculations
- Table 2 Runoff Coefficients (C) for Rural Watersheds
- Table 3 Manning's Roughness Coefficient for Sheet Flow
- Table 4 Upland Method Velocity Factors for Shallow Concentrated Flow
- Table 5 Manning's Roughness Coefficient for Open Channel Flow
- Table 6 Typical Roughness Coefficients for Selected Linings
- Table 7 Contributing Areas to each Storm Water Management System Component
- Table 8 Calculated Design Discharges for Each Stormwater Management System Component
- Table 9 Runoff Curve Numbers for Other Agricultural Lands
- Table 10 SCS Method Lag Time Calculations

- Table 11 Retardation Class for Lining Materials (from TxDOT, 2011)
- Table 12 Permissible Shear Stresses for Various Linings (from TxDOT, 2011)
- Table 13 Manning's Roughness Coefficient and Design Summary for ACB
- Table 14 Mid-Slope Drainage Bench and Drainage Downchute Geometry and Results
- Table 15 Perimeter Drainage Channel Geometry and Results
- Table 16 HEC-HMS Model Results

Table 1 – Subcatchment Areas, Time of Concentration, and Peak Discharge Calculations

| Subcatchment   Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coefficient   Rate   Coefficient   Rate   Coefficient   Rate   Coefficient   Coeffic |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PISTRIANTION   CAC.   Left   Script   Fig.   Left   Script   CAC.   Left   Cac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Coefficient   Rate   Coefficient   Rate   Coefficient   Rate   Coefficient   Coeffic |
| L(ft)   S(ft/ft)   n   T <sub>1</sub> (min)   L(ft)   d(ft)   A <sub>1</sub> (ft')   P(ft)   R(ft)   n   S(ft/ft)   V(ft/s)   T <sub>1</sub> (min)   C <sub>1</sub>   C <sub>1</sub>   C <sub>2</sub>   C <sub>3</sub>   C <sub>5</sub>   C | 0.800 2.80<br>0.575 67.98<br>0.800 11.1.12<br>0.800 27.36<br>0.800 4.88<br>0.800 4.24<br>0.800 1.04<br>0.575 57.44<br>0.800 16.24<br>0.800 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2A 15.54 300 0.030 0.150 18.66 700 1.0 333 66.7 0.50 0.027 0.009 3.20 3.64 22.30 0.12 0.16 0.06 0.12 5.98 0.51 47.03 7.61  2B 1.39 25 0.333 0.150 0.98 1050 2.0 18.0 18.5 0.97 0.027 0.02 7.67 2.28 10.00 0.30 0.16 0.06 0.12 7.60 0.70 7.44 10.00  2C 342 115 0.333 0.150 4.09 170 2.0 18.0 18.5 0.97 0.027 0.02 7.67 2.72 10.00 0.30 0.16 0.06 0.12 7.60 0.70 18.30 10.00  2D 0.61 150 0.333 0.150 4.09 170 2.0 18.0 18.5 0.97 0.027 0.02 7.67 0.37 10.00 0.30 0.16 0.06 0.12 7.60 0.70 3.26 10.00  2E 0.23 50 0.333 0.150 1.70 120 3.0 42.0 44.0 1.75 0.033 0.015 7.98 0.25 10.00 0.30 0.16 0.06 0.12 7.60 0.70 1.23 10.00  3 0.53 60 0.333 0.150 1.97 250 3.0 42.0 18.5 2.27 0.033 0.01 7.28 0.57 10.00 0.30 0.16 0.06 0.12 7.60 0.70 2.84 10.00  4 0.13 65 0.333 0.150 1.97 250 3.0 42.0 18.5 2.27 0.033 0.01 7.28 0.57 10.00 0.30 0.16 0.06 0.12 7.60 0.70 0.284 10.00  5A 12.63 300 0.030 0.150 18.66 425 1.0 333 66.7 0.50 0.027 0.007 2.93 2.42 21.08 0.12 0.16 0.06 0.12 7.60 0.70 0.70 2.84 10.00  5C 0.82 150 0.333 0.150 4.99 230 2.0 18.0 18.5 0.97 0.027 0.007 7.67 0.50 10.00 0.30 0.16 0.06 0.12 7.60 0.70 10.86 10.00  5D 0.59 70 0.333 0.150 2.22 250 2.0 18.0 18.5 0.97 0.027 0.007 7.67 0.50 10.00 0.30 0.16 0.06 0.12 7.60 0.70 10.86 10.00  5D 0.59 70 0.333 0.150 2.22 250 2.0 18.0 18.5 0.97 0.027 0.02 7.67 0.50 10.00 0.30 0.16 0.06 0.12 7.60 0.70 10.86 10.00  5D 0.59 70 0.333 0.150 2.22 250 2.0 18.0 18.5 0.97 0.027 0.027 7.67 0.50 10.00 0.30 0.16 0.06 0.12 7.60 0.70 10.86 10.00  5D 0.59 70 0.333 0.150 2.22 250 2.0 18.0 18.5 0.97 0.033 0.016 8.0 0.0 10.00 0.30 0.16 0.06 0.12 7.60 0.70 10.86 10.00  5D 0.59 70 0.333 0.150 0.150 4.91 1130 3.0 51.0 27.0 18.9 0.033 0.016 8.0 0.0 10.00 0.30 0.16 0.06 0.12 7.60 0.70 10.86 10.00  5D 0.59 70 0.333 0.150 4.99 1130 3.0 51.0 27.0 18.9 0.033 0.016 8.0 0.0 10.00 0.30 0.16 0.06 0.12 7.60 0.70 2.937 10.00  5D 0.59 70 0.333 0.150 0.150 4.91 1130 3.0 51.0 27.0 18.9 0.033 0.016 8.0 0.0 10.00 0.30 0.16 0.06 0.12 7.60 0.70 2.937 10.00  5D 0.59 70 0.333 0.150 0.150 1.54 70 2.5 13.3 20.8 1.50 0.033 0.016 8.0 0.0 10.00 0.30 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.575 67.98<br>0.800 11.12<br>0.800 27.36<br>0.800 4.88<br>0.800 1.84<br>0.800 1.04<br>0.800 1.04<br>0.575 57.44<br>0.800 16.24<br>0.800 16.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.800 11.12<br>0.800 27.36<br>0.800 4.88<br>0.800 1.84<br>0.800 4.24<br>0.800 1.04<br>0.575 7.44<br>0.800 16.24<br>0.800 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2C 3.42 115 0.333 0.150 3.31 1250 2.0 180 185 0.97 0.027 0.02 7.67 2.72 10.00 0.30 0.16 0.06 0.12 7.60 0.70 18.30 10.00 2D 0.61 150 0.333 0.150 1.70 2.0 18.0 18.5 0.97 0.027 0.02 7.67 0.37 10.00 0.30 0.16 0.06 0.12 7.60 0.70 18.30 10.00 2E 0.23 50 0.333 0.150 1.70 120 3.0 420 420 1.75 0.033 0.015 7.98 0.25 10.00 0.30 0.16 0.06 0.12 7.60 0.70 1.23 10.00 1.00 1.00 1.00 1.00 1.00 1.00 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.800         27.36           0.800         4.88           0.800         1.84           0.800         4.24           0.800         1.04           0.575         57.44           0.800         16.24           0.800         6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2D 0.61 150 0.333 0.150 4.09 170 2.0 18.0 18.5 0.97 0.027 0.02 7.67 0.37 10.00 0.30 0.16 0.06 0.12 7.60 0.70 3.26 10.00 2E 0.23 50 0.333 0.150 1.70 120 3.0 42.0 24.0 1.75 0.033 0.015 7.98 0.25 10.00 0.30 0.16 0.06 0.12 7.60 0.70 1.23 10.00 3 0.15 0.13 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.800 4.88<br>0.800 1.84<br>0.800 4.24<br>0.800 1.04<br>0.575 57.44<br>0.800 16.24<br>0.800 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2E 023 50 0.333 0.150 1.70 120 3.0 42.0 240 1.75 0.033 0.015 7.98 0.25 10.00 0.30 0.16 0.06 0.12 7.60 0.70 1.23 10.00 3 0.53 0.53 60 0.333 0.150 1.97 250 3.0 42.0 18.5 2.27 0.033 0.01 7.28 0.57 10.00 0.30 0.16 0.06 0.12 7.60 0.70 2.84 10.00 5A 12.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.800 1.84<br>0.800 4.24<br>0.800 1.04<br>0.575 57.44<br>0.800 16.24<br>0.800 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3 0.53 60 0.333 0.150 1.97 250 3.0 42.0 18.5 2.27 0.033 0.01 7.28 0.57 10.00 0.30 0.16 0.06 0.12 7.60 0.70 2.84 10.00 4.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.800         4.24           0.800         1.04           0.575         57.44           0.800         16.24           0.800         6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4         0.13         65         0.333         0.150         2.10         70         3.0         42.0         24.0         1.75         0.033         0.020         9.30         0.13         10.00         0.30         0.16         0.06         0.12         7.60         0.70         0.70         10.00           5A         12.63         300         0.030         0.150         18.66         425         1.0         33.3         667         0.50         0.027         0.007         2.93         2.42         2.108         0.12         0.16         0.06         0.12         7.60         0.70         0.70         1.00           5B         2.03         160         0.333         0.150         4.31         460         2.0         18.0         18.5         0.97         0.027         0.020         7.67         1.00         10.00         0.30         0.16         0.06         0.12         7.60         0.70         10.80           5C         0.82         150         0.333         0.150         4.09         230         2.0         18.0         18.5         0.97         0.027         7.67         0.50         10.00         0.30         0.16         0.06         0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.800 1.04<br>0.575 57.44<br>0.800 16.24<br>0.800 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5A         12.63         300         0.030         0.150         18.66         425         1.0         33.3         66.7         0.50         0.027         0.007         2.93         2.42         21.08         0.12         0.16         0.06         0.12         6.19         0.51         39.55         7.91           5B         2.03         160         0.333         0.150         4.31         460         2.0         18.0         18.5         0.97         0.027         0.027         7.00         7.0         1.00         0.06         0.12         6.0         0.70         10.86         10.00           5D         0.82         150         0.333         0.150         4.90         230         2.0         18.0         18.5         0.97         0.027         0.00         7.67         1.00         10.00         0.30         0.16         0.06         0.12         7.60         0.70         4.39         10.00           5D         0.59         70         0.333         0.150         222         250         2.0         18.0         18.5         0.97         0.033         0.01         6.4         0.65         10.00         0.30         0.16         0.06         0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.575 57.44<br>0.800 16.24<br>0.800 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5B         2.03         160         0.333         0.150         4.31         460         2.0         180         18.5         0.97         0.027         0.020         7.67         1.00         10.00         0.30         0.16         0.06         0.12         7.60         0.70         10.86         10.00           5C         0.82         150         0.333         0.150         4.09         230         2.0         180         18.5         0.97         0.027         0.020         7.67         0.50         10.00         0.30         0.16         0.06         0.12         7.60         0.70         4.39         10.00           5D         0.59         70         0.333         0.150         4.09         230         2.0         18.0         18.5         0.97         0.033         0.021         6.4         0.65         10.00         0.30         0.16         0.06         0.12         7.60         0.70         4.39         10.00           6         1.15         130         0.333         0.150         3.65         17         3.0         420         240         1.75         0.033         0.01         6.30         0.00         0.30         0.16         0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.800 <b>16.24</b><br>0.800 <b>6.56</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5C         0.82         150         0.333         0.150         4.09         230         2.0         18.5         0.97         0.027         0.020         7.67         0.50         10.00         0.30         0.16         0.06         0.12         7.60         0.70         4.39         10.00           5D         0.59         70         0.333         0.150         2.22         250         2.0         18.0         18.5         0.97         0.027         0.020         7.67         0.50         10.00         0.30         0.16         0.06         0.12         7.60         0.70         4.39         10.00           6         1.15         130         0.333         0.150         3.65         0         3.0         42.0         24.0         1.75         0.033         0.016         8.30         0.00         10.00         0.30         0.16         0.06         0.12         7.60         0.70         3.16         10.00           7         0.53         130         0.333         0.150         3.65         170         3.0         42.0         24.0         1.75         0.033         0.016         8.30         0.0         10.00         0.30         0.16         0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.800 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5D         0.59         70         0.333         0.150         2.22         2.50         2.0         18.0         18.5         0.97         0.033         0.021         6.44         0.65         10.00         0.30         0.16         0.06         0.12         7.60         0.70         3.16         10.00           6         1.15         130         0.333         0.150         3.65         0         3.0         42.0         24.0         1.75         0.033         0.016         8.0         0.00         10.00         0.30         0.16         0.06         0.12         7.60         0.70         3.16         10.00           7         0.53         130         0.333         0.150         3.65         170         3.0         42.0         24.0         1.75         0.033         0.016         8.0         0.00         1.00         0.30         0.16         0.06         0.12         7.60         0.70         2.84         10.00           8         5.49         150         0.333         0.150         4.09         1130         3.0         51.0         270         1.89         0.033         0.016         8.70         2.16         10.00         0.30         0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6         1.15         130         0.333         0.150         3.65         0         3.0         420         24.0         1.75         0.033         0.016         8.30         0.00         10.00         0.30         0.16         0.06         0.12         7.60         0.70         6.15         10.00           7         0.53         130         0.333         0.150         3.65         170         3.0         42.0         24.0         1.75         0.033         0.017         8.43         0.34         10.00         0.30         0.16         0.06         0.12         7.60         0.70         2.84         10.00           8         5.49         150         0.333         0.150         4.09         1130         3.0         51.0         27.0         1.89         0.033         0.016         8.0         0.16         0.06         0.12         7.60         0.70         2.84         10.00           9         1.74         70         0.285         0.150         2.37         320         2.5         31.3         20.8         1.50         0.033         0.016         8.0         0.16         0.00         0.06         0.12         7.60         0.70         29.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7 0.53 130 0.333 0.150 3.65 170 3.0 42.0 24.0 1.75 0.033 0.017 8.43 0.34 10.00 0.30 0.16 0.06 0.12 7.60 0.70 2.84 10.00 8 5.49 150 0.333 0.150 4.09 1130 3.0 51.0 27.0 1.89 0.033 0.016 8.70 2.16 10.00 0.30 0.16 0.06 0.12 7.60 0.70 2.937 10.00 9 1.74 70 0.285 0.150 2.37 320 2.5 31.3 20.8 1.50 0.033 0.033 10.72 0.50 10.00 0.30 0.16 0.06 0.12 7.60 0.70 2.937 10.00 10 0.16 50 0.426 0.150 1.50 1.50 1.50 1.50 1.50 1.50 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.800 4.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8         5.49         150         0.333         0.150         4.09         1130         3.0         51.0         27.0         1.89         0.033         0.016         8.70         2.16         10.00         0.30         0.16         0.06         0.12         7.60         0.70         29.37         10.00           9         1.74         70         0.285         0.150         2.37         320         2.5         31.3         20.8         1.50         0.033         0.033         10.72         0.50         10.00         0.30         0.16         0.06         0.12         7.60         0.70         29.37         10.00           10         0.16         50         0.426         0.150         1.54         70         2.5         31.3         20.8         1.50         0.033         0.017         7.67         0.15         10.00         0.30         0.16         0.06         0.12         7.60         0.70         9.31         10.00           10         0.16         50         0.426         0.150         1.54         70         2.5         31.3         20.8         150         0.033         0.017         7.67         0.15         10.00         0.30         0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.800 9.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9         1.74         70         0.285         0.150         2.37         320         2.5         31.3         20.8         1.50         0.033         0.033         10.72         0.50         10.00         0.30         0.16         0.06         0.12         7.60         0.70         9.31         10.00           10         0.16         50         0.426         0.150         1.54         70         2.5         31.3         20.8         1.50         0.033         0.017         7.67         0.15         10.00         0.30         0.16         0.06         0.12         7.60         0.70 <b>9.86</b> 10.00           11A         3.57         250         0.030         0.150         16.13         0         1.0         333         66.7         0.50         0.027         0.014         4.04         0.00         16.13         0.12         7.27         0.51         13.14         9.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.800 4.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10 0.16 50 0.426 0.150 1.54 70 2.5 31.3 20.8 1.50 0.033 0.017 7.67 0.15 10.00 0.30 0.16 0.06 0.12 7.60 0.70 0.86 10.00 11A 3.57 250 0.030 0.150 16.13 0 1.0 33.3 66.7 0.50 0.027 0.014 4.04 0.00 16.13 0.12 0.16 0.06 0.12 7.27 0.51 13.14 9.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.800 43.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11A 3.57 250 0.030 0.150 16.13 0 1.0 33.3 66.7 0.50 0.027 0.014 4.04 0.00 16.13 0.12 0.16 0.06 0.12 7.27 0.51 13.14 9.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.800 13.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.800 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 122 75 0222 0.150 2.25 700 2.0 10.0 10.5 0.07 0.027 0.027 0.020 0.20 0.20 0.20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.575 19.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11B   1.32   75   0.333   0.150   2.35   700   2.0   18.0   18.5   0.97   0.027   0.020   7.67   1.52   10.00   0.30   0.16   0.06   0.12   7.60   0.70   7.06   10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.800 10.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11C 1.63 200 0.333 0.150 5.15 0 2.0 12.0 12.6 0.95 0.027 0.080 15.07 0.00 10.00 0.30 0.16 0.06 0.12 7.60 0.70 8.72 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.800 13.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11D 2.44 100 0.333 0.150 2.96 880 2.0 18.0 18.5 0.97 0.027 0.032 9.70 1.51 10.00 0.30 0.16 0.06 0.12 7.60 0.70 13.05 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.800 19.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11E 2.21 140 0.333 0.150 3.87 560 2.0 18.0 18.5 0.97 0.027 0.020 7.67 1.22 10.00 0.30 0.16 0.06 0.12 7.60 0.70 11.82 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.800 17.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11F 1.24 80 0.333 0.150 2.47 500 2.0 18.0 18.5 0.97 0.027 0.02 7.67 1.09 10.00 0.30 0.16 0.06 0.12 7.60 0.70 6.63 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.800 9.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11G 0.69 80 0.333 0.150 2.47 0 2.5 31.3 20.8 1.50 0.033 0.02 7.67 0.00 10.00 0.30 0.16 0.06 0.12 7.60 0.70 3.69 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.800 5.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12 1.59 80 0.333 0.150 2.47 550 2.5 31.3 20.8 1.50 0.033 0.018 7.94 1.15 10.00 0.30 0.16 0.06 0.12 7.60 0.70 <b>8.51</b> 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.800 12.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13 2.32 150 0.333 0.150 4.09 460 2.5 35.0 23.8 1.47 0.033 0.020 8.19 0.94 10.00 0.30 0.16 0.06 0.12 7.60 0.70 12.41 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.800 18.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14A 0.59 80 0.333 0.150 2.47 220 2.0 18.0 18.5 0.97 0.027 0.020 7.67 0.48 10.00 0.30 0.16 0.06 0.12 7.60 0.70 3.16 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.800 4.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14B 1.64 90 0.333 0.150 2.72 0 2.0 18.0 18.5 0.97 0.027 0.020 7.67 0.00 10.00 0.30 0.16 0.06 0.12 7.60 0.70 8.77 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.800 13.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14C 1.33 140 0.333 0.150 3.87 320 2.0 18.0 18.5 0.97 0.027 0.020 7.67 0.70 10.00 0.30 0.16 0.06 0.12 7.60 0.70 7.12 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.800 10.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14D 3.67 140 0.333 0.150 3.87 1000 2.0 18.0 18.5 0.97 0.027 0.020 7.67 2.17 10.00 0.30 0.16 0.06 0.12 7.60 0.70 19.64 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OS1 13.20 300 0.033 0.150 17.89 400 0.030 1.21 5.50 23.39 0.30 0.16 0.06 0.12 5.81 0.70 54.01 7.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.800 29.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| OS2 22.82 300 0.040 0.150 16.63 800 0.038 1.36 9.84 26.47 0.30 0.16 0.06 0.12 5.39 0.70 86.64 6.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.800 <b>29.36</b><br>0.800 <b>77.74</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OS3 8.11 300 0.020 0.150 21.94 550 0.044 1.46 6.27 28.21 0.30 0.16 0.06 0.12 5.19 0.70 29.63 6.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

<sup>2-</sup>year, 24-hr Design Rainfall Depth, P2-4 = 3.7 inches 25-year, 15-min Design Rainfall Depth = 1.9 inches 100-year, 15-min Design Rainfall Depth = 2.5 inches 100-year, 15-min Design Rainfall Depth = 2.5 inches 100-year, 30-min Design Rainfall Depth = 3.1 inches

1. Manning's Roughness coefficients: n = 0.150 represents grass (short grass prairie) for sheet flow (USDA, 1986); n = 0.027 to 0.033 represents the range for excavated open channel of earth that is straight and uniform with short grass and few weeds (Chow, 1959).

2. Travel Time (T1) is calculated using Manning's kinematic solutions for sheet flow (USDA, 1986).

 $T_t = 0.007(nL)^{0.8} / (P_{2-24})^{0.5} S^{0.4}$ 

4. Open Channel Velocity (V) is calculated using Manning's equation (USDA, 1986).

 $V = (1.49r^{2/3}S^{1/2})/n$  where:  $r = hydraulic \ radius (ft) \ and \ is \ equal \ to \ A/P \ [area (ft^2)/wetted \ perimeter (ft)]$ 

5. Travel Time (T1) is calculated as the ration of flow length to flow velocity (USDA, 1986).

 $T_t = L/V * (1/60)$  where: (1/60) is a conversion from seconds to minutes

6. Intensity was calculated using the 25-year or 100-year design rainfall depth for a storm of duration equal to time of concentration for Fayette County provided by USGS (2004).

7. The runoff coefficient is based on rural watersheds using guidance provided by TxDOT (2011).

 $8. \ The \ Rational \ Method \ was \ used \ to \ estimate \ peak \ discharge \ rates \ (Q) \ for \ each \ subcatchment \ area.$ 

9. The Design Rainfall Depths are taken from USGS (2004) rainfall depth for Fayette County.

 $Table\ 2-Runoff\ Coefficients\ (C)\ for\ Rural\ Watersheds$   $(from\ TxDOT,\ 2011)$ 

| Watershed<br>characteristic        | Extreme                                                                                                    | High                                                                                                                           | Normal                                                                                                                 | Low                                                                                                                                         |
|------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Relief - C <sub>r</sub>            | 0.28-0.3 5 Steep, rugged terrain with average slopes above 30%                                             | 0.20-0.28<br>Hilly, with average<br>slopes of 10-30%                                                                           | 0.14-0.20<br>Rolling, with average slopes of 5-<br>10%                                                                 | 0.08-0.14  Relatively flat land, with average slopes of 0-5%                                                                                |
| Soil infiltration - C <sub>i</sub> | No effective soil<br>cover; either rock<br>or thin soil mantle<br>of negligible infil-<br>tration capacity | 0.08-0.12<br>Slow to take up<br>water, clay or shal-<br>low loam soils of<br>low infiltration<br>capacity or poorly<br>drained | 0.06-0.08<br>Normal; well<br>drained light or<br>medium textured<br>soils, sandy loams                                 | 0.04-0.06  Deep sand or other soil that takes up water readily; very light, well-drained soils                                              |
| Vegetal cover - C <sub>v</sub>     | 0.12-0.16<br>No effective plant<br>cover, bare or very<br>sparse cover                                     | 0.08-0.12 Poor to fair; clean cultivation, crops or poor natural cover, less than 20% of drainage area has good cover          | 0.06-0.08 Fair to good; about 50% of area in good grassland or woodland, not more than 50% of area in cultivated crops | Good to excellent;<br>about 90% of drain-<br>age area in good<br>grassland, wood-<br>land, or equivalent<br>cover                           |
| Surface Storage - C <sub>s</sub>   | Negligible; surface depressions few and shallow, drainageways steep and small, no marshes                  | 0.08-0.10<br>Well-defined sys-<br>tem of small<br>drainageways, no<br>ponds or marshes                                         | 0.06-0.08<br>Normal; consider-<br>able surface<br>depression, e.g.,<br>storage lakes and<br>ponds and marshes          | 0.04-0.06<br>Much surface storage, drainage system<br>not sharply defined;<br>large floodplain storage, large number of<br>ponds or marshes |
| Table 4-11 note: The tot           | tal runoff coefficient base                                                                                | ed on the 4 runoff comp                                                                                                        | onents is $C = C_r + C_i +$                                                                                            | $C_v + C_s$                                                                                                                                 |

Table 3 – Manning's Roughness Coefficient for Sheet Flow (from USDA, 1986)

| Surface description                 | n 1/  |
|-------------------------------------|-------|
| Smooth surfaces (concrete, asphalt, |       |
| gravel, or bare soil)               | 0.011 |
| Fallow (no residue)                 | 0.05  |
| Cultivated soils:                   |       |
| Residue cover ≤20%                  | 0.06  |
| Residue cover >20%                  | 0.17  |
| Grass:                              |       |
| Short grass prairie                 | 0.15  |
| Dense grasses 2/                    | 0.24  |
| Bermudagrass                        | 0.41  |
| Range (natural)                     | 0.13  |
| Woods:¾                             |       |
| Light underbrush                    | 0.40  |
| Dense underbrush                    | 0.80  |

The n values are a composite of information compiled by Engman (1986).

Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

 $<sup>^3\,</sup>$  When selecting n , consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

 $Table\ 4-Upland\ Method\ Velocity\ Factors\ for\ Shallow\ Concentrated\ Flow$ 

| Surface Description      | K <sub>v</sub> [ft/sec] | K <sub>v</sub> [m/sec] |
|--------------------------|-------------------------|------------------------|
| Paved                    | 20.33                   | 6.2                    |
| Unpaved                  | 16.13                   | 4.92                   |
| Grassed Waterway         | 15.0                    | 4.57                   |
| Nearly Bare & Untilled   | 10.0                    | 3.05                   |
| Cultivated Straight Rows | 9.0                     | 2.74                   |
| Short Grass Pasture      | 7.0                     | 2.13                   |
| Woodland                 | 5.0                     | 1.52                   |
| Forest w/Heavy Litter    | 2.5                     | 0.76                   |

Table 5 – Manning's Roughness Coefficient for Open Channel Flow  $(from\ Chow,\ 1959)$ 

| Type of channel and description                        | Minimum | Normal | Maximum     |
|--------------------------------------------------------|---------|--------|-------------|
| C. Excavated or Dredged                                |         |        | 3 X X S (8) |
| a. Earth, straight and uniform                         |         |        |             |
| 1. Clean, recently completed                           | 0.016   | 0.018  | 0.020       |
| 2. Clean, after weathering                             | 0.018   | 0.022  | 0.025       |
| <ol><li>Gravel, uniform section, clean</li></ol>       | 0.022   | 0.025  | 0.030       |
| <ol><li>With short grass, few weeds</li></ol>          | 0.022   | 0.027  | 0.033       |
| b. Earth, winding and sluggish                         |         | 1      |             |
| <ol> <li>No vegetation</li> </ol>                      | 0.023   | 0.025  | 0.030       |
| <ol><li>Grass, some weeds</li></ol>                    | 0.025   | 0.030  | 0.033       |
| 3. Dense weeds or aquatic plants in                    | 0.030   | 0.035  | 0.040       |
| deep channels                                          |         |        |             |
| <ol> <li>Earth bottom and rubble sides</li> </ol>      | 0.028   | 0.030  | 0.035       |
| <ol><li>Stony bottom and weedy banks</li></ol>         | 0.025   | 0.035  | 0.040       |
| <ol><li>Cobble bottom and clean sides</li></ol>        | 0.030   | 0.040  | 0.050       |
| <ul> <li>c. Dragline-excavated or dredged</li> </ul>   |         |        |             |
| 1. No vegetation                                       | 0.025   | 0.028  | 0.033       |
| <ol><li>Light brush on banks</li></ol>                 | 0.035   | 0.050  | 0.060       |
| d. Rock cuts                                           |         |        |             |
| <ol> <li>Smooth and uniform</li> </ol>                 | 0.025   | 0.035  | 0.040       |
| <ol><li>Jagged and irregular</li></ol>                 | 0.035   | 0.040  | 0.050       |
| <ul> <li>Channels not maintained, weeds and</li> </ul> |         |        |             |
| brush uncut                                            |         |        |             |
| <ol> <li>Dense weeds, high as flow depth</li> </ol>    | 0.050   | 0.080  | 0.120       |
| <ol><li>Clean bottom, brush on sides</li></ol>         | 0.040   | 0.050  | 0.080       |
| 3. Same, highest stage of flow                         | 0.045   | 0.070  | 0.110       |
| 4. Dense brush, high stage                             | 0.080   | 0.100  | 0.140       |

**Table 6 – Typical Roughness Coefficients for Selected Linings** (from FHWA, 2005)

|                    |                            |         | Manning's n | 1       |
|--------------------|----------------------------|---------|-------------|---------|
| Lining<br>Category | Lining Type                | Maximum | Typical     | Minimum |
| - Category         | Concrete                   | 0.015   | 0.013       | 0.011   |
|                    | Grouted Riprap             | 0.040   | 0.030       | 0.028   |
| Rigid              | Stone Masonry              | 0.042   | 0.032       | 0.030   |
|                    | Soil Cement                | 0.025   | 0.022       | 0.020   |
|                    | Asphalt                    | 0.018   | 0.016       | 0.016   |
| Unlined            | Bare Soil <sup>2</sup>     | 0.025   | 0.020       | 0.016   |
| Offillited         | Rock Cut (smooth, uniform) | 0.045   | 0.035       | 0.025   |
|                    | Open-weave textile         | 0.028   | 0.025       | 0.022   |
| RECP               | Erosion control blankets   | 0.045   | 0.035       | 0.028   |
|                    | Turf reinforcement mat     | 0.036   | 0.030       | 0.024   |

<sup>1</sup>Based on data from Kouwen, et al. (1980), Cox, et al. (1970), McWhorter, et al. (1968) and

Thibodeaux (1968). <sup>2</sup>Minimum value accounts for grain roughness. Typical and maximum values incorporate varying degrees of form roughness.

**Table 7 – Contributing Areas to each Storm Water Management System Component** 

| System Component | Dr     | ainage A | reas U <sub>1</sub> | ostream | of Sto | rmwat | er Man | ageme | nt Syste | m Con | nponen | nt |   |   |   |
|------------------|--------|----------|---------------------|---------|--------|-------|--------|-------|----------|-------|--------|----|---|---|---|
| Reach 1          | 1      |          |                     |         |        |       |        |       |          |       |        |    |   |   |   |
| Reach 2          | 1      | 2A       | 2B                  | 2C      | 2D     | 2E    |        |       |          |       |        |    |   |   |   |
| Reach 3          | 1      | 2A       | 2B                  | 2C      | 2D     | 2E    | 3      |       |          |       |        |    |   |   |   |
| Reach 4          | 1      | 2A       | 2B                  | 2C      | 2D     | 2E    | 3      | 4     |          |       |        |    |   |   |   |
| Reach 5          | 1      | 2A       | 2B                  | 2C      | 2D     | 2E    | 3      | 4     | 5A       | 5B    | 5C     | 5D |   |   |   |
| Reach 6          | 1      | 2A       | 2B                  | 2C      | 2D     | 2E    | 3      | 4     | 5A       | 5B    | 5C     | 5D | 6 |   |   |
| Reach 7          | 1      | 2A       | 2B                  | 2C      | 2D     | 2E    | 3      | 4     | 5A       | 5B    | 5C     | 5D | 6 | 7 |   |
| Reach 8          | 1      | 2A       | 2B                  | 2C      | 2D     | 2E    | 3      | 4     | 5A       | 5B    | 5C     | 5D | 6 | 7 | 8 |
| Reach 9          | 9      |          |                     |         |        |       |        |       |          |       |        |    |   |   |   |
| Reach 10         | 9      | 10       |                     |         |        |       |        |       |          |       |        |    |   |   |   |
| Reach 11         | 9      | 10       | 11A                 | 11B     | 11C    | 11D   | 11E    | 11F   | 11G      |       |        |    |   |   |   |
| Reach 12         | 9      | 10       | 11A                 | 11B     | 11C    | 11D   | 11E    | 11F   | 11G      | 12    |        |    |   |   |   |
| Reach 13         | 9      | 10       | 11A                 | 11B     | 11C    | 11D   | 11E    | 11F   | 11G      | 12    | 13     |    |   |   |   |
| Outfall Ditch    | Pond ( | Duflow   | Un                  | develo  | ped Ar | eas   |        |       |          |       |        |    |   |   |   |
| Downchute 1      | 2A     | 2B       | 2C                  | 2D      |        |       |        |       |          |       |        |    |   |   |   |
| Downchute 2      | 5A     | 5B       | 5C                  |         |        |       |        |       |          |       |        |    |   |   |   |
| Downchute 3      | 11A    | 11B      | 11C                 | 11D     | 11E    | 11F   |        |       |          |       |        |    |   |   |   |
| Downchute 4      | 14A    | 14B      | 14C                 | 14D     |        |       |        |       |          |       |        |    |   |   |   |

Table 8 – Calculated Design Discharges for Each Stormwater Management System Component 100-year 25-year 25-year

Total Flow Total Flow System Component Flow Rates from Contributing Areas Upstream of Stormwater Management Component (100-year event) (cfs) (cfs) Reach 1 2.80 2.80 1.87 Reach 2 2.80 67.98 11.12 27.36 4.88 1.84 115.98 79.13 Reach 3 67.98 11.12 27.36 4.88 1.84 4.24 120.22 81.97 2.80 Reach 4 2.80 67.98 11.12 27.36 4.88 1.84 4.24 1.04 121.26 82.67 Reach 5 2.80 67.98 11.12 27.36 4.88 1.84 4.24 1.04 | 57.44 | 16.24 | 6.56 4.72 206.21 140.62 Reach 6 2.80 67.98 11.12 27.36 4.88 1.84 4.24 1.04 | 57.44 | 16.24 | 6.56 4.72 9.20 215.41 146.77 2.80 67.98 11.12 27.36 4.88 1.84 4.24 1.04 57.44 16.24 6.56 4.72 9.20 4.24 219.65 149.61 Reach 7 Reach 8 2.80 67.98 11.12 27.36 4.88 1.84 4.24 1.04 | 57.44 | 16.24 | 6.56 4.72 9.20 | 4.24 | 43.92 263.57 178.98 Reach 9 13.92 13.92 9.31 Reach 10 13.92 1.29 15.21 10.17 Reach 11 13.92 1.29 19.53 10.56 13.04 19.52 17.68 9.92 5.52 110.98 74.30 19.53 10.56 13.04 19.52 17.68 5.52 12.72 Reach 12 13.92 1.29 9.92 123.70 82.81 Reach 13 13.92 1.29 19.53 10.56 13.04 19.52 17.68 9.92 5.52 12.72 18.56 142.26 95.22 Outfall Ditch 424.30 130.50 554.80 306.60 Downchute 1 67.98 11.12 27.36 4.88 111.34 76.03 Downchute 2 57.44 16.24 6.56 80.24 57.95 Downchute 3 19.53 10.56 13.04 19.52 17.68 9.92 90.25 60.44 57.84 Downchute 4 4.72 13.12 10.64 29.36 38.68 Mid Slope Bench 2B 11.12 11.12 7.44 Mid Slope Bench 2C 27.36 27.36 18.30 Mid Slope Bench 2D 4.88 4.88 3.26 Mid Slope Bench 5B 16.24 10.86 16.24 Mid Slope Bench 5C 6.56 6.56 4.39 Mid Slope Bench 11B 10.56 7.06 10.56 Mid Slope Bench 11C 13.04 13.04 8.72 Mid Slope Bench 11D 32.56 13.04 19.52 21.78 Mid Slope Bench 11E 17.68 17.68 11.82 Mid Slope Bench 11F 9.92 9.92 6.63 Mid Slope Bench 14A 4.72 3.16 4.72 Mid Slope Bench 14B 13.12 8.77 13.12 Mid Slope Bench 14C 10.64 7.12 10.64 Mid Slope Bench 14D 29.36 29.36 19.64

Table 9 – Runoff Curve Numbers for Other Agricultural Lands (from USDA, 1986)

| Cover description                                                            | Curve numbers for hydrologic soil group |       |    |    |    |  |  |
|------------------------------------------------------------------------------|-----------------------------------------|-------|----|----|----|--|--|
| Cover type                                                                   | Hydrologic<br>condition                 | A     | В  | С  | D  |  |  |
| Pasture, grassland, or range—continuous                                      | Poor                                    | 68    | 79 | 86 | 89 |  |  |
| forage for grazing. 2/                                                       | Fair                                    | 49    | 69 | 79 | 84 |  |  |
|                                                                              | Good                                    | 39    | 61 | 74 | 80 |  |  |
| Meadow—continuous grass, protected from grazing and generally mowed for hay. | _                                       | 30    | 58 | 71 | 78 |  |  |
| Brush—brush-weed-grass mixture with brush                                    | Poor                                    | 48    | 67 | 77 | 83 |  |  |
| the major element. 3/                                                        | Fair                                    | 35    | 56 | 70 | 77 |  |  |
|                                                                              | Good                                    | 30 ⁴∕ | 48 | 65 | 73 |  |  |
| Woods—grass combination (orchard                                             | Poor                                    | 57    | 73 | 82 | 86 |  |  |
| or tree farm). 5/                                                            | Fair                                    | 43    | 65 | 76 | 82 |  |  |
|                                                                              | Good                                    | 32    | 58 | 72 | 79 |  |  |
| Woods. <sup>g/</sup>                                                         | Poor                                    | 45    | 66 | 77 | 83 |  |  |
|                                                                              | Fair                                    | 36    | 60 | 73 | 79 |  |  |
|                                                                              | Good                                    | 30 4/ | 55 | 70 | 77 |  |  |
| Farmsteads—buildings, lanes, driveways,<br>and surrounding lots.             | _                                       | 59    | 74 | 82 | 86 |  |  |

<sup>&</sup>lt;sup>1</sup> Average runoff condition, and  $I_a = 0.2S$ .

<sup>&</sup>lt;sup>2</sup> Poor: <50%) ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

<sup>&</sup>lt;sup>3</sup> *Poor*: <50% ground cover.

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

<sup>4</sup> Actual curve number is less than 30; use CN = 30 for runoff computations.

<sup>5</sup> CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

<sup>6</sup> Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

 $Table\ 10-SCS\ Method\ Lag\ Time\ Calculations$ 

|                             | Area                       | T 41.       | Cl     |    | T     | Sheet | Shallow     |
|-----------------------------|----------------------------|-------------|--------|----|-------|-------|-------------|
| SUBCATCHMENT<br>DESIGNATION |                            | Length (ft) | Slope  | CN | Tlag  | Flow, | Conc or     |
| DESIGNATION                 | ( <b>mi</b> <sup>2</sup> ) | (11)        | (%)    |    | (min) | Tt    | Channel, Tt |
| 1                           | 0.000547                   | 220         | 7.265  | 84 | 6.00  | 1.42  | 0.38        |
| 2A                          | 0.024281                   | 1000        | 1.495  | 84 | 13.38 | 18.66 | 3.64        |
| 2B                          | 0.002172                   | 1075        | 2.728  | 84 | 6.00  | 0.98  | 2.28        |
| 2C                          | 0.005344                   | 1365        | 4.637  | 84 | 6.00  | 3.31  | 2.72        |
| 2D                          | 0.000953                   | 320         | 16.672 | 84 | 6.00  | 4.09  | 0.37        |
| 2E                          | 0.000359                   | 170         | 10.839 | 84 | 6.00  | 1.70  | 0.25        |
| 3                           | 0.000828                   | 310         | 7.147  | 84 | 6.00  | 1.97  | 0.57        |
| 4                           | 0.000203                   | 135         | 17.076 | 84 | 6.00  | 2.10  | 0.13        |
| 5A                          | 0.019734                   | 725         | 1.658  | 84 | 12.65 | 18.66 | 2.42        |
| 5B                          | 0.003172                   | 620         | 10.077 | 84 | 6.00  | 4.31  | 1.00        |
| 5C                          | 0.001281                   | 380         | 14.355 | 84 | 6.00  | 4.09  | 0.50        |
| 5D                          | 0.000922                   | 320         | 8.933  | 84 | 6.00  | 2.22  | 0.65        |
| 6                           | 0.001797                   | 130         | 33.300 | 84 | 6.00  | 3.65  | 0.00        |
| 7                           | 0.000828                   | 300         | 15.365 | 84 | 6.00  | 3.65  | 0.34        |
| 8                           | 0.008578                   | 1280        | 5.306  | 84 | 6.00  | 4.09  | 2.16        |
| 9                           | 0.002719                   | 390         | 7.814  | 84 | 6.00  | 2.37  | 0.50        |
| 10                          | 0.000252                   | 120         | 18.747 | 84 | 6.00  | 1.54  | 0.15        |
| 11A                         | 0.005578                   | 250         | 3.000  | 84 | 9.68  | 16.13 | 0.00        |
| 11B                         | 0.002063                   | 775         | 5.029  | 84 | 6.00  | 2.35  | 1.52        |
| 11C                         | 0.002547                   | 200         | 33.300 | 84 | 6.00  | 5.15  | 0.00        |
| 11D                         | 0.003813                   | 980         | 6.271  | 84 | 6.00  | 2.96  | 1.51        |
| 11E                         | 0.003453                   | 700         | 8.260  | 84 | 6.00  | 3.87  | 1.22        |
| 11F                         | 0.001938                   | 580         | 6.317  | 84 | 6.00  | 2.47  | 1.09        |
| 11G                         | 0.001078                   | 80          | 33.300 | 84 | 6.00  | 2.47  | 0.00        |
| 12                          | 0.002484                   | 630         | 5.800  | 84 | 6.00  | 2.47  | 1.15        |
| 13                          | 0.003625                   | 610         | 9.674  | 84 | 6.00  | 4.09  | 0.94        |
| 14A                         | 0.000922                   | 300         | 10.347 | 84 | 6.00  | 2.47  | 0.48        |
| 14B                         | 0.002563                   | 90          | 33.300 | 84 | 6.00  | 2.72  | 0.00        |
| 14C                         | 0.002078                   | 460         | 11.526 | 84 | 6.00  | 3.87  | 0.70        |
| 14D                         | 0.005734                   | 1140        | 5.844  | 84 | 6.00  | 3.87  | 2.17        |
| OS1                         | 0.020625                   | 600         | 3.5    | 73 | 14.03 | 17.54 | 3.82        |
| OS2                         | 0.035656                   | 1050        | 3.1429 | 73 | 15.88 | 18.31 | 10.07       |
| OS3                         | 0.012672                   | 1406        | 2.7027 | 73 | 16.93 | 19.45 | 16.02       |

Table 11 – Retardation Class for Lining Materials (from TxDOT, 2011)

| Retardance<br>Class | Cover                                                                                                       | Condition                                                  |
|---------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| A                   | Weeping Lovegrass                                                                                           | Excellent stand, tall (average 30 in. or 760 mm)           |
|                     | Yellow Bluestem Ischaemum                                                                                   | Excellent stand, tall (average 36 in. or 915 mm)           |
| В                   | Kudzu                                                                                                       | Very dense growth, uncut                                   |
|                     | Bermuda grass                                                                                               | Good stand, tall (average 12 in. or 305 mm)                |
|                     | Native grass mixture<br>little bluestem, bluestem, blue gamma, other<br>short and long stem medwest grasses | Good stand, unmowed                                        |
|                     | Weeping lovegrass                                                                                           | Good Stand, tall (average 24 in. or 610 mm)                |
|                     | Lespedeza sericea                                                                                           | Good stand, not woody, tall (average 19 in. or 480 mm)     |
|                     | Alfalfa                                                                                                     | Good stand, uncut (average 11 in or 280 mm)                |
|                     | Weeping lovegrass                                                                                           | Good stand, unmowed (average 13 in. or 330 mm)             |
|                     | Kudzu                                                                                                       | Dense growth, uncut                                        |
|                     | Blue gamma                                                                                                  | Good stand, uncut (average 13 in. or 330 mm)               |
| С                   | Crabgrass                                                                                                   | Fair stand, uncut (10-to-48 in. or 55-to-1220 mm)          |
|                     | Bermuda grass                                                                                               | Good stand, mowed (average 6 in. or 150 mm)                |
|                     | Common lespedeza                                                                                            | Good stand, uncut (average 11 in. or 280 mm)               |
|                     | Grass-legume mixture: summer (orchard grass redtop, Italian ryegrass, and common lespedeza)                 | Good stand, uncut (6-8 in. or 150-200 mm)                  |
|                     | Centipedegrass                                                                                              | Very dense cover (average 6 in. or 150 mm)                 |
|                     | Kentucky bluegrass                                                                                          | Good stand, headed (6-12 in. or 150-305 mm)                |
| D                   | Bermuda grass                                                                                               | Good stand, cut to 2.5 in. or 65 mm                        |
|                     | Common lespedeza                                                                                            | Excellent stand, uncut (average 4.5 in. or 115 mm)         |
|                     | Buffalo grass                                                                                               | Good stand, uncut (3-6 in. or 75-150 mm)                   |
|                     | Grass-legume mixture:<br>fall, spring (orchard grass Italian ryegrass,<br>and common lespedeza              | Good Stand, uncut (4-5 in. or 100-125 mm)                  |
|                     | Lespedeza sericea                                                                                           | After cutting to 2 in. or 50 mm (very good before cutting) |
| Е                   | Bermuda grass                                                                                               | Good stand, cut to 1.5 in. or 40 mm                        |
|                     | Bermuda grass                                                                                               | Burned stubble                                             |
|                     |                                                                                                             |                                                            |

Table 12 – Permissible Shear Stresses for Various Linings (from TxDOT, 2011)

| Protective Cover                                                                                | (lb./sq.ft.) | $t_p (N/m^2)$ |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------|---------------|--|--|--|
| Retardance Class A Vegetation (See the "Retardation Class<br>for Lining Materials" table above) | 3.70         | 177           |  |  |  |
| Retardance Class B Vegetation (See the "Retardation Class<br>for Lining Materials" table above) | 2.10         | 101           |  |  |  |
| Retardance Class C Vegetation (See the "Retardation Class<br>for Lining Materials" table above) | 1.00         | 48            |  |  |  |
| Retardance Class D Vegetation (See the "Retardation Class<br>for Lining Materials" table above) | 0.60         | 29            |  |  |  |
| Retardance Class E Vegetation (See the "Retardation Class<br>for Lining Materials" table above) | 0.35         | 17            |  |  |  |
| Woven Paper                                                                                     | 0.15         | 7             |  |  |  |
| Jute Net                                                                                        | 0.45         | 22            |  |  |  |
| Single Fiberglass                                                                               | 0.60         | 29            |  |  |  |
| Double Fiberglass                                                                               | 0.85         | 41            |  |  |  |
| Straw W/Net                                                                                     | 1.45         | 69            |  |  |  |
| Curled Wood Mat                                                                                 | 1.55         | 74            |  |  |  |
| Synthetic Mat                                                                                   | 2.00         | 96            |  |  |  |
| Gravel, D <sub>50</sub> = 1 in. or 25 mm                                                        | 0.40         | 19            |  |  |  |
| Gravel, D <sub>50</sub> = 2 in. or 50 mm                                                        | 0.80         | 38            |  |  |  |
| Rock, D <sub>50</sub> = 6 in. or 150 mm                                                         | 2.50         | 120           |  |  |  |
| Rock, D <sub>50</sub> = 12 in. or 300 mm                                                        | 5.00         | 239           |  |  |  |
| 6-in. or 50-mm Gabions                                                                          | 35.00        | 1675          |  |  |  |
| 4-in. or 100-mm Geoweb                                                                          | 10.00        | 479           |  |  |  |
| Soil Cement (8% cement)                                                                         | >45          | >2154         |  |  |  |
| Dycel w/out Grass                                                                               | >7           | >335          |  |  |  |
| Petraflex w/out Grass                                                                           | >32          | >1532         |  |  |  |
| Armorflex w/out Grass                                                                           | 12-20        | 574-957       |  |  |  |
| Erikamat w/3-in or 75-mm Asphalt                                                                | 13-16        | 622-766       |  |  |  |
| Erikamat w/1-in. or 25 mm Asphalt                                                               | <5           | <239          |  |  |  |
| Armorflex Class 30 with longitudinal and lateral cables, no grass                               | >34          | >1628         |  |  |  |
| Dycel 100, longitudinal cables, cells filled with mortar                                        | <12          | <574          |  |  |  |
| Concrete construction blocks, granular filter underlayer                                        | >20          | >957          |  |  |  |
| Wedge-shaped blocks with drainage slot                                                          | >25          | >1197         |  |  |  |
|                                                                                                 |              |               |  |  |  |

Table 13 – Manning's Roughness Coefficient and Design Summary for ACB (from Ayres, 2001)

| Table 3.1                                   | Table 3.1. Summary of Hydraulic Conditions, Channel Lock 450 System. |             |             |                                                                                              |                                      |  |  |  |  |  |
|---------------------------------------------|----------------------------------------------------------------------|-------------|-------------|----------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|
| Test Number                                 | 1                                                                    | 2           | 3           | 4                                                                                            | 5                                    |  |  |  |  |  |
| Nominal Overtopping depth,<br>ft            | 0.75                                                                 | 1.25        | 2           | 3                                                                                            | 4                                    |  |  |  |  |  |
| Discharge, ft³/s (based on pint velocities) | 6.0                                                                  | 14.10       | 28.8        | 50.8                                                                                         | 80.0                                 |  |  |  |  |  |
| Bed slope, ft/ft (vert./horiz.)             | 0.33                                                                 | 0.33        | 0.33        | 0.33                                                                                         | 0.33                                 |  |  |  |  |  |
| Stations used for analysis (ft)             | 19.7 - 31.1                                                          | 19.7 - 31.1 | 18.0 - 25.4 | 19.7 - 29.2                                                                                  | 21.6 - 27.5                          |  |  |  |  |  |
| Energy slope, ft/ft (along<br>slope)        | 0.33                                                                 | 0.30        | 0.23        | 0.22                                                                                         | 0.15                                 |  |  |  |  |  |
| Representative depth, ft                    | 0.15                                                                 | 0.25        | 0.49        | 0.77                                                                                         | 1.05                                 |  |  |  |  |  |
| Representative velocity, ft/s               | 10.0                                                                 | 14.2        | 14.7        | 16.6                                                                                         | 19.0                                 |  |  |  |  |  |
| Range of shear stress, lb/ft²               | 2.7 - 3.1                                                            | 3.6 - 4.6   | 6.7 - 7.0   | 9.1 - 10.7                                                                                   | 7.5 - 9.1                            |  |  |  |  |  |
| Manning's n value                           | 0.024                                                                | 0.023       | 0.030       | 0.036                                                                                        | 0.030                                |  |  |  |  |  |
| Darcy friction factor                       | 0.128                                                                | 0.095       | 0.134       | 0.161                                                                                        | 0.104                                |  |  |  |  |  |
| Comments                                    | Stable                                                               | Stable      | Stable      | Minor, isolated voids in soil<br>downstream of sta. 37.0 ft.<br>Intimate contact maintained. | Failed<br>downstream of<br>Sta. 27.5 |  |  |  |  |  |

Table 14 – Mid-Slope Drainage Bench and Drainage Downchute Geometry and Results

|              |         |        | Chann  | el Dimen | sions (minim | um)        |       |       | 25-   | year     |          |        | 100   | -year    |          |         |
|--------------|---------|--------|--------|----------|--------------|------------|-------|-------|-------|----------|----------|--------|-------|----------|----------|---------|
| Contributing | Channel |        | Bottom |          | Left         | Right      | Top   | Peak  | Peak  | Peak     | Tractive | Peak   | Peak  | Peak     | Tractive | Channel |
| Drainage     | Slope   | Length | Width  | Depth    | Side Slope   | Side Slope | Width | Flow  | Depth | Velocity | Stress   | Flow   | Depth | Velocity | Stress   | Lining  |
| Area         | (ft/ft) | (ft)   | (ft)   | (ft)     | (H:V)        | (H:V)      | (ft)  | (cfs) | (ft)  | (ft/s)   | (psf)    | (cfs)  | (ft)  | (ft/s)   | (psf)    |         |
| 2B           | 0.020   | 1072   | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 7.44  | 0.67  | 3.69     | 0.41     | 11.12  | 0.78  | 4.08     | 0.47     | Grass   |
| 2C           | 0.020   | 1205   | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 18.30 | 0.94  | 4.63     | 0.57     | 27.36  | 1.09  | 5.11     | 0.66     | Grass   |
| 2D           | 0.020   | 175    | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 3.26  | 0.49  | 3.01     | 0.30     | 4.88   | 0.57  | 3.32     | 0.35     | Grass   |
| 5B           | 0.020   | 613    | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 10.86 | 0.77  | 4.06     | 0.47     | 16.24  | 0.90  | 4.49     | 0.54     | Grass   |
| 5C           | 0.020   | 231    | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 4.39  | 0.55  | 3.24     | 0.33     | 6.56   | 0.64  | 3.58     | 0.39     | Grass   |
| 11B          | 0.020   | 1307   | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 7.06  | 0.66  | 3.65     | 0.40     | 10.56  | 0.76  | 4.03     | 0.46     | Grass   |
| 11C          | 0.080   | 631    | 0.0    | 2.0      | 3:1          | 3:1        | 12    | 8.72  | 0.67  | 6.52     | 1.58     | 13.04  | 0.78  | 7.21     | 1.84     | TRM     |
| 11D          | 0.028   | 882    | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 21.78 | 0.94  | 5.48     | 0.80     | 32.56  | 1.09  | 6.06     | 0.93     | Grass   |
| 11E          | 0.020   | 1142   | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 11.82 | 0.80  | 4.15     | 0.48     | 17.68  | 0.93  | 4.59     | 0.56     | Grass   |
| 11F          | 0.020   | 892    | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 6.63  | 0.64  | 3.59     | 0.39     | 9.92   | 0.75  | 3.97     | 0.45     | Grass   |
| 14A          | 0.020   | 305    | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 3.16  | 0.49  | 2.98     | 0.29     | 4.72   | 0.56  | 3.30     | 0.34     | Grass   |
| 14B          | 0.020   | 997    | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 8.77  | 0.71  | 3.85     | 0.43     | 13.12  | 0.83  | 4.26     | 0.50     | Grass   |
| 14C          | 0.020   | 445    | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 7.12  | 0.66  | 3.65     | 0.40     | 10.64  | 0.77  | 4.04     | 0.46     | Grass   |
| 14D          | 0.020   | 1124   | 0.0    | 2.0      | 3:1          | 6:1        | 18    | 19.64 | 0.96  | 4.71     | 0.58     | 29.36  | 1.12  | 5.21     | 0.68     | Grass   |
| Downchute 1  | 0.333   | 245    | 8.0    | 2.0      | 3:1          | 3:1        | 20    | 76.03 | 0.55  | 14.29    | 9.62     | 111.34 | 0.68  | 16.19    | 11.59    | ACB     |
| Downchute 2  | 0.333   | 255    | 6.0    | 2.0      | 3:1          | 3:1        | 18    | 57.95 | 0.55  | 13.86    | 9.19     | 80.24  | 0.66  | 15.35    | 10.70    | ACB     |
| Downchute 3  | 0.333   | 333    | 6.0    | 2.0      | 3:1          | 3:1        | 18    | 60.44 | 0.56  | 14.04    | 9.37     | 90.25  | 0.70  | 15.91    | 11.30    | ACB     |
| Downchute 4  | 0.333   | 323    | 6.0    | 2.0      | 3:1          | 3:1        | 18    | 38.68 | 0.44  | 12.16    | 7.55     | 57.84  | 0.55  | 13.85    | 9.18     | ACB     |

**Table 15 – Perimeter Drainage Channel Geometry and Results** 

| Perimeter       |                          |             | Channel D       | imensions  | (minimum)      |           |        | 2.            | 5-year           |                    | 100-year     |               |                  |                    |                   |
|-----------------|--------------------------|-------------|-----------------|------------|----------------|-----------|--------|---------------|------------------|--------------------|--------------|---------------|------------------|--------------------|-------------------|
| Channel Segment | Channel<br>Slope (ft/ft) | Length (ft) | Bottom<br>Width | Depth (ft) | Side<br>Slopes | Top Width | Flow   | Peak<br>Depth | Peak<br>Velocity | Tractive<br>Stress | Peak<br>Flow | Peak<br>Depth | Peak<br>Velocity | Tractive<br>Stress | Channel<br>Lining |
|                 |                          | ( )         | (ft)            | ( )        | (H:V)          | ( )       | (cfs)  | (ft)          | (ft/s)           | (psf)              | (cfs)        | (ft)          | (ft/s)           | (psf)              |                   |
| Reach 1         | 0.015                    | 196         | 5.0             | 3.0        | 3:1            | 23        | 1.87   | 0.20          | 1.72             | 0.16               | 2.80         | 0.25          | 1.98             | 0.20               | Grass             |
| Reach 2         | 0.015                    | 127         | 5.0             | 3.0        | 3:1            | 23        | 79.13  | 1.52          | 5.47             | 0.92               | 115.98       | 1.83          | 6.05             | 1.07               | Grass             |
| Reach 3         | 0.009                    | 249         | 5.0             | 3.0        | 3:1            | 23        | 81.97  | 1.76          | 4.54             | 0.61               | 120.22       | 2.11          | 5.03             | 0.71               | Grass             |
| Reach 4         | 0.020                    | 66          | 5.0             | 3.0        | 3:1            | 23        | 82.67  | 1.37          | 6.63             | 1.15               | 121.26       | 1.66          | 7.35             | 1.34               | TRM               |
| Reach 5         | 0.021                    | 252         | 5.0             | 3.0        | 3:1            | 23        | 140.62 | 1.76          | 7.78             | 1.48               | 206.21       | 2.11          | 8.61             | 1.72               | TRM               |
| Reach 6         | 0.016                    | 335         | 5.0             | 3.0        | 3:1            | 23        | 146.77 | 1.92          | 7.11             | 1.20               | 215.41       | 2.30          | 7.87             | 1.40               | TRM               |
| Reach 7         | 0.017                    | 218         | 5.0             | 3.0        | 3:1            | 23        | 149.61 | 1.92          | 7.23             | 1.24               | 219.65       | 2.31          | 8.00             | 1.44               | TRM               |
| Reach 8         | 0.016                    | 1250        | 8.0             | 3.0        | 3:1            | 26        | 178.98 | 1.82          | 7.29             | 1.25               | 263.57       | 2.22          | 8.12             | 1.46               | TRM               |
| Reach 9         | 0.033                    | 301         | 5.0             | 2.5        | 3:1            | 20        | 9.31   | 0.39          | 3.85             | 0.66               | 13.92        | 0.49          | 4.38             | 0.80               | Grass             |
| Reach 10        | 0.017                    | 77          | 5.0             | 2.5        | 3:1            | 20        | 10.17  | 0.50          | 3.16             | 0.42               | 15.21        | 0.62          | 3.57             | 0.50               | Grass             |
| Reach 11        | 0.017                    | 273         | 5.0             | 2.5        | 3:1            | 20        | 74.30  | 1.42          | 5.63             | 0.99               | 110.98       | 1.73          | 6.27             | 1.16               | Grass             |
| Reach 12        | 0.018                    | 496         | 5.0             | 2.5        | 3:1            | 20        | 82.81  | 1.41          | 6.37             | 1.05               | 123.70       | 1.72          | 7.10             | 1.23               | TRM               |
| Reach 13        | 0.020                    | 641         | 8.0             | 3.0        | 3:1            | 26        | 95.22  | 1.24          | 6.57             | 1.13               | 142.26       | 1.53          | 7.38             | 1.34               | TRM               |
| Outfall Ditch   | 0.010                    | 550         | 10.0            | 4.0        | 3:1            | 34        | 306.60 | 2.49          | 7.05             | 1.05               | 554.80       | 3.35          | 8.28             | 1.34               | TRM               |

**Table 16 – HEC-HMS Model Results** 

|                        | 25-year, 24-hour Design<br>Storm Event | 100-year, 24-hour Design<br>Storm Event |  |  |  |
|------------------------|----------------------------------------|-----------------------------------------|--|--|--|
| Peak Discharge to      | 383.0                                  | 550.6                                   |  |  |  |
| Detention Pond (cfs)   | 383.0                                  | 330.0                                   |  |  |  |
| Peak Outflow from      | 214.5                                  | 424.3                                   |  |  |  |
| Detention Pond (cfs)   | 214.3                                  | 424.3                                   |  |  |  |
| Peak Pond Water        | 345.4                                  | 346.0                                   |  |  |  |
| Surface Elevation (ft) | 343.4                                  | 340.0                                   |  |  |  |
| Peak Storage in        | 13.7                                   | 15.6                                    |  |  |  |
| Detention Pond (ac-ft) | 13.7                                   | 15.0                                    |  |  |  |
| Peak Discharge to Site | 297.3                                  | 574.2                                   |  |  |  |
| Outfall (cfs)          | 297.3                                  | 374.2                                   |  |  |  |

### **FIGURES**

- Figure 1 Rainfall Distribution Map of the United States (from USDA, 1986)
- Figure 2 Depth of Precipitation for 2-year Storm for 24-hour Duration in Texas (from USGS, 2004)
- Figure 3 Depth of Precipitation for 25-year Storm for 24-hour Duration in Texas (from USGS, 2004)
- Figure 4 Depth of Precipitation for 100-year Storm for 24-hour Duration in Texas (from USGS, 2004)
- Figure 5 Contributing Drainage Areas for Surface Water Management Components
- Figure 6 Depth of Precipitation for 25-year Storm for 15-minute Duration in Texas (from USGS, 2004)
- Figure 7 Depth of Precipitation for 25-year Storm for 30-minute Duration in Texas (from USGS, 2004)
- Figure 8 Depth of Precipitation for 100-year Storm for 15-minute Duration in Texas (from USGS, 2004)
- Figure 9 Depth of Precipitation for 100-year Storm for 30-minute Duration in Texas (from USGS, 2004)

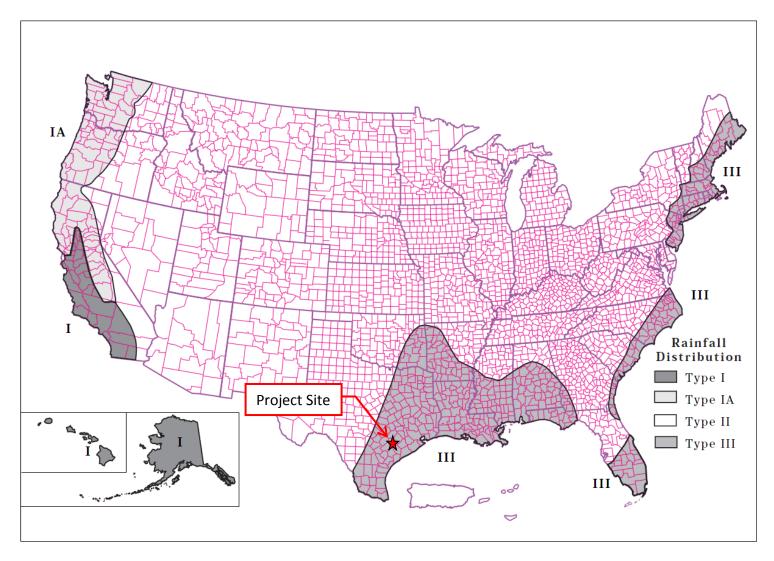



Figure 1 – Rainfall Distribution Map of the United States (from USDA, 1986)

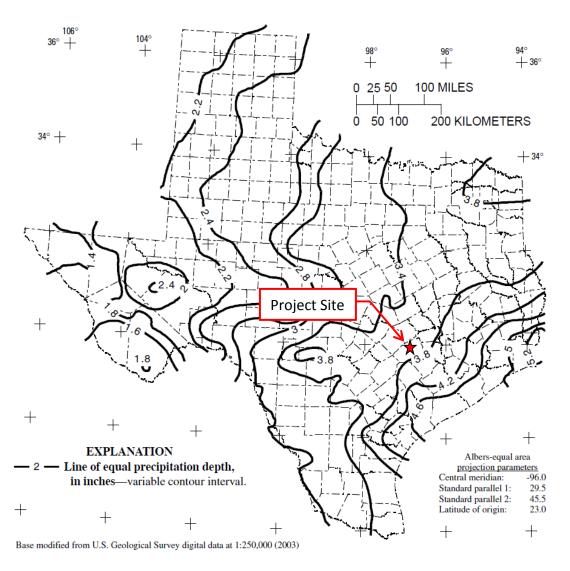



Figure 2 – Depth of Precipitation for 2-year Storm for 24-hour Duration in Texas (from USGS, 2004)

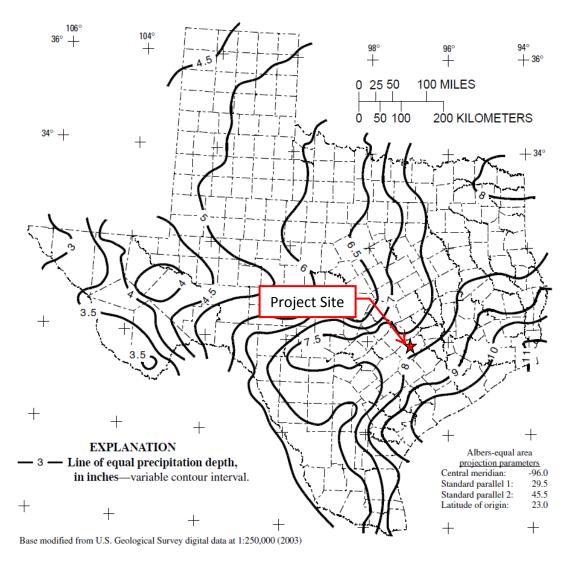



Figure 3 – Depth of Precipitation for 25-year Storm for 24-hour Duration in Texas (from USGS, 2004)

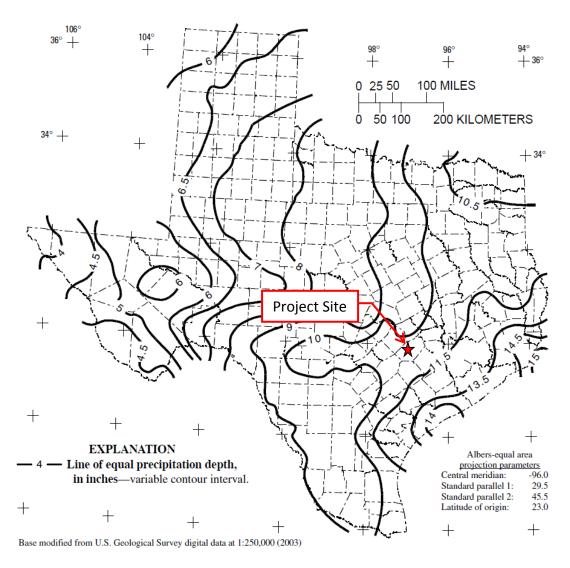



Figure 4 – Depth of Precipitation for 100-year Storm for 24-hour Duration in Texas (from USGS, 2004)

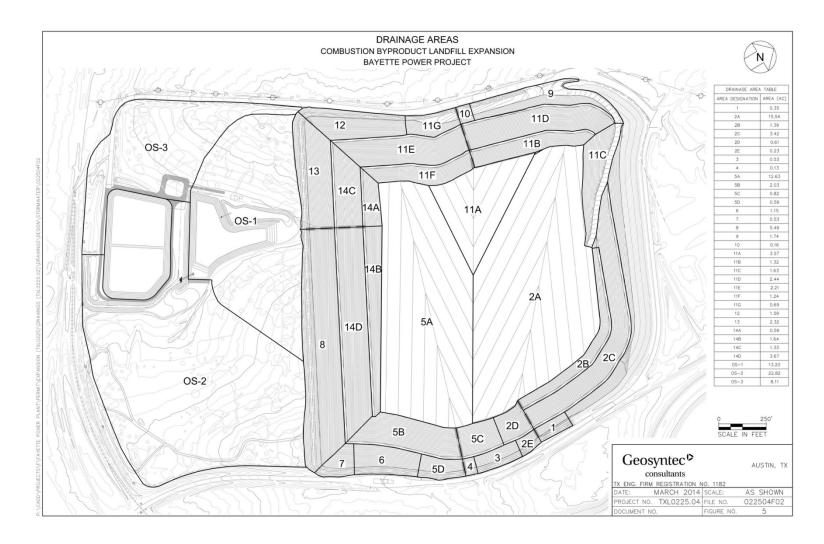



Figure 5 – Contributing Drainage Areas for Surface Water Management Components

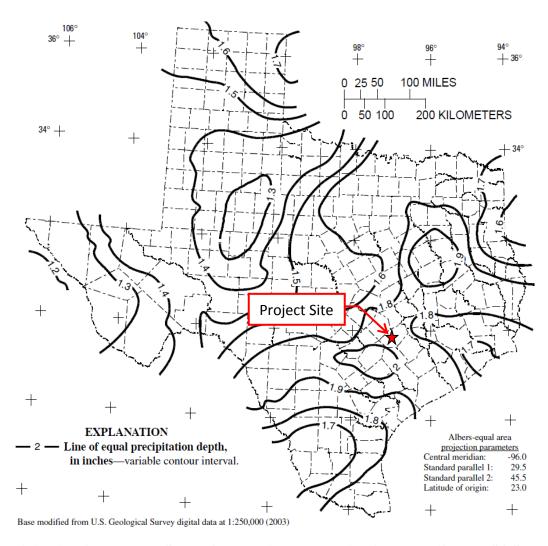



Figure 6 – Depth of Precipitation for 25-year Storm for 15-minute Duration in Texas (from USGS, 2004)

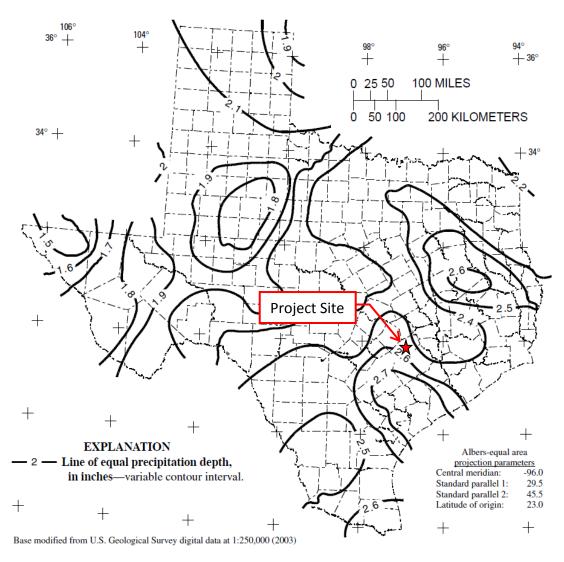



Figure 7 – Depth of Precipitation for 25-year Storm for 30-minute Duration in Texas (from USGS, 2004)

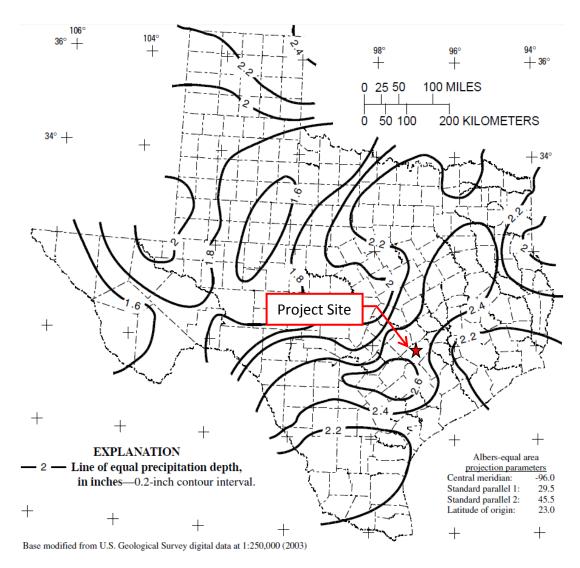



Figure 8 – Depth of Precipitation for 100-year Storm for 15-minute Duration in Texas (from USGS, 2004)

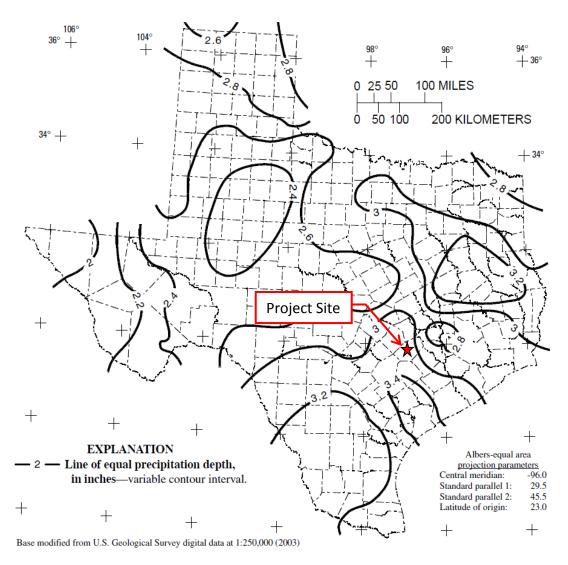
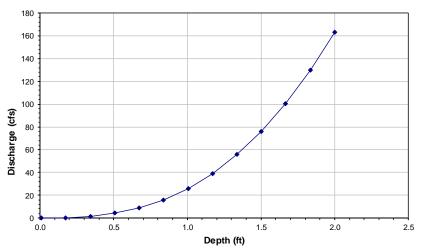



Figure 9 – Depth of Precipitation for 100-year Storm for 30-minute Duration in Texas (from USGS, 2004)

# APPENDIX A-1 HYDRAULIC DESIGN CALCULATIONS FOR LARGEST FLOW RATE


Methodology: Manning's Equation

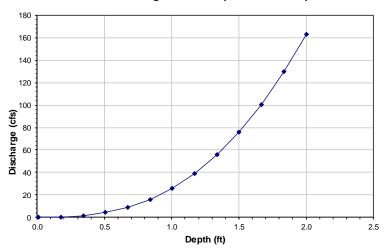
Project: LCRA Fayette Power Project, La Grange, TX

Ditch ID: Mid-Slope Drainage Bench 11D - 100-yr Flow

| Peak Discharge, Q <sub>100</sub> = | 32.56  | cfs                   |
|------------------------------------|--------|-----------------------|
| Bottom Width, B=                   | 0.00   | ft                    |
| Left Side Slope, $Z_1 =$           | 3.00   | horizontal:1 vertical |
| Right Side Slope, $Z_2 =$          | 6.00   | horizontal:1 vertical |
| Channel Depth, Y=                  | 2.00   | ft                    |
| Top Width, $T =$                   | 18.00  | ft                    |
| Manning's Roughness Coeff., n =    | 0.027  |                       |
| Longitudinal Channel Slope, So =   | 0.0280 | ft/ft                 |

| Depth<br>of Flow<br>Y<br>ft | Area<br>of Flow<br>A<br>ft <sup>2</sup> | Wetted<br>Perimeter<br>P | Hydraulic<br>Radius<br>R=A/P<br>ft | Average<br>Velocity<br>V<br>ft/s | Discharge<br>(Flow Rate)<br>Q=AV<br>ft <sup>3</sup> /s | Avg. Tractive Stress $\tau_0$ $lb/ft^2$ | Comments |
|-----------------------------|-----------------------------------------|--------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|-----------------------------------------|----------|
|                             |                                         |                          |                                    |                                  |                                                        |                                         |          |
| 0.01                        | 0.00                                    | 0.09                     | 0.00                               | 0.26                             | 0.0                                                    | 0.01                                    |          |
| 0.18                        | 0.14                                    | 1.63                     | 0.09                               | 1.79                             | 0.2                                                    | 0.15                                    |          |
| 0.34                        | 0.53                                    | 3.16                     | 0.17                               | 2.79                             | 1.5                                                    | 0.29                                    |          |
| 0.51                        | 1.16                                    | 4.69                     | 0.25                               | 3.63                             | 4.2                                                    | 0.43                                    |          |
| 0.67                        | 2.04                                    | 6.22                     | 0.33                               | 4.39                             | 9.0                                                    | 0.57                                    |          |
| 0.84                        | 3.17                                    | 7.76                     | 0.41                               | 5.08                             | 16.1                                                   | 0.71                                    |          |
| 1.01                        | 4.55                                    | 9.29                     | 0.49                               | 5.73                             | 26.1                                                   | 0.85                                    |          |
| 1.17                        | 6.17                                    | 10.82                    | 0.57                               | 6.35                             | 39.1                                                   | 1.00                                    |          |
| 1.34                        | 8.04                                    | 12.36                    | 0.65                               | 6.93                             | 55.7                                                   | 1.14                                    |          |
| 1.50                        | 10.16                                   | 13.89                    | 0.73                               | 7.49                             | 76.1                                                   | 1.28                                    |          |
| 1.67                        | 12.53                                   | 15.42                    | 0.81                               | 8.04                             | 100.7                                                  | 1.42                                    |          |
| 1.83                        | 15.14                                   | 16.96                    | 0.89                               | 8.56                             | 129.6                                                  | 1.56                                    |          |
| 2.00                        | 18.00                                   | 18.49                    | 0.97                               | 9.07                             | 163.3                                                  | 1.70                                    |          |
| 1.09                        | 5.37                                    | 10.10                    | 0.53                               | 6.06                             | 32.56                                                  | 0.93                                    | DESIGN Q |




Methodology: Manning's Equation

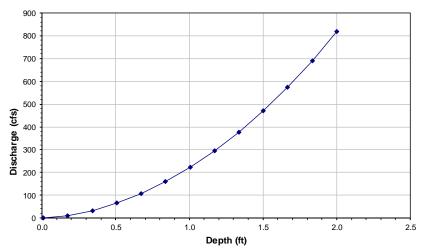
Project: LCRA Fayette Power Project, La Grange, TX

Ditch ID: Mid-Slope Drainage Bench 11D - 25-yr Flow

| Peak Discharge, Q25 =            | 21.78  | cfs                   |
|----------------------------------|--------|-----------------------|
| Bottom Width, B =                | 0.00   | ft                    |
| Left Side Slope, $Z_1 =$         | 3.00   | horizontal:1 vertical |
| Right Side Slope, $Z_2 =$        | 6.00   | horizontal:1 vertical |
| Channel Depth, Y=                | 2.00   | ft                    |
| Top Width, $T =$                 | 18.00  | ft                    |
| Manning's Roughness Coeff., n =  | 0.027  |                       |
| Longitudinal Channel Slope, So = | 0.0280 | ft/ft                 |
|                                  |        |                       |

| Depth<br>of Flow<br>Y<br>ft | Area<br>of Flow<br>A<br>ft <sup>2</sup> | Wetted<br>Perimeter<br>P<br>ft | Hydraulic<br>Radius<br>R=A/P<br>ft | Average<br>Velocity<br>V<br>ft/s | Discharge<br>(Flow Rate)<br>Q=AV<br>ft <sup>3</sup> /s | Avg. Tractive Stress $\tau_0$ $lb/ft^2$ | Comments |
|-----------------------------|-----------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|-----------------------------------------|----------|
|                             |                                         |                                |                                    |                                  |                                                        |                                         |          |
| 0.01                        | 0.00                                    | 0.09                           | 0.00                               | 0.26                             | 0.0                                                    | 0.01                                    |          |
| 0.18                        | 0.14                                    | 1.63                           | 0.09                               | 1.79                             | 0.2                                                    | 0.15                                    |          |
| 0.34                        | 0.53                                    | 3.16                           | 0.17                               | 2.79                             | 1.5                                                    | 0.29                                    |          |
| 0.51                        | 1.16                                    | 4.69                           | 0.25                               | 3.63                             | 4.2                                                    | 0.43                                    |          |
| 0.67                        | 2.04                                    | 6.22                           | 0.33                               | 4.39                             | 9.0                                                    | 0.57                                    |          |
| 0.84                        | 3.17                                    | 7.76                           | 0.41                               | 5.08                             | 16.1                                                   | 0.71                                    |          |
| 1.01                        | 4.55                                    | 9.29                           | 0.49                               | 5.73                             | 26.1                                                   | 0.85                                    |          |
| 1.17                        | 6.17                                    | 10.82                          | 0.57                               | 6.35                             | 39.1                                                   | 1.00                                    |          |
| 1.34                        | 8.04                                    | 12.36                          | 0.65                               | 6.93                             | 55.7                                                   | 1.14                                    |          |
| 1.50                        | 10.16                                   | 13.89                          | 0.73                               | 7.49                             | 76.1                                                   | 1.28                                    |          |
| 1.67                        | 12.53                                   | 15.42                          | 0.81                               | 8.04                             | 100.7                                                  | 1.42                                    |          |
| 1.83                        | 15.14                                   | 16.96                          | 0.89                               | 8.56                             | 129.6                                                  | 1.56                                    |          |
| 2.00                        | 18.00                                   | 18.49                          | 0.97                               | 9.07                             | 163.3                                                  | 1.70                                    |          |
| 0.94                        | 3.97                                    | 8.69                           | 0.46                               | 5.48                             | 21.78                                                  | 0.80                                    | DESIGN Q |
|                             |                                         |                                |                                    |                                  |                                                        |                                         |          |




Methodology: Manning's Equation

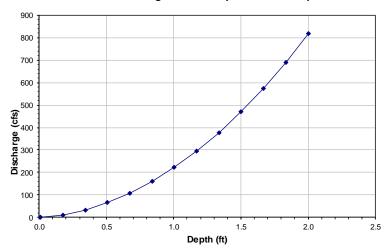
Project: LCRA Fayette Power Project, La Grange, TX

Ditch ID: Downchute 1 - Area 2 - 100-yr Flow

| Peak Discharge, Q <sub>100</sub> = | 111.34 | cfs                   |
|------------------------------------|--------|-----------------------|
| Bottom Width, B=                   | 8.00   | ft                    |
| Left Side Slope, $Z_1 =$           | 3.00   | horizontal:1 vertical |
| Right Side Slope, $Z_2 =$          | 3.00   | horizontal:1 vertical |
| Channel Depth, Y=                  | 2.00   | ft                    |
| Top Width, $T =$                   | 20.00  | ft                    |
| Manning's Roughness Coeff., n =    | 0.036  |                       |
| Longitudinal Channel Slope, So =   | 0.3330 | ft/ft                 |

| Depth<br>of Flow<br>Y<br>ft | Area<br>of Flow<br>A<br>ft <sup>2</sup> | Wetted<br>Perimeter<br>P | Hydraulic<br>Radius<br>R=A/P<br>ft | Average<br>Velocity<br>V<br>ft/s | Discharge<br>(Flow Rate)<br>Q=AV<br>ft <sup>3</sup> /s | Avg. Tractive Stress $\tau_0$ $lb/ft^2$ | Comments |
|-----------------------------|-----------------------------------------|--------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|-----------------------------------------|----------|
|                             |                                         |                          |                                    |                                  |                                                        |                                         |          |
| 0.01                        | 0.08                                    | 8.06                     | 0.01                               | 1.10                             | 0.1                                                    | 0.21                                    |          |
| 0.18                        | 1.50                                    | 9.11                     | 0.16                               | 7.17                             | 10.7                                                   | 3.42                                    |          |
| 0.34                        | 3.08                                    | 10.16                    | 0.30                               | 10.78                            | 33.2                                                   | 6.31                                    |          |
| 0.51                        | 4.83                                    | 11.21                    | 0.43                               | 13.63                            | 65.9                                                   | 8.96                                    |          |
| 0.67                        | 6.75                                    | 12.26                    | 0.55                               | 16.04                            | 108.2                                                  | 11.44                                   |          |
| 0.84                        | 8.83                                    | 13.31                    | 0.66                               | 18.16                            | 160.3                                                  | 13.78                                   |          |
| 1.01                        | 11.07                                   | 14.36                    | 0.77                               | 20.08                            | 222.3                                                  | 16.02                                   |          |
| 1.17                        | 13.48                                   | 15.41                    | 0.87                               | 21.85                            | 294.5                                                  | 18.18                                   |          |
| 1.34                        | 16.05                                   | 16.45                    | 0.98                               | 23.49                            | 377.2                                                  | 20.27                                   |          |
| 1.50                        | 18.79                                   | 17.50                    | 1.07                               | 25.04                            | 470.6                                                  | 22.31                                   |          |
| 1.67                        | 21.70                                   | 18.55                    | 1.17                               | 26.51                            | 575.3                                                  | 24.30                                   |          |
| 1.83                        | 24.77                                   | 19.60                    | 1.26                               | 27.92                            | 691.4                                                  | 26.26                                   |          |
| 2.00                        | 28.00                                   | 20.65                    | 1.36                               | 29.26                            | 819.4                                                  | 28.18                                   | _        |
| 0.68                        | 6.88                                    | 12.33                    | 0.56                               | 16.19                            | 111.34                                                 | 11.59                                   | DESIGN Q |
| 2.00                        | 2.00                                    | 12.00                    | 2.20                               | 20.27                            | 112.0                                                  |                                         |          |




Methodology: Manning's Equation

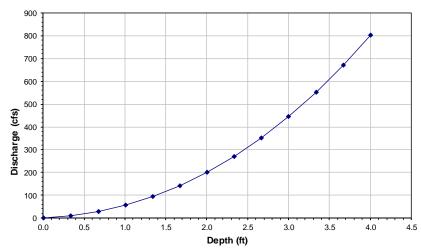
Project: LCRA Fayette Power Project, La Grange, TX

Ditch ID: Downchute 1 - Area 2 - 25-yr Flow

| Peak Discharge, Q25 =            | 76.03  | cfs                   |
|----------------------------------|--------|-----------------------|
| Bottom Width, B =                | 8.00   | ft                    |
| Left Side Slope, $Z_1 =$         | 3.00   | horizontal:1 vertical |
| Right Side Slope, $Z_2 =$        | 3.00   | horizontal:1 vertical |
| Channel Depth, Y=                | 2.00   | ft                    |
| Top Width, $T =$                 | 20.00  | ft                    |
| Manning's Roughness Coeff., n =  | 0.036  |                       |
| Longitudinal Channel Slope, So = | 0.3330 | ft/ft                 |
|                                  |        |                       |

| Depth<br>of Flow<br>Y<br>ft | Area<br>of Flow<br>A<br>ft <sup>2</sup> | Wetted<br>Perimeter<br>P | Hydraulic<br>Radius<br>R=A/P<br>ft | Average<br>Velocity<br>V<br>ft/s | Discharge<br>(Flow Rate)<br>Q=AV<br>ft <sup>3</sup> /s | Avg. Tractive Stress $\tau_0$ $\text{lb/ft}^2$ | Comments |
|-----------------------------|-----------------------------------------|--------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|------------------------------------------------|----------|
|                             |                                         |                          |                                    |                                  |                                                        |                                                |          |
| 0.01                        | 0.08                                    | 8.06                     | 0.01                               | 1.10                             | 0.1                                                    | 0.21                                           |          |
| 0.18                        | 1.50                                    | 9.11                     | 0.16                               | 7.17                             | 10.7                                                   | 3.42                                           |          |
| 0.34                        | 3.08                                    | 10.16                    | 0.30                               | 10.78                            | 33.2                                                   | 6.31                                           |          |
| 0.51                        | 4.83                                    | 11.21                    | 0.43                               | 13.63                            | 65.9                                                   | 8.96                                           |          |
| 0.67                        | 6.75                                    | 12.26                    | 0.55                               | 16.04                            | 108.2                                                  | 11.44                                          |          |
| 0.84                        | 8.83                                    | 13.31                    | 0.66                               | 18.16                            | 160.3                                                  | 13.78                                          |          |
| 1.01                        | 11.07                                   | 14.36                    | 0.77                               | 20.08                            | 222.3                                                  | 16.02                                          |          |
| 1.17                        | 13.48                                   | 15.41                    | 0.87                               | 21.85                            | 294.5                                                  | 18.18                                          |          |
| 1.34                        | 16.05                                   | 16.45                    | 0.98                               | 23.49                            | 377.2                                                  | 20.27                                          |          |
| 1.50                        | 18.79                                   | 17.50                    | 1.07                               | 25.04                            | 470.6                                                  | 22.31                                          |          |
| 1.67                        | 21.70                                   | 18.55                    | 1.17                               | 26.51                            | 575.3                                                  | 24.30                                          |          |
| 1.83                        | 24.77                                   | 19.60                    | 1.26                               | 27.92                            | 691.4                                                  | 26.26                                          |          |
| 2.00                        | 28.00                                   | 20.65                    | 1.36                               | 29.26                            | 819.4                                                  | 28.18                                          |          |
|                             |                                         |                          |                                    |                                  |                                                        |                                                |          |
| 0.55                        | 5.32                                    | 11.49                    | 0.46                               | 14.29                            | 76.03                                                  | 9.62                                           | DESIGN Q |
|                             |                                         |                          |                                    |                                  |                                                        |                                                |          |




Methodology: Manning's Equation

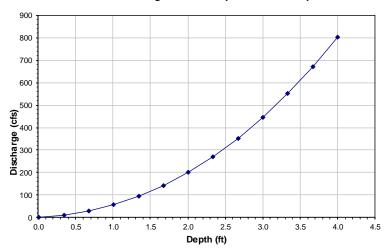
Project: LCRA Fayette Power Project, La Grange, TX

Ditch ID: Outfall Ditch - 100-yr Flow

| 554.80 | cfs                                             |
|--------|-------------------------------------------------|
| 10.00  | ft                                              |
| 3.00   | horizontal:1 vertical                           |
| 3.00   | horizontal:1 vertical                           |
| 4.00   | ft                                              |
| 34.00  | ft                                              |
| 0.030  |                                                 |
| 0.0100 | ft/ft                                           |
|        | 10.00<br>3.00<br>3.00<br>4.00<br>34.00<br>0.030 |

| Depth<br>of Flow<br>Y<br>ft | Area<br>of Flow<br>A<br>ft <sup>2</sup> | Wetted<br>Perimeter<br>P<br>ft | Hydraulic<br>Radius<br>R=A/P<br>ft | Average<br>Velocity<br>V<br>ft/s | Discharge<br>(Flow Rate)<br>Q=AV<br>ft <sup>3</sup> /s | Avg. Tractive Stress $\tau_0$ $lb/ft^2$ | Comments |
|-----------------------------|-----------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|-----------------------------------------|----------|
|                             |                                         |                                |                                    |                                  |                                                        |                                         |          |
| 0.01                        | 0.10                                    | 10.06                          | 0.01                               | 0.23                             | 0.0                                                    | 0.01                                    |          |
| 0.34                        | 3.78                                    | 12.17                          | 0.31                               | 2.28                             | 8.6                                                    | 0.19                                    |          |
| 0.68                        | 8.12                                    | 14.27                          | 0.57                               | 3.41                             | 27.7                                                   | 0.35                                    |          |
| 1.01                        | 13.12                                   | 16.37                          | 0.80                               | 4.28                             | 56.2                                                   | 0.50                                    |          |
| 1.34                        | 18.79                                   | 18.47                          | 1.02                               | 5.02                             | 94.4                                                   | 0.63                                    |          |
| 1.67                        | 25.12                                   | 20.58                          | 1.22                               | 5.67                             | 142.5                                                  | 0.76                                    |          |
| 2.01                        | 32.11                                   | 22.68                          | 1.42                               | 6.26                             | 201.1                                                  | 0.88                                    |          |
| 2.34                        | 39.77                                   | 24.78                          | 1.60                               | 6.81                             | 270.7                                                  | 1.00                                    |          |
| 2.67                        | 48.09                                   | 26.89                          | 1.79                               | 7.32                             | 352.0                                                  | 1.12                                    |          |
| 3.00                        | 57.07                                   | 28.99                          | 1.97                               | 7.80                             | 445.3                                                  | 1.23                                    |          |
| 3.34                        | 66.72                                   | 31.09                          | 2.15                               | 8.26                             | 551.4                                                  | 1.34                                    |          |
| 3.67                        | 77.03                                   | 33.20                          | 2.32                               | 8.71                             | 670.7                                                  | 1.45                                    |          |
| 4.00                        | 88.00                                   | 35.30                          | 2.49                               | 9.13                             | 803.8                                                  | 1.56                                    |          |
| 3.35                        | 67.02                                   | 31.16                          | 2.15                               | 8.28                             | 554.80                                                 | 1.34                                    | DESIGN Q |




Methodology: Manning's Equation

Project: LCRA Fayette Power Project, La Grange, TX

Ditch ID: Outfall Ditch - 25-yr Flow

| Peak Discharge, Q25 =            | 306.60 | cfs                   |
|----------------------------------|--------|-----------------------|
| Bottom Width, B=                 | 10.00  | ft                    |
| Left Side Slope, $Z_1 =$         | 3.00   | horizontal:1 vertical |
| Right Side Slope, $Z_2 =$        | 3.00   | horizontal:1 vertical |
| Channel Depth, Y=                | 4.00   | ft                    |
| Top Width, $T =$                 | 34.00  | ft                    |
| Manning's Roughness Coeff., n =  | 0.030  |                       |
| Longitudinal Channel Slope, So = | 0.0100 | ft/ft                 |

| Depth<br>of Flow<br>Y<br>ft | Area<br>of Flow<br>A<br>ft <sup>2</sup> | Wetted<br>Perimeter<br>P | Hydraulic<br>Radius<br>R=A/P<br>ft | Average<br>Velocity<br>V<br>ft/s | Discharge<br>(Flow Rate)<br>Q=AV<br>ft <sup>3</sup> /s | Avg. Tractive Stress $	au_0$ $	ext{lb/ft}^2$ | Comments |
|-----------------------------|-----------------------------------------|--------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|----------------------------------------------|----------|
|                             |                                         |                          |                                    |                                  |                                                        |                                              |          |
| 0.01                        | 0.10                                    | 10.06                    | 0.01                               | 0.23                             | 0.0                                                    | 0.01                                         |          |
| 0.34                        | 3.78                                    | 12.17                    | 0.31                               | 2.28                             | 8.6                                                    | 0.19                                         |          |
| 0.68                        | 8.12                                    | 14.27                    | 0.57                               | 3.41                             | 27.7                                                   | 0.35                                         |          |
| 1.01                        | 13.12                                   | 16.37                    | 0.80                               | 4.28                             | 56.2                                                   | 0.50                                         |          |
| 1.34                        | 18.79                                   | 18.47                    | 1.02                               | 5.02                             | 94.4                                                   | 0.63                                         |          |
| 1.67                        | 25.12                                   | 20.58                    | 1.22                               | 5.67                             | 142.5                                                  | 0.76                                         |          |
| 2.01                        | 32.11                                   | 22.68                    | 1.42                               | 6.26                             | 201.1                                                  | 0.88                                         |          |
| 2.34                        | 39.77                                   | 24.78                    | 1.60                               | 6.81                             | 270.7                                                  | 1.00                                         |          |
| 2.67                        | 48.09                                   | 26.89                    | 1.79                               | 7.32                             | 352.0                                                  | 1.12                                         |          |
| 3.00                        | 57.07                                   | 28.99                    | 1.97                               | 7.80                             | 445.3                                                  | 1.23                                         |          |
| 3.34                        | 66.72                                   | 31.09                    | 2.15                               | 8.26                             | 551.4                                                  | 1.34                                         |          |
| 3.67                        | 77.03                                   | 33.20                    | 2.32                               | 8.71                             | 670.7                                                  | 1.45                                         |          |
| 4.00                        | 88.00                                   | 35.30                    | 2.49                               | 9.13                             | 803.8                                                  | 1.56                                         |          |
| 2.49                        | 43.51                                   | 25.75                    | 1.69                               | 7.05                             | 306.60                                                 | 1.05                                         | DESIGN Q |
|                             |                                         |                          |                                    |                                  |                                                        |                                              |          |



# APPENDIX A-2 HEC-HMS OUTPUT RESULTS

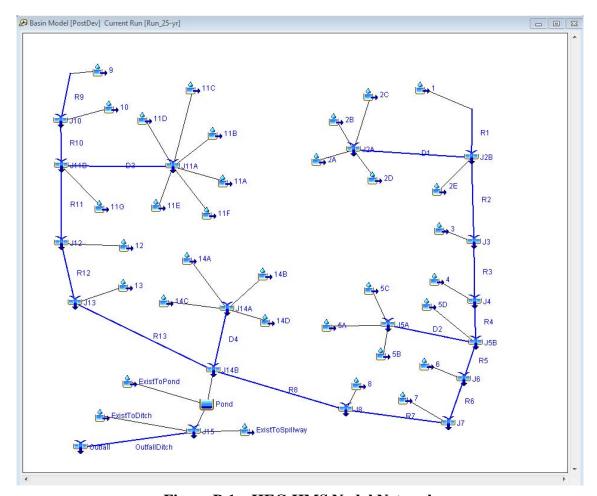



Figure B.1 – HEC-HMS Nodal Network

**Table B.1 – 25-Year HEC-HMS Results** 

| Table B.1 – 25-1cal HEC-HVIS Results |                        |                      |                  |                   |  |
|--------------------------------------|------------------------|----------------------|------------------|-------------------|--|
| Hydrologic<br>Element                | Drainage Area<br>(mi²) | Peak Discharge (cfs) | Time of Peak     | Volume<br>(ac-ft) |  |
| 1                                    | 0.000547               | 2                    | 01Jan2013, 12:07 | 0.2               |  |
| 10                                   | 0.000252               | 0.9                  | 01Jan2013, 12:07 | 0.1               |  |
| 11A                                  | 0.005578               | 17.9                 | 01Jan2013, 12:11 | 1.8               |  |
| 11B                                  | 0.002063               | 7.5                  | 01Jan2013, 12:07 | 0.6               |  |
| 11C                                  | 0.002547               | 9.2                  | 01Jan2013, 12:07 | 0.8               |  |
| 11D                                  | 0.003813               | 13.8                 | 01Jan2013, 12:07 | 1.2               |  |
| 11E                                  | 0.003453               | 12.5                 | 01Jan2013, 12:07 | 1.1               |  |
| 11F                                  | 0.001938               | 7                    | 01Jan2013, 12:07 | 0.6               |  |
| 11G                                  | 0.001078               | 3.9                  | 01Jan2013, 12:07 | 0.3               |  |
| 12                                   | 0.002484               | 9                    | 01Jan2013, 12:07 | 0.8               |  |
| 13                                   | 0.003625               | 13.1                 | 01Jan2013, 12:07 | 1.1               |  |
| 14A                                  | 0.000922               | 3.3                  | 01Jan2013, 12:07 | 0.3               |  |
| 14B                                  | 0.002563               | 9.3                  | 01Jan2013, 12:07 | 0.8               |  |
| 14C                                  | 0.002078               | 7.5                  | 01Jan2013, 12:07 | 0.7               |  |
| 14D                                  | 0.005734               | 20.8                 | 01Jan2013, 12:07 | 1.8               |  |
| 2A                                   | 0.024281               | 69.7                 | 01Jan2013, 12:15 | 7.6               |  |
| 2B                                   | 0.002172               | 7.9                  | 01Jan2013, 12:07 | 0.7               |  |
| 2C                                   | 0.00534                | 19.4                 | 01Jan2013, 12:07 | 1.7               |  |
| 2D                                   | 0.000953               | 3.5                  | 01Jan2013, 12:07 | 0.3               |  |
| 2E                                   | 0.000359               | 1.3                  | 01Jan2013, 12:07 | 0.1               |  |
| 3                                    | 0.000828               | 3                    | 01Jan2013, 12:07 | 0.3               |  |
| 4                                    | 0.000203               | 0.7                  | 01Jan2013, 12:07 | 0.1               |  |
| 5A                                   | 0.019734               | 57.9                 | 01Jan2013, 12:14 | 6.2               |  |
| 5B                                   | 0.003172               | 11.5                 | 01Jan2013, 12:07 | 1                 |  |
| 5C                                   | 0.001281               | 4.6                  | 01Jan2013, 12:07 | 0.4               |  |
| 5D                                   | 0.000922               | 3.3                  | 01Jan2013, 12:07 | 0.3               |  |
| 6                                    | 0.001797               | 6.5                  | 01Jan2013, 12:07 | 0.6               |  |
| 7                                    | 0.000828               | 3                    | 01Jan2013, 12:07 | 0.3               |  |
| 8                                    | 0.008578               | 31.1                 | 01Jan2013, 12:07 | 2.7               |  |
| 9                                    | 0.002719               | 9.9                  | 01Jan2013, 12:07 | 0.9               |  |
| D1                                   | 0.032746               | 93.2                 | 01Jan2013, 12:12 | 10.3              |  |
| D2                                   | 0.024187               | 70.3                 | 01Jan2013, 12:12 | 7.6               |  |
| D3                                   | 0.019392               | 66.7                 | 01Jan2013, 12:08 | 6.1               |  |
| D4                                   | 0.011297               | 40.9                 | 01Jan2013, 12:08 | 3.6               |  |
| J10                                  | 0.002971               | 10.7                 | 01Jan2013, 12:08 | 0.9               |  |
| J11A                                 | 0.019392               | 66.9                 | 01Jan2013, 12:08 | 6.1               |  |

| J11B         | 0.023441 | 81.4  | 01Jan2013, 12:08 | 7.4  |
|--------------|----------|-------|------------------|------|
| J12          | 0.025925 | 90.1  | 01Jan2013, 12:09 | 8.2  |
| J13          | 0.02955  | 102.3 | 01Jan2013, 12:10 | 9.3  |
| J14A         | 0.011297 | 41    | 01Jan2013, 12:07 | 3.6  |
| J14B         | 0.111842 | 333.9 | 01Jan2013, 12:12 | 35.2 |
| J15          | 0.168132 | 274.8 | 01Jan2013, 12:29 | 49.1 |
| J2A          | 0.032746 | 93.3  | 01Jan2013, 12:12 | 10.3 |
| J2B          | 0.033652 | 96.1  | 01Jan2013, 12:12 | 10.6 |
| J3           | 0.03448  | 98.6  | 01Jan2013, 12:12 | 10.9 |
| J4           | 0.034683 | 99    | 01Jan2013, 12:12 | 10.9 |
| J5A          | 0.024187 | 70.4  | 01Jan2013, 12:12 | 7.6  |
| J5B          | 0.059792 | 172   | 01Jan2013, 12:12 | 18.8 |
| J6           | 0.061589 | 177   | 01Jan2013, 12:13 | 19.4 |
| J7           | 0.062417 | 179.3 | 01Jan2013, 12:13 | 19.7 |
| J8           | 0.070995 | 203.7 | 01Jan2013, 12:12 | 22.4 |
| OS1          | 0.02063  | 49.8  | 01Jan2013, 12:14 | 5.1  |
| OS2          | 0.03566  | 76.4  | 01Jan2013, 12:18 | 8.8  |
| OS3          | 0.01267  | 24.5  | 01Jan2013, 12:23 | 3.1  |
| Outfall      | 0.180802 | 297.3 | 01Jan2013, 12:30 | 52.2 |
| OutfallDitch | 0.168132 | 274.5 | 01Jan2013, 12:30 | 49.1 |
| Pond         | 0.132472 | 214.5 | 01Jan2013, 12:30 | 40.2 |
| R1           | 0.000547 | 2     | 01Jan2013, 12:09 | 0.2  |
| R10          | 0.002971 | 10.7  | 01Jan2013, 12:09 | 0.9  |
| R11          | 0.023441 | 81.3  | 01Jan2013, 12:09 | 7.4  |
| R12          | 0.025925 | 89.9  | 01Jan2013, 12:10 | 8.2  |
| R13          | 0.02955  | 102.2 | 01Jan2013, 12:11 | 9.3  |
| R2           | 0.033652 | 96    | 01Jan2013, 12:12 | 10.6 |
| R3           | 0.03448  | 98.4  | 01Jan2013, 12:13 | 10.9 |
| R4           | 0.034683 | 99    | 01Jan2013, 12:13 | 10.9 |
| R5           | 0.059792 | 171.9 | 01Jan2013, 12:13 | 18.8 |
| R6           | 0.061589 | 176.9 | 01Jan2013, 12:13 | 19.4 |
| R7           | 0.062417 | 178.9 | 01Jan2013, 12:13 | 19.7 |
| R8           | 0.070995 | 203.1 | 01Jan2013, 12:14 | 22.4 |
| R9           | 0.002719 | 9.8   | 01Jan2013, 12:08 | 0.9  |

**Table B.2 – 100-Year HEC-HMS Results** 

|                       | 1 abic b.2 – 1         |                      |                  | ı                 |
|-----------------------|------------------------|----------------------|------------------|-------------------|
| Hydrologic<br>Element | Drainage<br>Area (mi²) | Peak Discharge (cfs) | Time of Peak     | Volume<br>(ac-ft) |
| 1                     | 0.000547               | 2.8                  | 01Jan2013, 12:07 | 0.2               |
| 10                    | 0.000252               | 1.3                  | 01Jan2013, 12:07 | 0.1               |
| 11A                   | 0.005578               | 25.4                 | 01Jan2013, 12:11 | 2.5               |
| 11B                   | 0.002063               | 10.6                 | 01Jan2013, 12:07 | 0.9               |
| 11C                   | 0.002547               | 13.1                 | 01Jan2013, 12:07 | 1.2               |
| 11D                   | 0.003813               | 19.6                 | 01Jan2013, 12:07 | 1.7               |
| 11E                   | 0.003453               | 17.7                 | 01Jan2013, 12:07 | 1.6               |
| 11F                   | 0.001938               | 9.9                  | 01Jan2013, 12:07 | 0.9               |
| 11G                   | 0.001078               | 5.5                  | 01Jan2013, 12:07 | 0.5               |
| 12                    | 0.002484               | 12.7                 | 01Jan2013, 12:07 | 1.1               |
| 13                    | 0.003625               | 18.6                 | 01Jan2013, 12:07 | 1.6               |
| 14A                   | 0.000922               | 4.7                  | 01Jan2013, 12:07 | 0.4               |
| 14B                   | 0.002563               | 13.2                 | 01Jan2013, 12:07 | 1.2               |
| 14C                   | 0.002078               | 10.7                 | 01Jan2013, 12:07 | 0.9               |
| 14D                   | 0.005734               | 29.4                 | 01Jan2013, 12:07 | 2.6               |
| 2A                    | 0.024281               | 98.8                 | 01Jan2013, 12:15 | 11                |
| 2B                    | 0.002172               | 11.1                 | 01Jan2013, 12:07 | 1                 |
| 2C                    | 0.00534                | 27.4                 | 01Jan2013, 12:07 | 2.4               |
| 2D                    | 0.000953               | 4.9                  | 01Jan2013, 12:07 | 0.4               |
| 2E                    | 0.000359               | 1.8                  | 01Jan2013, 12:07 | 0.2               |
| 3                     | 0.000828               | 4.2                  | 01Jan2013, 12:07 | 0.4               |
| 4                     | 0.000203               | 1                    | 01Jan2013, 12:07 | 0.1               |
| 5A                    | 0.019734               | 82                   | 01Jan2013, 12:14 | 9                 |
| 5B                    | 0.003172               | 16.3                 | 01Jan2013, 12:07 | 1.4               |
| 5C                    | 0.001281               | 6.6                  | 01Jan2013, 12:07 | 0.6               |
| 5D                    | 0.000922               | 4.7                  | 01Jan2013, 12:07 | 0.4               |
| 6                     | 0.001797               | 9.2                  | 01Jan2013, 12:07 | 0.8               |
| 7                     | 0.000828               | 4.2                  | 01Jan2013, 12:07 | 0.4               |
| 8                     | 0.008578               | 44                   | 01Jan2013, 12:07 | 3.9               |
| 9                     | 0.002719               | 14                   | 01Jan2013, 12:07 | 1.2               |
| D1                    | 0.032746               | 132.2                | 01Jan2013, 12:12 | 14.9              |
| D2                    | 0.024187               | 99.7                 | 01Jan2013, 12:12 | 11                |
| D3                    | 0.019392               | 94.6                 | 01Jan2013, 12:08 | 8.8               |
| D4                    | 0.011297               | 57.8                 | 01Jan2013, 12:08 | 5.1               |
| J10                   | 0.002971               | 15.2                 | 01Jan2013, 12:08 | 1.3               |
| J11A                  | 0.019392               | 94.8                 | 01Jan2013, 12:08 | 8.8               |

|              |          | _     |                  | _    |
|--------------|----------|-------|------------------|------|
| J11B         | 0.023441 | 115.3 | 01Jan2013, 12:08 | 10.6 |
| J12          | 0.025925 | 127.5 | 01Jan2013, 12:09 | 11.8 |
| J13          | 0.02955  | 145.3 | 01Jan2013, 12:09 | 13.4 |
| J14A         | 0.011297 | 58    | 01Jan2013, 12:07 | 5.1  |
| J14B         | 0.111842 | 475.8 | 01Jan2013, 12:12 | 50.8 |
| J15          | 0.168132 | 537.7 | 01Jan2013, 12:21 | 72   |
| J2A          | 0.032746 | 132.2 | 01Jan2013, 12:12 | 14.9 |
| J2B          | 0.033652 | 136.2 | 01Jan2013, 12:12 | 15.3 |
| J3           | 0.03448  | 139.7 | 01Jan2013, 12:12 | 15.7 |
| J4           | 0.034683 | 140.5 | 01Jan2013, 12:12 | 15.8 |
| J5A          | 0.024187 | 99.8  | 01Jan2013, 12:12 | 11   |
| J5B          | 0.059792 | 244   | 01Jan2013, 12:12 | 27.2 |
| J6           | 0.061589 | 251.2 | 01Jan2013, 12:12 | 28   |
| J7           | 0.062417 | 254.3 | 01Jan2013, 12:13 | 28.4 |
| J8           | 0.070995 | 289.7 | 01Jan2013, 12:12 | 32.2 |
| OS1          | 0.02063  | 75.5  | 01Jan2013, 12:13 | 7.8  |
| OS2          | 0.03566  | 116   | 01Jan2013, 12:18 | 13.5 |
| OS3          | 0.01267  | 37.2  | 01Jan2013, 12:23 | 4.8  |
| Outfall      | 0.180802 | 574.2 | 01Jan2013, 12:22 | 76.8 |
| OutfallDitch | 0.168132 | 537   | 01Jan2013, 12:22 | 72   |
| Pond         | 0.132472 | 424.3 | 01Jan2013, 12:21 | 58.5 |
| R1           | 0.000547 | 2.8   | 01Jan2013, 12:08 | 0.2  |
| R10          | 0.002971 | 15.2  | 01Jan2013, 12:08 | 1.3  |
| R11          | 0.023441 | 115.1 | 01Jan2013, 12:09 | 10.6 |
| R12          | 0.025925 | 127.3 | 01Jan2013, 12:10 | 11.8 |
| R13          | 0.02955  | 144.9 | 01Jan2013, 12:10 | 13.4 |
| R2           | 0.033652 | 136.2 | 01Jan2013, 12:12 | 15.3 |
| R3           | 0.03448  | 139.6 | 01Jan2013, 12:12 | 15.7 |
| R4           | 0.034683 | 140.4 | 01Jan2013, 12:12 | 15.8 |
| R5           | 0.059792 | 243.6 | 01Jan2013, 12:13 | 27.2 |
| R6           | 0.061589 | 251   | 01Jan2013, 12:13 | 28   |
| R7           | 0.062417 | 254.1 | 01Jan2013, 12:13 | 28.4 |
| R8           | 0.070995 | 288.9 | 01Jan2013, 12:14 | 32.2 |
| R9           | 0.002719 | 13.9  | 01Jan2013, 12:08 | 1.2  |
|              |          |       |                  |      |

# **APPENDIX B**

## **Final Cover Soil Erosion Loss Calculation**



|           |     |             |          |        |              |                           | Page     | <b>1</b> of | f <b>13</b> |   |
|-----------|-----|-------------|----------|--------|--------------|---------------------------|----------|-------------|-------------|---|
| Written b | by: | <u>V. K</u> | rishnan  | Date:  | 10/12/2015   | Reviewed<br>& Revised by: | Z. Islam | Date:       | 10/29/2015  | - |
| Client:   | LCI | RA          | Project: | FPP CI | BL Expansion | Project No.:              | TXL0225  | Phase No.   | : 08        | _ |

# FINAL COVER SOIL EROSION LOSS CALCULATIONS LCRA FPP COMBUSTION BYPRODUCT LANDFILL



GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. F-1182

#### 1 PURPOSE

The purpose of this calculation package is to present the evaluation of the long term effects of erosion and soil loss for the completed final cover system of the LCRA FPP Combustion Byproduct Landfill (site) in La Grange, Texas. This package provides calculations for the annual soil loss from the vegetative support layer of the final cover system on the top deck and side slopes of Cells 1 and 2 of the landfill. The estimated amount of erosion was calculated using the Revised Universal Soil Loss Equation (RUSLE).

#### 2 PROJECT BACKGROUND

The final cover placement and closure of the landfill is expected to be completed when the design capacity of Cells 1 and 2 is reached. The top deck of the landfill will have a surface slope of approximately 3% and the external side slopes will be graded to 3 horizontal to 1 vertical (3H:1V). The final cover is designed with a surface water management system with permanent drainage features, including drainage downchutes, mid-slope drainage benches, perimeter drainage channels, and a chambered sediment/storm water detention pond. The drainage downchutes will convey flow from the top deck to the perimeter drainage channel and will be lined with articulated concrete block (ACB). The mid-slope drainage benches will collect and convey storm water runoff from the side slopes to the



|           |       |      |          |        |              |                         | Page     | <b>2</b> of | 13         |
|-----------|-------|------|----------|--------|--------------|-------------------------|----------|-------------|------------|
| Written b | oy: _ | V. K | rishnan  | _Date: | 10/12/2015   | Reviewed _& Revised by: | Z. Islam | Date:       | 10/29/2015 |
| Client:   | LCR   | A    | Project: | FPP C  | BL Expansion | Project No.:            | TXL0225  | _Phase No.: | 08         |

downchutes. The perimeter drainage channel will also collect and convey flow from the downchutes and side slopes to the storm water detention pond.

#### 3 FINAL COVER SOIL EROSION LOSS CALCULATION METHODOLOGY

The method to calculate the soil erosion loss over the project area was obtained from the guidance document *Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE)* (USDA, 1997) as well as previously published information provided by USDA. This document presents the RUSLE methodology and rationale for selecting each of the equation's parameters. The RUSLE is written as follows:

$$A = R \times K \times LS \times C \times P$$

where: A =computed spatial average annual soil loss (tons/acre/year);

R = average annual rainfall runoff erosivity factor;

K = soil erodibility factor;

LS = topographic factor;

C = cover management factor; and

P = erosion control practice factor.

#### 4 RUSLE INPUT PARAMETERS

#### 4.1 Rainfall Runoff Erosivity Factor (R)

The rainfall runoff erosivity factor is defined as the average annual rainfall erosion index specific for the project area. Based on USDA (1997), the value was determined to be approximately 330 for Fayette County, Texas, as shown in Figure 1 at the end of this document.

#### 4.2 Soil Erodibility Factor (K)

The soil erodibility factor is a function of the physical and chemical properties of the soil and is specific to the source of the cover material. The soil erodibility factor can be thought of as the ease with which soil is detached by splash during rainfall or by surface flow. The soils to be used for the final cover system of the landfill may be from native soils available at the project site or from local off-site sources. For soil loss calculation purposes, assessments were made of on-site soils and those nearby, using the Fayette



|           |     |             |          |        |              |                           | Page     | <b>3</b> of | f 13       |
|-----------|-----|-------------|----------|--------|--------------|---------------------------|----------|-------------|------------|
| Written l | by: | <b>V.</b> K | rishnan  | _Date: | 10/12/2015   | Reviewed<br>& Revised by: | Z. Islam | Date:       | 10/29/2015 |
| Client:   | LCI | RA          | Project: | FPP CI | BL Expansion | Project No.:              | TXL0225  | Phase No.   | : 08       |

County soil survey (USDA, 2004). This information shows that the site and nearby area has soils that are a combination of Straber gravelly loamy fine sand with 2-5% slopes (SxC), Latium gravelly clay with 5-12% slopes (LgD), Rek extremely gravelly coarse sandy loam with 2-5% slopes (RkC), and Frelsburg clay with 3-5% slopes (FrC). The Straber gravelly loamy fine sand formation constitute the majority of the site and will be used for cover material as shown in Figure 2 at the end of this document.

The Web Soil Survey tool operated by the USDA Natural Resources Conservation Service (NRCS) (USDA, 2014) was consulted for Fayette County for information on the corresponding soil erodibility factors. Near-surface soils (i.e., topsoil) will be used to construct the topsoil layer of the final cover system. The value of K for the project location soils near the surface varies from 0.24 to 0.32, where the estimate considers the erodibility of fine-earth fraction for material less than two mm in size (using the Kf erosion factor provided in Table 1). The surface layer soils which are proposed to be used for cover materials are Straber gravelly loamy fine sand, and value of K for this soil is 0.32. The use of 0.32 in the calculation is using a conservative value of the formations that are predominant at the site and surrounding areas (i.e., a likely candidate source of future final cover topsoil).

#### 4.3 Topographic Factor (LS)

The slope length factor and slope steepness factor are typically combined into one topographic factor, LS, to facilitate field application of these equation components. USDA (1997) presents values of the LS factor for slope lengths in feet up to 1,000 feet and percent slopes up to 60%, as shown in Table 2, for soils with vegetated cover with consolidated soil conditions.

The longest slope lengths for the side slope and top deck surfaces of the final cover system were used to select the LS factor for each area, and these lengths were applied to compute the soil loss for both portions of the landfill. The top deck surface will consist of a 3% slope with maximum length of 370 ft. The final cover system will consist of 3H:1V (33.3%) side slopes with mid-slope drainage benches. The maximum length of 3H:1V final cover side slope between benches is 170 ft. Also, a computation was performed for a hypothetical scenario of a 200 ft long side slope at 33.3% (in order to back-calculate the maximum bench spacing that would yield an acceptably low soil loss design). Based on these slope lengths, the following LS factors were selected (and interpolated if necessary) from Table 2:



|         |                      |          |        |              |                       | Page     | <b>4</b> of | 13         |
|---------|----------------------|----------|--------|--------------|-----------------------|----------|-------------|------------|
| Written | by: <u><b>V.</b></u> | Krishnan | _Date: | 10/12/2015   | Reviewed& Revised by: | Z. Islam | Date:       | 10/29/2015 |
| Client: | <b>LCRA</b>          | Project: | FPP C  | BL Expansion | Project No.:          | TXL0225  | Phase No.:  | 08         |

- Side Slopes 3H:1V (33.3%) over the maximum design slope length (between benches) of 170 ft, LS = 8.46
- Side Slopes 3H:1V (33.3%) over a hypothetical design slope length (between benches) of 200 ft, LS = 9.44
- Top Deck 3% slope over the maximum design slope length of 370 ft, LS = 0.59

#### 4.4 Cover Management Factor (C)

The cover management factor is a function of the type of land cover, based on three factors: (i) the vegetative cover in direct contact with the soil surface, (ii) the canopy cover, and (iii) the effects at and beneath the surface. The final cover is categorized as having no appreciable canopy with a vegetated cover of grass, grass-like plants, decaying compacted duff or litter ("litter" is an agronomic term which refers to mulch, leaves, and similar organic matter) at least 2 inches deep. The long-term post-closure ground cover condition is estimated to be 95-100% ground cover, which results in a C value of 0.003, as shown in Table 3 (USDA, 1977).

#### 4.5 Erosion Control Practice Factor (P)

The erosion control practice factor considers topographical practices that will reduce erosion by altering runoff drainage patterns. This factor generally applies to agricultural cropping practices and is not anticipated for the landfill. Therefore, the P factor is assumed to be equal to one (1).

#### 4.6 Tolerable Soil Loss (T)

The calculated soil loss should be compared to the tolerable (i.e., permissible) soil loss (T). A draft guidance document from Texas Commission on Environmental Quality (TCEQ, 2007) suggests that landfill final cover designs should have a permissible soil loss rate of 2 to 3 tons/acre/year. Also, the USDA soil-specific survey of Fayette County soils (USDA, 2014) lists the "T" factors recommended for each soil type. This value represents the maximum average annual rate of soil erosion "that can occur without affecting crop productivity over a sustained period". For the landfill case, the term "crop productivity" refers to vegetation sustainability (lack of excessive erosion). As shown in Table 1, the USDA's recommended permissible soil loss rate for the Frelsburg clay, Latium gravelly



|            |               |                   |                         | Page     | <b>5</b> of | 13         |
|------------|---------------|-------------------|-------------------------|----------|-------------|------------|
| Written by | . V. Krishnan | Date: 10/12/2015  | Reviewed _& Revised by: | Z. Islam | Date:       | 10/29/2015 |
| Client: 1  | LCRA Project: | FPP CBL Expansion | Project No.:            | TXL0225  | Phase No.:  | 08         |

clay, Rek extremely gravelly coarse sandy loam and Straber gravelly loamy fine sand in the site is 5 tons/acre/year. Based on the TCEQ and USDA publications, a maximum permissible soil loss value of 3 tons/acre/year will be used as the comparison criteria for this evaluation. However, it is important to recognize that the area/site-specific USDA soil survey indicates the properties of these soils can tolerate greater soil loss without affecting long-term conditions.

#### 5 SOIL EROSION LOSS RESULTS

Applying the RUSLE with the parameters defined above, the computed soil loss in tons/acre/year is calculated as follows:

$$A = R \times K \times LS \times C \times P$$

- Side Slopes, Design Case (maximum spacing of 170 ft between benches):  $A = 330 \times 0.32 \times 8.46 \times 0.003 \times 1 = 2.68 \text{ tons/acre/year}$
- Side Slopes, Back-Calculated Hypothetical Case (200 ft between benches): A =  $330 \times 0.32 \times 9.44 \times 0.003 \times 1 = 2.99$  tons/acre/year
- Top Deck, Design Case:  $A = 330 \times 0.32 \times 0.59 \times 0.003 \times 1 = 0.19$  tons/acre/year

#### 6 CONCLUSIONS

Based on the analyses presented herein, the following conclusions are drawn:

- Overall, the calculated soil loss from the final cover system design is below or within the permissible soil loss of 2 to 3 tons/acre/year suggested by TCEQ (2007), and is also below the permissible soil loss recommended by USDA (2014) for the area/site-specific soils. Specifically, results are:
  - O The average annual soil loss from the final cover on the external side slopes as-designed for all of the variables selected as the design case is 2.68 tons/acre/year, which is within the permissible rate of soil loss suggested by TCEQ (2007) for the final cover, and also below the permissible soil loss recommended by USDA (2014) for the area/site-specific soils.
  - o The annual soil loss from the final cover on the top deck surface asdesigned for all of the variables selected as the design case is 0.19



|            |                       |                   |                        | Page     | <b>6</b> of | 13         |
|------------|-----------------------|-------------------|------------------------|----------|-------------|------------|
| Written by | y: <b>V. Krishnan</b> | Date: 10/12/2015  | Reviewed & Revised by: | Z. Islam | Date:       | 10/29/2015 |
| Client:    | LCRA Project:         | FPP CBL Expansion | Project No.:           | TXL0225  | Phase No.:  | 08         |

tons/acre/year. This is much lower than the 2 to 3 tons/acre/year permissible rate of soil loss suggested by TCEQ (2007) for the final cover, and even further below permissible soil loss recommended by USDA (2014) for the area/site-specific soils.

• To provide effective erosional stability against soil loss, the maximum spacing of the final cover side slope drainage benches on the 3H:1V external side slopes should be 200 ft or less. The design meets this spacing requirement.

#### 7 REFERENCES

- EPA (2015). Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule, United States Environmental Protection Agency, 40 CFR Parts 257 and 261, Federal Register, Vol. 80, No.74.
- TCEQ (2007). Guidance for Addressing Erosional Stability During All Phases of Landfill Operation (Draft), Texas Commission on Environmental Quality, 14 February 2007.
- USDA (1977). Procedure for Computing Sheet and Rill Erosion on Project Areas, United States Department of Agriculture, Soil Conservation Services, Engineering Division and Ecological Sciences and Technology Division, Technical Release No. 51, Revision 2.
- USDA (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), United States Department of Agriculture, Agricultural Research Service, Agriculture Handbook Number 703.
- USDA (2004). *Soil Survey of Fayette County, Texas*, United States Department of Agriculture and Natural Resources Conservation Service, with Texas Agricultural Experiment Station and Texas State Soil and Water Conservation Board, Issued 2004.
- USDA (2014). Web Soil Survey, Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, available online at <a href="http://websoilsurvey.nrcs.usda.gov">http://websoilsurvey.nrcs.usda.gov</a>, accessed October 2015.

### **TABLES**

- Table 1. Soil Erodibility Factor K for Site Soils (from USDA, 2014)
- Table 2. Values for Topographic Factor, LS, for Low Ratio of Rill to Interrill Erosion (from USDA, 1997)
- Table 3. C Factor Cover Values for Permanent Pasture, Rangeland, Idle Land, and Grazed Woodland (from USDA, 1977)

# Table 1. Soil Erodibility Factor K for Site Soils (from USDA, 2014)

| RUSLE2 Related Attributes–Fayette County, Texas                     |          |                |                  |     |          |        |                      |        |  |  |  |
|---------------------------------------------------------------------|----------|----------------|------------------|-----|----------|--------|----------------------|--------|--|--|--|
| Map symbol and soil name                                            | Pct. of  | Slope          | Hydrologic group | Kf  | T factor | Repre  | Representative value |        |  |  |  |
|                                                                     | map unit | length<br>(ft) |                  |     |          | % Sand | % Silt               | % Clay |  |  |  |
| FrC—Frelsburg clay, 3 to 5 percent slopes                           |          |                |                  |     |          |        |                      |        |  |  |  |
| Frelsburg                                                           | 85       | 180            | D                | .24 | 5        | 22.0   | 28.0                 | 50.0   |  |  |  |
| LgD—Latium gravelly clay, 5 to 12 percent slopes                    |          |                |                  |     |          |        |                      |        |  |  |  |
| Latium                                                              | 100      | 125            | D                | .24 | 5        | 22.1   | 27.9                 | 50.0   |  |  |  |
| RkC—Rek extremely gravelly coarse sandy loam, 2 to 5 percent slopes |          |                |                  |     |          |        |                      |        |  |  |  |
| Rek                                                                 | 100      | 180            | D                | .24 | 5        | 65.2   | 23.3                 | 11.5   |  |  |  |
| SxC—Straber gravelly loamy<br>fine sand, 2 to 5 percent<br>slopes   |          |                |                  |     |          |        |                      |        |  |  |  |
| Straber                                                             | 100      | 180            | D                | .32 | 5        | 86.4   | 6.6                  | 7.0    |  |  |  |

Table 2. Values for Topographic Factor, LS, for Low Ratio of Rill to Interrill Erosion<sup>1</sup> (from USDA, 1997)

Table 4-2.

Values for topographic factor, LS, for moderate ratio of rill to interrill erosion.<sup>1</sup>

|              |      |      |      |      |      |      |      | Hor  | izontal slo | pe length | (ft)   |       |       |       |       |       |       |
|--------------|------|------|------|------|------|------|------|------|-------------|-----------|--------|-------|-------|-------|-------|-------|-------|
| Slope<br>(%) | 3    | 6    | 9    | 12   | 15   | 25   | 50   | 75   | 100         | 150       | 200    | 250   | 300   | 400   | 600   | 800   | 1000  |
| 0.2          | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05        | 0.05      | 0.05   | 0.05  | 0.05  | 0.05  | 0.06  | 0.06  | 0.06  |
| 0.5          | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 80.0 | 0.08 | 0.08 | 0.09        | 0.09      | 0.09   | 0.09  | 0.09  | 0.10  | 0.10  | 0.10  | 0.10  |
| 1.0          | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.13 | 0.14 | 0.14        | 0.15      | 0.16   | 0.17  | 0.17  | 0.18  | 0.19  | 0.20  | 0.20  |
| 2.0          | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.19 | 0.22 | 0.25 | 0.27        | 0.29      | 0.31   | 0.33  | 0.35  | 0.37  | 0.41  | 0.44  | 0.47  |
| 3.0          | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.25 | 0.32 | 0.36 | 0.39        | 0.44      | 0.48   | 0.52  | 0.55  | 0.60  | 0.68  | 0.75  | 0.80  |
| 4.0          | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.31 | 0.40 | 0.47 | 0.52        | 0.60      | 0.67   | 0.72  | 0.77  | 0.86  | 0.99  | 1.10  | 1.19  |
| 5.0          | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.37 | 0.49 | 0.58 | 0.65        | 0.76      | 0.85   | 0.93  | 1.01  | 1.13  | 1.33  | 1.49  | 1.63  |
| 6.0          | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.43 | 0.58 | 0.69 | 0.78        | 0.93      | 1.05   | 1.16  | 1.25  | 1.42  | 1.69  | 1.91  | 2.11  |
| 8.0          | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.53 | 0.74 | 0.91 | 1.04        | 1.26      | 1.45   | 1.62  | 1.77  | 2.03  | 2.47  | 2.83  | 3.15  |
| 10.0         | 0.46 | 0.48 | 0.50 | 0.51 | 0.52 | 0.67 | 0.97 | 1.19 | 1.38        | 1.71      | 1.98   | 2.22  | 2.44  | 2.84  | 3.50  | 4.06  | 4.56  |
| 12.0         | 0.47 | 0.53 | 0.58 | 0.61 | 0.64 | 0.84 | 1.23 | 1.53 | 1.79        | 2.23      | 2,61   | 2.95  | 3.26  | 3.81  | 4.75  | 5.56  | 6.28  |
| 14.0         | 0.48 | 0.58 | 0.65 | 0.70 | 0.75 | 1.00 | 1.48 | 1.86 | 2.19        | 2.76      | 3.25   | 3.69  | 4.09  | 4.82  | 6.07  | 7.15  | 8.11  |
| 16.0         | 0.49 | 0.63 | 0.72 | 0.79 | 0.85 | 1.15 | 1.73 | 2.20 | 2.60        | 3.30      | 3.90   | 4.45  | 4.95  | 5.86  | 7.43  | 8.79  | 10.02 |
| 20.0         | 0.52 | 0.71 | 0.85 | 0.96 | 1.06 | 1.45 | 2.22 | 2.85 | 3.40        | 4.36      | 5.21   | 5.97  | 6.68  | 7.97  | 10.23 | 12.20 | 13.99 |
| 25.0         | 0.56 | 0.80 | 1.00 | 1.16 | 1.30 | 1.81 | 2.82 | 3.65 | 4.39        | 5.69      | 6.83   | 7.88  | 8.86  | 10.65 | 13.80 | 16.58 | 19.13 |
| 30.0         | 0.59 | 0.89 | 1.13 | 1.34 | 1.53 | 2.15 | 3.39 | 4.42 | 5.34        | 6.98      | 8.43   | 9.76  | 11.01 | 13.30 | 17.37 | 20.99 | 24.31 |
| 40.0         | 0.65 | 1.05 | 1.38 | 1.68 | 1.95 | 2.77 | 4.45 | 5.87 | 7.14        | 9.43      | 1,1.47 | 13.37 | 15.14 | 18.43 | 24.32 | 29.60 | 34.48 |
| 50.0         | 0.71 | 1.18 | 1.59 | 1.97 | 2.32 | 3.32 | 5.40 | 7.17 | 8.78        | 11.66     | 14.26  | 16.67 | 18.94 | 23.17 | 30.78 | 37.65 | 44.02 |
| 60.0         | 0.76 | 1.30 | 1.78 | 2.23 | 2.65 | 3.81 | 6.24 | 8.33 | 10.23       | 13.65     | 16.76  | 19.64 | 22.36 | 27.45 | 36.63 | 44.96 | 52.70 |

<sup>&</sup>lt;sup>1</sup>Such as for row-cropped agricultural and other moderately consolidated soil conditions with little-to-moderate cover (not applicable to thawing soil)

Table 3. C Factor Cover Values for Permanent Pasture, Rangeland, Idle Land, and Grazed Woodland<sup>1</sup>
(from USDA, 1977)

| Vegetal Canopy                    | Cover That Contacts the Surface |                     |                      |      |      |      |      |        |  |
|-----------------------------------|---------------------------------|---------------------|----------------------|------|------|------|------|--------|--|
| Type and Height of Raised Canopy_ | Canopy<br>Cover 3/              | Type <sup>4</sup> / | Percent Ground Cover |      |      |      |      |        |  |
|                                   | %                               |                     | 0                    | 20   | 40   | 60   | 80   | 95-100 |  |
| No appreciable canopy             | ,                               | G                   | .45                  | . 20 | .10  | .042 | .013 | .003   |  |
| no approcraore canopy             | ,                               | W                   | .45                  | .24  | .15  | .090 | .043 | .011   |  |
| Canopy of tall weeds              | 25                              | C                   | 7.6                  | 17   |      | 070  | 012  | 007    |  |
| or short brush                    | 25                              | G<br>W              | .36                  | .17  | .09  | .038 | .012 | .003   |  |
| (0.5 m fall ht.)                  | 50                              | G                   | .36                  | .20  | .13  | .082 | .041 | .011   |  |
| (0.5 m fall nt.)                  | 30                              | W                   | . 26                 | .16  | .11  | .035 | .012 | .003   |  |
|                                   | 75                              |                     | .17                  |      |      | .075 | .039 | .011   |  |
|                                   | 75                              | G                   |                      | .10  | .06  | .031 | .011 | .003   |  |
|                                   |                                 | W                   | .17                  | .12  | .09  | .067 | .038 | .011   |  |
| Appreciable brush                 | 25                              | G                   | .40                  | .18  | .09  | .040 | .013 | .003   |  |
| or bushes                         |                                 | W                   | .40                  | .22  | .14  | .085 | .042 | .011   |  |
| (2 m fall ht.)                    | 50                              | : G                 | . 34                 | .16  | .085 | .038 | .012 | .003   |  |
|                                   |                                 | W                   | . 34                 | .19  | .13  | .081 | .041 | .011   |  |
|                                   | 75                              | G                   | .28                  | .14  | .08  | .036 | .012 | .003   |  |
|                                   |                                 | W                   | .28                  | .17  | .12  | .077 | .040 | .011   |  |
| Trees but no appre-               | 25                              | G                   | .42                  | .19  | .10  | .041 | .013 | .003   |  |
| ciable low brush                  | 20                              | W                   | .42                  | .23  | .14  | .087 | .042 | .011   |  |
| (4 m fall ht.)                    | 50                              | Ğ                   | .39                  | .18  | .09  | .040 | .042 | .003   |  |
| (4 m rati Htt.)                   | 30                              | W                   | . 39                 | . 21 | .14  | .085 | .042 | .003   |  |
|                                   | 75                              | G                   | . 36                 | .17  | .09  | .039 |      |        |  |
|                                   | /3                              |                     |                      |      | .13  |      | .012 | .003   |  |
|                                   |                                 | W                   | . 36                 | .20  | .13  | .083 | .041 | .011   |  |

 $<sup>\</sup>frac{1}{\text{All}}$  values shown assume: (1) random distribution of mulch or vegetation, and (2) mulch of appreciable depth where it exists. Idle land refers to land with undisturbed profiles for at least a period of three consecutive years. Also to be used for burned forest land and forest land that has been harvested less than three years ago.

W:Cover at surface is mostly broadleaf herbaceous plants (as weeds with little lateral-root network near the surface), and/or undecayed residue.

 $<sup>\</sup>frac{2}{\text{Average}}$  fall height of waterdrops from canopy to soil surface: m = meters.

 $<sup>\</sup>frac{3}{P}$  Portion of total-area surface that would be hidden from view by canopy in a vertical projection, (a bird's-eye view).

 $<sup>\</sup>frac{4}{\text{G}}$ : Cover at surface is grass, grasslike plants, decaying compacted duff, or litter at least 2 inches deep.

## **FIGURES**

- Figure 1. Average Annual Erosivity Factor, R, Isoerodent Map (from USDA, 1996)
- Figure 2. Soil Survey Map

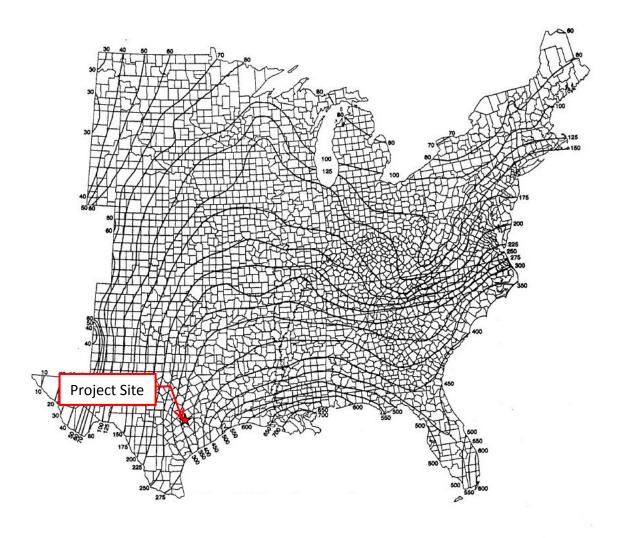



Figure 1. Average Annual Rainfall Runoff Erosivity Factor, R, Isoerodent Map (from USDA, 1997)



Figure 2. Soil Survey Map (from USDA, 2014)

### **APPENDIX C**

# Stormwater Management System - Active Conditions



consultants

22 Page Reviewed & Revised by: B. Klenzendorf Date: 6/28/2021 6/14/2021 Written by: O. Bramlet Date: FPP Run-on Run-off TXW8067 Phase No.: 03 Project No.: Project: Plan Update Client: LCRA

#### SURFACE WATER MANAGEMENT SYSTEM -**ACTIVE CONDITIONS**



GEOSYNTEC CONSULTANTS, INC. TX ENG FIRM REGISTRATION NO. F-1182

#### **PURPOSE**

The purpose of this calculation package is to present the analysis of the surface water management system for the active conditions of the Combustion Byproduct Landfill (CBL) at LCRA's Fayette Power Project (FPP) in La Grange, Texas. The term "active" refers to that part of a coal combustion residuals (CCR) unit that has received or is receiving waste and has not completed closure (40 CFR §257.53). Thus, the active portion includes areas where waste is being disposed and inactive areas, including areas overlain with intermediate cover.

The United States Environmental Protection Agency (USEPA) CCR rule (40 CFR 257.81(a)) and Title 30 Texas Administrative Code (30 TAC), Chapter 352.821 (30 TAC §352.821) require that runoff control systems be designed to collect and control flow from a 25-year, 24hour storm. The engineering calculations described herein were performed to ensure that the features used for managing surface water from the active portion of the CBL are equipped to convey runoff from the current 25-year, 24-hour storm event.

#### COMPONENTS **AND SYSTEM SURFACE** WATER **MANAGEMENT OPERATIONAL PROCEDURES**

Runoff from active areas in Cell 1 of the CBL currently drains to the Runoff Retention Pond via the runoff channel (Drawing 2). Contact water from the Subcell 2D Contact Water Retention Pond is managed through a permanent pumping system which routes flow to the runoff channel. The runoff channel conveys contact water flow to the Runoff Retention Pond which is permitted



consultants

22 Page of Reviewed Written by: & Revised by: B. Klenzendorf Date: 6/28/2021 O. Bramlet Date: 6/14/2021 FPP Run-on Run-off Phase No.: 03 Client: LCRA Project: Project No.: TXW8067 Plan Update

under LCRA's Texas Pollutant Discharge Elimination System (TPDES) Permit No. WQ0002105000 and is designated as the "CBL Pond" in the permit. The permit allows water in the CBL Pond to be managed by pumping to the FPP Reclaim Pond or, if effluent limitations are met, by discharging via Outfall 004. The CBL Pond will be used for management of contact water from the active area until the Leachate Evaporation Pond (Drawing 4) is constructed, which will occur prior to disposal of CCR in Subcell 2A (Drawing 4).

Facility personnel monitor the water levels of the Subcell 2D Contact Water Retention Pond, Runoff Retention Pond, and the FPP Reclaim Pond to manage the surface water throughout the facility in order to minimize off-site discharge from the Runoff Retention Pond and FPP Reclaim Pond. Facility personnel are on-site 24-hours per day, 7-days per week and monitor the weather forecast to identify anticipated storm events and manage pumping of the Subcell 2D Contact Water Retention Pond and Runoff Retention Pond accordingly. The Subcell 2D Contact Water Retention Pond is equipped with a permanent pumping system which conveys flow from the pond to the runoff channel. The pump at the Subcell 2D Contact Water Retention Pond is manually operated by facility personnel to maintain an appropriate freeboard before each forecasted storm event. The Subcell 2D Contact Water Retention Pond is approximately 11-feet deep and must maintain a minimum water depth of 15-inches. The Runoff Retention Pond is equipped with a permanent pump system with an underground HDPE pipe to the concrete storm drainage system leading to the FPP Reclaim Pond. The pump at the Runoff Retention Pond is manually operated by facility personnel to maintain an appropriate freeboard before each forecasted storm event. The FPP Reclaim Pond is a settling and scrubber evaporation pond without a direct surface water discharge. Additionally, water from the FPP Reclaim Pond can be recycled through facility processing areas as appropriate.

Improvements to the Runoff Retention Pond inflow structure where recently completed which included construction of a concrete let-down structure equipped with energy dissipation blocks constructed in 2021. The let-down structure was constructed to reduce the potential for erosion at the inflow of the runoff channel into the Runoff Retention Pond. A bathymetric survey of the Runoff Retention Pond was completed on 28 February 2008 to develop pond volume rating curves. An additional bathymetric survey was completed in December 2015 to develop updated pond volume rating curves and to provide estimates of the sediment accumulation near the pond inflow structure. An updated sediment accumulation survey was completed in 24 April 2020 which estimated an approximate depth of accumulated sediment of 3 feet across the entire bottom of the pond. During the site visit conducted by Geosyntec on 7 June 2021, it was confirmed that there has been no excavation of the 3 feet of sediment accumulation to date.



|           |             |         |        |                   |                        |                        | Page           | <b>3</b> of | 22        |
|-----------|-------------|---------|--------|-------------------|------------------------|------------------------|----------------|-------------|-----------|
| Written b | y: <u>(</u> | O. Bran | ılet   | _Date:            | 6/14/2021              | Reviewed & Revised by: | B. Klenzendorf | Date:       | 6/28/2021 |
| Client:   | LCR         | A Pro   | oject: | FPP Ru<br>Plan Uj | ın-on Run-off<br>pdate | _Project No.:          | TXW8067        | Phase No.:  | 03        |

Therefore, for the purposes of the calculations described in this package, Geosyntec deducted the volume occupied by the sediment accumulation from the total pond volume generated by the bathymetric surveys to account for sediment accumulation (i.e., removed the bottom 3 feet from the storage curve).

#### **CALCULATION METHODOLOGY**

#### **Design Storm Return Period**

In accordance with 40 CFR 257.81(a) and 30 TAC §352.821 runoff control systems for CCR management units be designed to collect and control flow from a 25-year, 24-hour storm.

#### **Rainfall Information**

Latest available precipitation frequency estimates were obtained from the National Oceanic Atmospheric Administration (NOAA) Precipitation Frequency Data Server (PFDS). The current 25-year, 24-hour rainfall depth at the CBL is 9.36 inches, as shown in Table 1 (NOAA, 2018).

#### **Hydrology**

Intensity of rainfall for design is based on calculations for times of concentration and intensity-duration-frequency relationships using the procedures outlined by the TxDOT *Hydraulic Design Manual* (TxDOT, 2019). Peak design discharges are calculated based on the Rational Method recommended for small basins for either undeveloped or developed lands. The Rational Method is appropriate for estimating peak discharges for drainage areas less than 200 acres (TxDOT, 2019).

The SCS Curve Number method outlined in TR-55 (USDA, 1986) is used to estimate runoff volumes as recommended by TCEQ (2020) and to evaluate the capacity of the Runoff Retention Pond and Subcell 2D Contact Water Retention Pond.

#### **Hydraulic Analysis**

Hydraulic design of the runoff channel was evaluated using Manning's equation for open channel flow (Chow, 1959). Manning's equation was used to estimate the average maximum velocity and tractive stress within the channel.



|                   |             |                                   |                         | Page           | <b>4</b> of | 22        |
|-------------------|-------------|-----------------------------------|-------------------------|----------------|-------------|-----------|
| Written by:       | O. Bramlet  | Date: <u>6/14/2021</u>            | Reviewed  & Revised by: | B. Klenzendorf | Date:       | 6/28/2021 |
| Client: <u>LC</u> | RA Project: | FPP Run-on Run-off<br>Plan Update | Project No.:            | TXW8067        | Phase No.:  | 03        |

The storage capacity of the Runoff Retention Pond, generated from the latest available bathymetric survey, was reviewed to ensure that the pond contains the appropriate capture volume for the estimated runoff volume from the CBL. The stage-storage curve for the Runoff Retention Pond is presented in Figure 1. Available freeboard in the Runoff Retention Pond during the 25-year, 24-hour storm event was calculated based on the updated pond bottom (328-feet rather than 325-feet, accounting for sediment accumulation) and the spillway overflow elevation of 338-feet.

Additionally, the storage capacity of the Subcell 2D Contact Water Retention Pond was reviewed to ensure that the pond contains the appropriate capture volume for the estimated runoff volume from the Subcell 2D drainage area. The stage-storage curve for the Subcell 2D Contact Water Retention Pond is presented in Figure 2. Available freeboard during the 25-year, 24-hour storm event was calculated based on the top of berm elevation of 352-feet.

#### **COMPUTATIONS**

#### **Rational Method for Hydrologic Analysis**

The Rational Method was applied to evaluate the design of the stormwater management features. The Rational Method is expressed as follows:

$$Q = C \times I \times A$$

where:

Q = flow rate (cfs);

C = runoff coefficient;

I = rainfall intensity (in./hr); and

A =contributing drainage area (acres).

#### **Estimation of Contributing Drainage Area**

The contributing drainage area for the Runoff Retention Pond is delineated in Figure 3. The total contributing drainage area of approximately 30-acres was estimated based on existing contours provided by LCRA.



|                   |              |                                   |                         | Page           | <b>5</b> of | 22        |
|-------------------|--------------|-----------------------------------|-------------------------|----------------|-------------|-----------|
| Written by:       | O. Bramlet   | Date: <u>6/14/2021</u>            | Reviewed  & Revised by: | B. Klenzendorf | Date:       | 6/28/2021 |
| Client: <u>LC</u> | ERA Project: | FPP Run-on Run-off<br>Plan Update | Project No.:            | TXW8067        | Phase No.:  | 03        |

The contributing drainage area for the Subcell 2D Contact Water Retention Pond is also delineated in Figure 3. The total contributing drainage area of approximately 8acres was estimated based on design contours.

#### **Estimation of Runoff Coefficient for Rational Method**

The runoff coefficient is estimated from the TxDOT *Hydraulic Design Manual* (TxDOT, 2019) for rural watersheds as presented in Table 2. The total runoff coefficient is conservatively estimated to be equal to 0.70 based on the following equation:

$$C = C_r + C_i + C_v + C_s$$

where: C = total runoff coefficient = 0.70;

 $C_r$  = relief runoff coefficient = 0.28;

 $C_i$  = soil infiltration runoff coefficient = 0.16;

 $C_v$  = vegetal cover runoff coefficient = 0.16; and

 $C_s$  = surface runoff coefficient = 0.10.

#### Estimation of Time of Concentration and Peak Rainfall Intensity for Rational Method

TxDOT (2019) recommends 10 minutes as the minimum time of concentration for the Rational Method because small areas with exceedingly short times of concentration could result in design rainfall intensities that are unrealistically high. The rainfall intensity for the 25-year, 10-minute duration storm event at the CBL is 8.61 inches per hour, as shown in Table 3 (NOAA, 2018).

#### **Estimation of Peak Design Discharge**

The Rational Method was used to estimate the peak discharge rate during the 25-year, 10-minute storm event for the contributing drainage area as described above.

#### **SCS Curve Number Method for Hydrologic Analysis**

It is recommended (TCEQ, 2020) to use the TR-55 SCS Curve Number Method to compute runoff volumes. The runoff depth in inches is calculated based on the following equation from USDA, 1986:



|                              |                                   |                       | Page           | <b>6</b> of | 22        |
|------------------------------|-----------------------------------|-----------------------|----------------|-------------|-----------|
| Written by: O. Bramlet       | Date: <u>6/14/2021</u>            | Reviewed& Revised by: | B. Klenzendorf | Date:       | 6/28/2021 |
| Client: <u>LCRA</u> Project: | FPP Run-on Run-off<br>Plan Update | Project No.:          | TXW8067        | Phase No.:  | 03        |

$$Q = (P - 0.2S)^2 / (P + 0.8S)$$

where:

Q = runoff depth (in);

P = rainfall depth (in); and

S = potential maximum retention after runoff begins (in).

The potential maximum retention, S, is calculated based on the following equation from USDA, 1986:

$$S = (1000 / CN) - 10$$

where: CN = Curve Number.

The Curve Number was selected to be 84 as the most conservative case, as recommended by TCEQ (2020) for North Central Texas areas in hilly regions with clay soils.

#### Surface Water Management System Components Hydraulic Analysis

Manning's equation was used to estimate the average peak velocity within the runoff channel. The average flow velocities were estimated for the 25-year water depth using the following equation (Chow, 1959):

$$V = \frac{1.49}{n} R_h^{2/3} S^{1/2}$$

where:

V = average velocity (ft/sec);

*n* = Manning's roughness coefficient;

 $R_h = \text{hydraulic radius (ft)} = A/P;$ 

 $A = cross sectional area (ft^2);$ 

P = wetted perimeter (ft); and

S =slope of hydraulic grade line (channel slope, ft/ft).

Manning's roughness coefficient was selected from Table 4 for a grass-lined channel. Average discharge is equal to the average velocity times the area of cross-section of flow (i.e., Q = VA).



|            |             |          |                   |                        |                           | Page           | 7 of       | 22        |
|------------|-------------|----------|-------------------|------------------------|---------------------------|----------------|------------|-----------|
| Written by | : <u>O.</u> | Bramlet  | Date:             | 6/14/2021              | Reviewed<br>& Revised by: | B. Klenzendorf | Date:      | 6/28/2021 |
| Client: 1  | LCRA        | Project: | FPP Ru<br>Plan Uj | nn-on Run-off<br>odate | Project No.:              | TXW8067        | Phase No.: | 03        |

The tractive stresses in the runoff channel for various depths of flow are estimated using the following equation (Chow, 1959):

$$\tau_0 = \gamma_w R_h S$$

where:

 $\tau_o$  = average tractive stress (lb/ft<sup>2</sup>);

 $\gamma_w = \text{unit weight of water (lb/ft}^3);$ 

 $R_h$  = hydraulic radius of flow (ft); and

S = channel slope (ft/ft).

Permissible tractive stresses for grass-lined channels range from 0.35 psf to 3.70 psf depending on the retardation class of vegetation. Retardation Class C (which includes Bermuda and Crab grasses among others) is selected for the design of grass-lined channels (



|             |              |                    |                      |                         | Page           | <b>8</b> of | 22        |
|-------------|--------------|--------------------|----------------------|-------------------------|----------------|-------------|-----------|
| Written by: | O. Bramlet   | _Date:             | 6/14/2021            | Reviewed  & Revised by: | B. Klenzendorf | Date:       | 6/28/2021 |
| Client: Lo  | CRA Project: | FPP Rui<br>Plan Up | n-on Run-off<br>date | Project No.:            | TXW8067        | Phase No.:  | 03        |

Table 5) and has a maximum permissible tractive stress of 1.0 psf (Table 6) according to TxDOT (2019).

#### RESULTS

Hydraulic calculations for the runoff channel are provided in Appendix C-1. The results of the hydraulic analysis are summarized below.

#### Summary of Runoff Channel

- 25-year Rainfall Design Discharge = 180.8 cfs
- Top Width = 28.0 ft
- Channel Slope = 1.27%
- Manning's n = 0.027 (Error! Reference source not found.2)
- Side Slopes = 3H:1V
- Bottom Width = 10.0 ft
- Available Depth of Flow = 3.0 ft
- 25-year Calculated Depth of Flow = 1.68 ft
- Calculated Depth of Flow < Available Depth of Flow
- Allowable Tractive Stress = 1.0 psf (Table 6)
- 25-year Calculated Average Tractive Stress = 0.97 psf
- Calculated Average Tractive Stress < Allowable Tractive Stress

The results of the hydraulic analysis of the Runoff Retention Pond and the Subcell 2D Contact Water Retention Pond are summarized below.

#### Summary of Runoff Retention Pond

- Drainage Area for the CBL = 30 acres
- Original Pond Bottom Elevation = 325.0 ft
- Updated Pond Bottom Elevation (accounting for approximately 3-feet of sediment accumulation) = 328.0 ft
- Spillway Overflow Elevation = 338.0 ft
- Available Storage Volume at Spillway Overflow Elevation = 18.96 ac-ft
- 25-year, 24-hour Runoff Volume for the CBL = 18.52 ac-ft
- Calculated 25-year Runoff Volume < Available Storage Volume



|            |               |                                   |                         | Page           | <b>9</b> of | 22        |
|------------|---------------|-----------------------------------|-------------------------|----------------|-------------|-----------|
| Written by | O. Bramlet    | Date: <u>6/14/2021</u>            | Reviewed  & Revised by: | B. Klenzendorf | _Date:      | 6/28/2021 |
| Client: 1  | LCRA Project: | FPP Run-on Run-off<br>Plan Update | Project No.:            | TXW8067        | Phase No.:  | 03        |

#### Summary of Subcell 2D Contact Water Retention Pond

- Drainage Area for Subcell 2D Retention Pond = 8 acres
- Pond Bottom Elevation = 341.0 ft
- Top of Berm Elevation = 352.0 ft
- Available Storage Volume = 12.40 ac-ft
- 25-year, 24-hour Runoff Volume for the CBL = 4.83 ac-ft
- Calculated 25-year Runoff Volume < Available Storage Volume

#### CONCLUSIONS

Results presented in this calculation package indicate that the surface water management system for the active conditions is sufficient to convey runoff from the current 25-year, 24-hour storm event. The existing surface water management system at the Coal Combustion Byproduct Landfill at the LCRA Fayette Power Project site in La Grange, Texas is anticipated to collect and control the runoff resulting from a 25-year, 24-hour storm event and the Runoff Retention Pond and the Subcell 2D Contact Water Retention Pond will maintain adequate capacity during the specified design storm.

#### REFERENCES

- Chow, V.T. (1959). *Open-Channel Hydraulics*, McGraw-Hill Book Company, Inc., New York, NY.
- Texas Commission on Environmental Quality (2020). "Coal Combustion Residuals Landfill" Waste Permits Division, Draft Technical Guideline No. 30. May 2020.
- TxDOT (2019). *Hydraulic Design Manual*, Texas Department of Transportation, Austin, Texas, revised September 2019.
- NOAA (2018). *Precipitation-Frequency Atlas of the United States*, National Oceanic and Atmospheric Administration, Volume 9, Version 2.0. Available online: https://hdsc.nws.noaa.gov/hdsc/pfds/, accessed May 2021. La Grange, Texas Latitude: 29.9075°, longitude: -96.7565°.
- USDA (1986). *Urban Hydrology for Small Watersheds*, Technical Release 55, Natural Resources Conservation Service, United States Department of Agriculture, Washington, D.C.

### **TABLES**

- Table 1 NOAA Precipitation Depth Estimates for the CBL (from NOAA, 2018)
- Table 2 Runoff Coefficients (C) for Rural Watersheds (from TxDOT, 2019)
- Table 3 NOAA Precipitation Intensity Estimates for the CBL (from NOAA, 2018)
- Table 4 Manning's Roughness Coefficient for Open Channel Flow (from Chow, 1959)
- Table 5 Retardation Classes for Lining Materials (from TxDOT, 2019)
- Table 6 Permissible Shear Stresses for Various Linings (from TxDOT, 2019)

# Table 1 – NOAA Precipitation Depth Estimates for the CBL (from NOAA, 2018)



NOAA Atlas 14, Volume 11, Version 2 Location name: La Grange, Texas, USA\* Latitude: 29.9075°, Longitude: -96.7565° Elevation: 381.96 ft\*\* \*source: ESRI Maps \*\* source: USGS



#### POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

#### PF tabular

| Duration |                     |               |               | Average             | recurrence   | interval ()  | /ears)       |              |              |            |
|----------|---------------------|---------------|---------------|---------------------|--------------|--------------|--------------|--------------|--------------|------------|
| Duration | 1                   | 2             | 5             | 10                  | 25           | 50           | 100          | 200          | 500          | 1000       |
| 5-min    | 0.470               | 0.543         | 0.665         | 0.764               | 0.898        | 1.00         | 1.10         | 1.21         | 1.35         | 1.45       |
|          | (0.356-0.621)       | (0.416-0.713) | (0.507-0.874) | (0.573-1.02)        | (0.652-1.23) | (0.707-1.41) | (0.759-1.60) | (0.810-1.79) | (0.874-2.07) | (0.920-2.3 |
| 10-min   | 0.746               | 0.864         | 1.06          | 1.22                | 1.44         | 1.60         | 1.76         | 1.92         | 2.13         | 2.28       |
|          | (0.565-0.986)       | (0.661-1.13)  | (0.807-1.39)  | (0.914-1.62)        | (1.04-1.97)  | (1.13-2.26)  | (1.22-2.58)  | (1.29-2.86)  | (1.38-3.27)  | (1.44-3.60 |
| 15-min   | 0.946               | 1.09          | 1.33          | 1.53                | 1.79         | 1.99         | 2.19         | 2.39         | 2.66         | 2.87       |
|          | (0.716-1.25)        | (0.835-1.43)  | (1.01-1.75)   | (1.15-2.03)         | (1.30-2.46)  | (1.41-2.81)  | (1.51-3.17)  | (1.61-3.56)  | (1.73-4.10)  | (1.82-4.5  |
| 30-min   | 1.35                | 1.55          | 1.88          | 2.15                | 2.51         | 2.78         | 3.05         | 3.34         | 3.73         | 4.05       |
|          | (1.02-1.78)         | (1.18-2.03)   | (1.43-2.47)   | (1.61-2.86)         | (1.82-3.43)  | (1.96-3.91)  | (2.10-4.42)  | (2.24-4.97)  | (2.43-5.76)  | (2.56-6.3) |
| 60-min   | 1.76                | 2.03          | 2.49          | 2.86                | 3.36         | 3.73         | 4.12         | 4.55         | 5.15         | 5.64       |
|          | (1.33-2.32)         | (1.56-2.67)   | (1.90-3.27)   | (2.15-3.81)         | (2.43-4.60)  | (2.64-5.26)  | (2.84-5.97)  | (3.06-6.77)  | (3.35-7.94)  | (3.57-8.9  |
| 2-hr     | 2.13                | 2.52          | 3.15          | 3.69                | 4.43         | 5.01         | 5.62         | 6.33         | 7.38         | 8.25       |
|          | (1.62-2.79)         | (1.94-3.26)   | (2.42-4.11)   | (2.79-4.88)         | (3.23-6.02)  | (3.55-7.00)  | (3.90-8.09)  | (4.28-9.37)  | (4.81-11.3)  | (5.24-13.  |
| 3-hr     | 2.33                | 2.81          | 3.57          | 4.22                | 5.16         | 5.89         | 6.69         | 7.64         | 9.06         | 10.3       |
|          | (1.79-3.04)         | (2.16-3.60)   | (2.74-4.62)   | (3.20-5.56)         | (3.78-6.98)  | (4.20-8.21)  | (4.66-9.60)  | (5.18-11.3)  | (5.92-13.8)  | (6.53-16.  |
| 6-hr     | 2.67                | 3.32          | 4.29          | 5.17                | 6.46         | 7.52         | 8.71         | 10.1         | 12.2         | 14.0       |
|          | (2.06-3.46)         | (2.54-4.17)   | (3.32-5.50)   | (3.95-6.76)         | (4.77-8.71)  | (5.40-10.4)  | (6.09-12.4)  | (6.88-14.8)  | (8.03-18.6)  | (8.97-21.  |
| 12-hr    | 2.99                | 3.82          | 5.00          | 6.13                | 7.85         | 9.32         | 11.0         | 13.0         | 16.0         | 18.6       |
|          | (2.32-3.85)         | (2.91-4.69)   | (3.89-6.35)   | (4.72-7.96)         | (5.88-10.5)  | (6.76-12.9)  | (7.75-15.6)  | (8.88-18.9)  | (10.5-24.2)  | (11.9-28.  |
| 24-hr    | 3.33                | 4.36          | 5.77          | 7.18                | 9.36         | 11.3         | 13.6         | 16.1         | 19.9         | 23.1       |
|          | (2.61-4.25)         | (3.31-5.24)   | (4.52-7.26)   | (5.57-9.25)         | (7.08-12.5)  | (8.28-15.6)  | (9.59-19.1)  | (11.0-23.2)  | (13.2-29.8)  | (14.9-35.  |
| 2-day    | 3.73                | 4.98          | 6.66          | 8.38                | 11.1         | 13.6         | 16.4         | 19.4         | 23.6         | 26.9       |
|          | (2.94-4.73)         | (3.79-5.88)   | (5.25-8.31)   | (6.55-10.7)         | (8.48-14.8)  | (10.1-18.7)  | (11.7-22.9)  | (13.3-27.7)  | (15.6-34.9)  | (17.4-41.  |
| 3-day    | 4.05                | 5.41          | 7.26          | 9.12                | 12.0         | 14.7         | 17.7         | 20.8         | 25.1         | 28.5       |
|          | (3.21-5.11)         | (4.14-6.38)   | (5.75-9.01)   | (7.16-11.6)         | (9.24-16.0)  | (10.9-20.2)  | (12.6-24.6)  | (14.4-29.6)  | (16.7-37.1)  | (18.4-43.  |
| 4-day    | 4.34                | 5.74          | 7.69          | 9.61                | 12.6         | 15.3         | 18.3         | 21.4         | 25.8         | 29.2       |
|          | (3.45-5.46)         | (4.44-6.80)   | (6.12-9.53)   | (7.57-12.2)         | (9.66-16.7)  | (11.3-20.8)  | (13.0-25.3)  | (14.8-30.4)  | (17.1-38.0)  | (19.0-44.  |
| 7-day    | 5.04                | 6.49          | 8.57          | 10.5                | 13.5         | 16.1         | 19.0         | 22.1         | 26.6         | 30.3       |
|          | (4.04-6.30)         | (5.10-7.74)   | (6.87-10.6)   | (8.35-13.3)         | (10.4-17.7)  | (12.0-21.7)  | (13.6-26.2)  | (15.4-31.3)  | (17.8-39.1)  | (19.7-45.  |
| 10-day   | 5.62                | 7.11          | 9.29          | 11.3                | 14.3         | 16.8         | 19.6         | 22.8         | 27.3         | 31.1       |
|          | (4.52-7.00)         | (5.65-8.52)   | (7.49-11.4)   | (8.99-14.2)         | (11.0-18.6)  | (12.5-22.6)  | (14.1-27.0)  | (15.9-32.1)  | (18.3-40.0)  | (20.2-46.  |
| 20-day   | 7.31                | 8.93          | 11.4          | 13.6                | 16.8         | 19.3         | 22.0         | 24.9         | 29.2         | 32.7       |
|          | (5.92-9.04)         | (7.25-10.8)   | (9.32-14.0)   | (10.9-17.0)         | (12.9-21.6)  | (14.4-25.6)  | (15.9-30.0)  | (17.5-35.0)  | (19.7-42.5)  | (21.4-48.  |
| 30-day   | 8.71                | 10.4          | 13.2          | 15.6                | 18.8         | 21.4         | 24.0         | 26.8         | 30.8         | 33.9       |
|          | (7.09-10.7)         | (8.57-12.7)   | (10.8-16.2)   | (12.5-19.3)         | (14.6-24.1)  | (16.0-28.2)  | (17.4-32.6)  | (18.9-37.4)  | (20.8-44.6)  | (22.2-50.  |
| 45-day   | 10.7                | 12.6          | 15.8          | 18.4                | 21.8         | 24.4         | 27.0         | 29.7         | 33.4         | 36.2       |
|          | (8.78-13.2)         | (10.5-15.4)   | (13.0-19.3)   | (14.8-22.7)         | (16.9-27.8)  | (18.3-32.1)  | (19.7-38.5)  | (21.0-41.3)  | (22.6-48.1)  | (23.8-53   |
| 60-day   | 12.6<br>(10.3-15.3) | 14.6          | 18.1          | 20.9<br>(16.9-25.7) | 24.5         | 27.2         | 29.8         | 32.4         | 35.8         | 38.3       |

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Table 2 – Runoff Coefficients (C) for Rural Watersheds (from TxDOT, 2019)

| Watershed<br>characteristic        | Extreme                                                                                                              | High                                                                                                                           | Normal                                                                                                                 | Low                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relief - C <sub>r</sub>            | 0.28-0.35<br>Steep, rugged terrain with average<br>slopes above 30%                                                  | 0.20-0.28<br>Hilly, with average<br>slopes of 10-30%                                                                           | 0.14-0.20<br>Rolling, with average slopes of 5-<br>10%                                                                 | 0.08-0.14<br>Relatively flat land,<br>with average slopes<br>of 0-5%                                                                                  |
| Soil infiltration - C <sub>i</sub> | 0.12 0.16  No effective soil cover; either rock or thin soil mantle of negligible infiltration capacity              | 0.08-0.12<br>Slow to take up<br>water, clay or shal-<br>low loam soils of<br>low infiltration<br>capacity or poorly<br>drained | 0.06-0.08<br>Normal; well<br>drained light or<br>medium textured<br>soils, sandy loams                                 | 0.04-0.06 Deep sand or other soil that takes up water readily; very light, well-drained soils                                                         |
| Vegetal cover - C <sub>v</sub>     | 0.12 0.16  No effective plant cover, bare or very sparse cover                                                       | 0.08-0.12 Poor to fair; clean cultivation, crops or poor natural cover, less than 20% of drainage area has good cover          | 0.06-0.08 Fair to good; about 50% of area in good grassland or woodland, not more than 50% of area in cultivated crops | 0.04-0.06<br>Good to excellent;<br>about 90% of drain-<br>age area in good<br>grassland, wood-<br>land, or equivalent<br>cover                        |
| Surface Storage - C <sub>s</sub>   | 0.10-0.12<br>Negligible; surface<br>depressions few<br>and shallow, drain-<br>ageways steep and<br>small, no marshes | 0.08-0.10<br>Well-defined system of small<br>drainageways, no<br>ponds or marshes                                              | 0.06-0.08<br>Normal; consider-<br>able surface<br>depression, e.g.,<br>storage lakes and<br>ponds and marshes          | 0.04-0.06<br>Much surface stor-<br>age, drainage system<br>not sharply defined;<br>large floodplain stor-<br>age, large number of<br>ponds or marshes |

Table 4-11 note: The total runoff coefficient based on the 4 runoff components is  $C = C_r + C_i + C_v + C_s$ 

# Table 3 – NOAA Precipitation Intensity Estimates for the CBL (from NOAA, 2018)



NOAA Atlas 14, Volume 11, Version 2 Location name: La Grange, Texas, USA\* Latitude: 29.9075°, Longitude: -96.7565° Elevation: 381.96 ft\*\* \* source: ESRI Maps\* \*\* source: USGS



#### POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

#### PF tabular

| PDS-b    | PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) <sup>1</sup> |               |               |               |               |               |               |               |               |               |
|----------|---------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Duration |                                                                                                               | 96 3          | 10            | Avera         | ge recurren   | ce interval ( | years)        | 100           |               |               |
| Duration | 1                                                                                                             | 2             | 5             | 10            | 25            | 50            | 100           | 200           | 500           | 1000          |
| 5-min    | 5.64                                                                                                          | 6.52          | 7.98          | 9.17          | 10.8          | 12.0          | 13.2          | 14.5          | 16.2          | 17.4          |
|          | (4.27-7.45)                                                                                                   | (4.99-8.56)   | (6.08-10.5)   | (6.88-12.2)   | (7.82-14.8)   | (8.48-16.9)   | (9.11-19.2)   | (9.72-21.5)   | (10.5-24.9)   | (11.0-27.6)   |
| 10-min   | 4.48                                                                                                          | 5.18          | 6.35          | 7.31          | 8.61          | 9.61          | 10.6          | 11.5          | 12.8          | 13.7          |
|          | (3.39-5.92)                                                                                                   | (3.97-6.80)   | (4.84-8.35)   | (5.48-9.74)   | (6.26-11.8)   | (6.80-13.6)   | (7.29-15.3)   | (7.75-17.1)   | (8.29-19.6)   | (8.64-21.6)   |
| 15-min   | 3.78                                                                                                          | 4.36          | 5.32          | 6.10          | 7.16          | 7.96          | 8.75          | 9.56          | 10.7          | 11.5          |
|          | (2.86-5.00)                                                                                                   | (3.34-5.72)   | (4.06-7.00)   | (4.58-8.13)   | (5.20-9.82)   | (5.63-11.2)   | (6.03-12.7)   | (6.43-14.2)   | (6.92-16.4)   | (7.27-18.1)   |
| 30-min   | 2.69                                                                                                          | 3.09          | 3.75          | 4.29          | 5.02          | 5.55          | 6.09          | 6.67          | 7.47          | 8.09          |
|          | (2.04-3.56)                                                                                                   | (2.37-4.06)   | (2.86-4.94)   | (3.22-5.72)   | (3.64-6.87)   | (3.92-7.82)   | (4.20-8.83)   | (4.49-9.94)   | (4.85-11.5)   | (5.12-12.8)   |
| 60-min   | 1.76                                                                                                          | 2.03          | 2.49          | 2.86          | 3.36          | 3.73          | 4.12          | 4.55          | 5.15          | 5.64          |
|          | (1.33-2.32)                                                                                                   | (1.56-2.67)   | (1.90-3.27)   | (2.15-3.81)   | (2.43-4.60)   | (2.64-5.26)   | (2.84-5.97)   | (3.06-6.77)   | (3.35-7.94)   | (3.57-8.91)   |
| 2-hr     | 1.06                                                                                                          | 1.26          | 1.58          | 1.84          | 2.22          | 2.50          | 2.81          | 3.17          | 3.69          | 4.13          |
|          | (0.812-1.40)                                                                                                  | (0.968-1.63)  | (1.21-2.05)   | (1.39-2.44)   | (1.62-3.01)   | (1.78-3.50)   | (1.95-4.05)   | (2.14-4.68)   | (2.41-5.66)   | (2.62-6.48)   |
| 3-hr     | 0.776                                                                                                         | 0.937         | 1.19          | 1.41          | 1.72          | 1.96          | 2.23          | 2.54          | 3.02          | 3.42          |
|          | (0.594-1.01)                                                                                                  | (0.719-1.20)  | (0.914-1.54)  | (1.07-1.85)   | (1.26-2.32)   | (1.40-2.73)   | (1.55-3.20)   | (1.72-3.75)   | (1.97-4.61)   | (2.17-5.35)   |
| 6-hr     | 0.446                                                                                                         | 0.554         | 0.717         | 0.863         | 1.08          | 1.26          | 1.45          | 1.69          | 2.04          | 2.35          |
|          | (0.344-0.578)                                                                                                 | (0.425-0.696) | (0.554-0.919) | (0.660-1.13)  | (0.797-1.45)  | (0.902-1.74)  | (1.02-2.07)   | (1.15-2.47)   | (1.34-3.10)   | (1.50-3.65)   |
| 12-hr    | 0.248                                                                                                         | 0.317         | 0.415         | 0.509         | 0.651         | 0.774         | 0.915         | 1.08          | 1.33          | 1.54          |
|          | (0.193-0.319)                                                                                                 | (0.242-0.389) | (0.323-0.527) | (0.392-0.661) | (0.486-0.875) | (0.561-1.07)  | (0.643-1.30)  | (0.737-1.57)  | (0.875-2.01)  | (0.989-2.38)  |
| 24-hr    | 0.139                                                                                                         | 0.182         | 0.241         | 0.299         | 0.390         | 0.471         | 0.565         | 0.672         | 0.831         | 0.964         |
|          | (0.109-0.177)                                                                                                 | (0.138-0.218) | (0.188-0.302) | (0.232-0.385) | (0.294-0.522) | (0.345-0.650) | (0.400-0.795) | (0.460-0.968) | (0.549-1.24)  | (0.620-1.48)  |
| 2-day    | 0.078                                                                                                         | 0.104         | 0.139         | 0.174         | 0.231         | 0.283         | 0.342         | 0.404         | 0.491         | 0.560         |
|          | (0.061-0.098)                                                                                                 | (0.079-0.122) | (0.109-0.173) | (0.136-0.223) | (0.177-0.309) | (0.209-0.389) | (0.243-0.478) | (0.278-0.577) | (0.325-0.728) | (0.362-0.854) |
| 3-day    | 0.056                                                                                                         | 0.075         | 0.101         | 0.127         | 0.167         | 0.204         | 0.246         | 0.289         | 0.349         | 0.396         |
|          | (0.045-0.071)                                                                                                 | (0.058-0.089) | (0.080-0.125) | (0.099-0.161) | (0.128-0.223) | (0.152-0.280) | (0.176-0.342) | (0.199-0.412) | (0.232-0.515) | (0.256-0.602) |
| 4-day    | 0.045                                                                                                         | 0.060         | 0.080         | 0.100         | 0.131         | 0.159         | 0.190         | 0.223         | 0.268         | 0.305         |
|          | (0.036-0.057)                                                                                                 | (0.046-0.071) | (0.064-0.099) | (0.079-0.127) | (0.101-0.174) | (0.118-0.217) | (0.136-0.264) | (0.154-0.316) | (0.179-0.396) | (0.197-0.462) |
| 7-day    | 0.030                                                                                                         | 0.039         | 0.051         | 0.063         | 0.080         | 0.096         | 0.113         | 0.132         | 0.159         | 0.180         |
|          | (0.024-0.038)                                                                                                 | (0.030-0.046) | (0.041-0.063) | (0.050-0.079) | (0.062-0.106) | (0.071-0.129) | (0.081-0.156) | (0.092-0.186) | (0.106-0.233) | (0.117-0.272) |
| 10-day   | 0.023                                                                                                         | 0.030         | 0.039         | 0.047         | 0.060         | 0.070         | 0.082         | 0.095         | 0.114         | 0.129         |
|          | (0.019-0.029)                                                                                                 | (0.024-0.035) | (0.031-0.048) | (0.037-0.059) | (0.046-0.078) | (0.052-0.094) | (0.059-0.112) | (0.066-0.134) | (0.076-0.167) | (0.084-0.194) |
| 20-day   | 0.015                                                                                                         | 0.019         | 0.024         | 0.028         | 0.035         | 0.040         | 0.046         | 0.052         | 0.061         | 0.068         |
|          | (0.012-0.019)                                                                                                 | (0.015-0.022) | (0.019-0.029) | (0.023-0.035) | (0.027-0.045) | (0.030-0.053) | (0.033-0.062) | (0.038-0.073) | (0.041-0.088) | (0.044-0.102) |
| 30-day   | 0.012                                                                                                         | 0.014         | 0.018         | 0.022         | 0.026         | 0.030         | 0.033         | 0.037         | 0.043         | 0.047         |
|          | (0.010-0.015)                                                                                                 | (0.012-0.018) | (0.015-0.022) | (0.017-0.027) | (0.020-0.033) | (0.022-0.039) | (0.024-0.045) | (0.026-0.052) | (0.029-0.062) | (0.031-0.070) |
| 45-day   | 0.010                                                                                                         | 0.012         | 0.015         | 0.017         | 0.020         | 0.023         | 0.025         | 0.028         | 0.031         | 0.033         |
|          | (0.008-0.012)                                                                                                 | (0.010-0.014) | (0.012-0.018) | (0.014-0.021) | (0.016-0.028) | (0.017-0.030) | (0.018-0.034) | (0.019-0.038) | (0.021-0.045) | (0.022-0.050) |
| 60-day   | 0.009                                                                                                         | 0.010         | 0.013         | 0.014         | 0.017         | 0.019         | 0.021         | 0.022         | 0.025         | 0.027         |
|          | (0.007-0.011)                                                                                                 | (0.008-0.012) | (0.010-0.015) | (0.012-0.018) | (0.013-0.022) | (0.014-0.025) | (0.015-0.028) | (0.016-0.031) | (0.017-0.036) | (0.017-0.039) |

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Table 4 – Manning's Roughness Coefficient for Open Channel Flow (from Chow, 1959)

| Type of channel and description                      | Minimum | Normal | Maximum |
|------------------------------------------------------|---------|--------|---------|
| C. Excavated or Dredged                              |         |        |         |
| a. Earth, straight and uniform                       |         |        |         |
| 1. Clean, recently completed                         | 0.016   | 0.018  | 0.020   |
| 2. Clean, after weathering                           | 0.018   | 0.022  | 0.025   |
| <ol><li>Gravel, uniform section, clean</li></ol>     | 0.022   | 0.025  | 0.030   |
| 4. With short grass, few weeds                       | 0.022   | 0.027  | 0.033   |
| b. Earth, winding and sluggish                       |         |        |         |
| <ol> <li>No vegetation</li> </ol>                    | 0.023   | 0.025  | 0.030   |
| <ol><li>Grass, some weeds</li></ol>                  | 0.025   | 0.030  | 0.033   |
| 3. Dense weeds or aquatic plants in                  | 0.030   | 0.035  | 0.040   |
| deep channels                                        |         |        |         |
| <ol> <li>Earth bottom and rubble sides</li> </ol>    | 0.028   | 0.030  | 0.035   |
| <ol><li>Stony bottom and weedy banks</li></ol>       | 0.025   | 0.035  | 0.040   |
| <ol><li>Cobble bottom and clean sides</li></ol>      | 0.030   | 0.040  | 0.050   |
| <ul> <li>c. Dragline-excavated or dredged</li> </ul> |         |        |         |
| 1. No vegetation                                     | 0.025   | 0.028  | 0.033   |
| <ol><li>Light brush on banks</li></ol>               | 0.035   | 0.050  | 0.080   |
| d. Rock cuts                                         |         |        |         |
| <ol> <li>Smooth and uniform</li> </ol>               | 0.025   | 0.035  | 0.040   |
| 2. Jagged and irregular                              | 0.035   | 0.040  | 0.050   |
| e. Channels not maintained, weeds and                |         |        |         |
| brush uncut                                          |         |        |         |
| <ol> <li>Dense weeds, high as flow depth</li> </ol>  | 0.050   | 0.080  | 0.120   |
| <ol><li>Clean bottom, brush on sides</li></ol>       | 0.040   | 0.050  | 0.080   |
| <ol><li>Same, highest stage of flow</li></ol>        | 0.045   | 0.070  | 0.110   |
| <ol><li>Dense brush, high stage</li></ol>            | 0.080   | 0.100  | 0.140   |

Table 5 – Retardation Class for Lining Materials (from TxDOT, 2019)

| Retardance<br>Class | Cover                                                                                                       | Condition                                                  |
|---------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| A                   | Weeping Lovegrass                                                                                           | Excellent stand, tall (average 30 in. or 760 mm)           |
|                     | Yellow Bluestem Ischaemum                                                                                   | Excellent stand, tall (average 36 in. or 915 mm)           |
| В                   | Kudzu                                                                                                       | Very dense growth, uncut                                   |
|                     | Bermuda grass                                                                                               | Good stand, tall (average 12 in. or 305 mm)                |
|                     | Native grass mixture<br>little bluestem, bluestem, blue gamma, other<br>short and long stem midwest grasses | Good stand, unmowed                                        |
|                     | Weeping lovegrass                                                                                           | Good Stand, tall (average 24 in. or 610 mm)                |
|                     | Lespedeza sericea                                                                                           | Good stand, not woody, tall (average 19 in. or 480 mm)     |
|                     | Alfalfa                                                                                                     | Good stand, uncut (average 11 in or 280 mm)                |
|                     | Weeping lovegrass                                                                                           | Good stand, unmowed (average 13 in. or 330 mm)             |
|                     | Kudzu                                                                                                       | Dense growth, uncut                                        |
|                     | Blue gamma                                                                                                  | Good stand, uncut (average 13 in. or 330 mm)               |
| С                   | Crabgrass                                                                                                   | Fair stand, uncut (10-to-48 in. or 55-to-1220 mm)          |
|                     | Bermuda grass                                                                                               | Good stand, mowed (average 6 in. or 150 mm)                |
|                     | Common lespedeza                                                                                            | Good stand, uncut (average 11 in. or 280 mm)               |
|                     | Grass-legume mixture: summer (orchard grass redtop, Italian ryegrass, and common lespedeza)                 | Good stand, uncut (6-8 in. or 150-200 mm)                  |
|                     | Centipedegrass                                                                                              | Very dense cover (average 6 in. or 150 mm)                 |
|                     | Kentucky bluegrass                                                                                          | Good stand, headed (6-12 in. or 150-305 mm)                |
| D                   | Bermuda grass                                                                                               | Good stand, cut to 2.5 in. or 65 mm                        |
|                     | Common lespedeza                                                                                            | Excellent stand, uncut (average 4.5 in. or 115 mm)         |
|                     | Buffalo grass                                                                                               | Good stand, uncut (3-6 in. or 75-150 mm)                   |
|                     | Grass-legume mixture:<br>fall, spring (orchard grass Italian ryegrass,<br>and common lespedeza              | Good Stand, uncut (4-5 in. or 100-125 mm)                  |
|                     | Lespedeza sericea                                                                                           | After cutting to 2 in. or 50 mm (very good before cutting) |
| E                   | Bermuda grass                                                                                               | Good stand, cut to 1.5 in. or 40 mm                        |
|                     | Bermuda grass                                                                                               | Burned stubble                                             |
|                     | -                                                                                                           |                                                            |

Table 6 – Permissible Shear Stresses for Various Linings (from TxDOT, 2019)

| Protective Cover                                                                             | (lb./sq.ft.) | t <sub>p</sub> (N/m <sup>2</sup> ) |
|----------------------------------------------------------------------------------------------|--------------|------------------------------------|
| Retardance Class A Vegetation (See the "Retardation Class for Lining Materials" table above) | 3.70         | 177                                |
| Retardance Class B Vegetation (See the "Retardation Class for Lining Materials" table above) | 2.10         | 101                                |
| Retardance Class C Vegetation (See the "Retardation Class for Lining Materials" table above) | 1.00         | 48                                 |
| Retardance Class D Vegetation (See the "Retardation Class for Lining Materials" table above) | 0.60         | 29                                 |
| Retardance Class E Vegetation (See the "Retardation Class for Lining Materials" table above) | 0.35         | 17                                 |
| Woven Paper                                                                                  | 0.15         | 7                                  |
| Jute Net                                                                                     | 0.45         | 22                                 |
| Single Fiberglass                                                                            | 0.60         | 29                                 |
| Double Fiberglass                                                                            | 0.85         | 41                                 |
| Straw W/Net                                                                                  | 1.45         | 69                                 |
| Curled Wood Mat                                                                              | 1.55         | 74                                 |
| Synthetic Mat                                                                                | 2.00         | 96                                 |

### **FIGURES**

- Figure 1 Runoff Retention Pond Stage-Storage Curve
- Figure 2 Subcell 2D Contact Water Retention Pond Stage-Storage Curve
- Figure 3 Contributing Drainage Areas

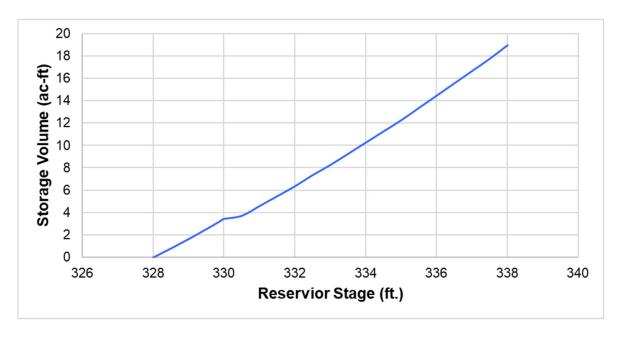



Figure 1 – Runoff Retention Pond Stage-Storage Curve

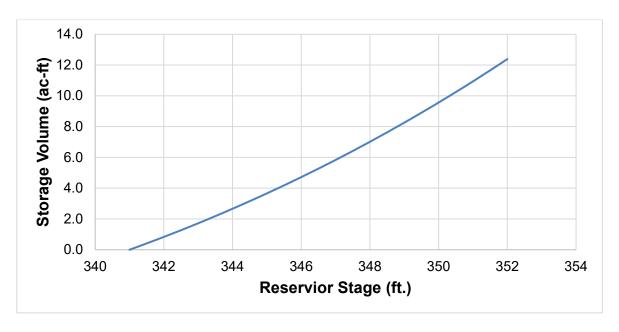



Figure 2 – Subcell 2D Contact Water Retention Pond Stage-Storage Curve

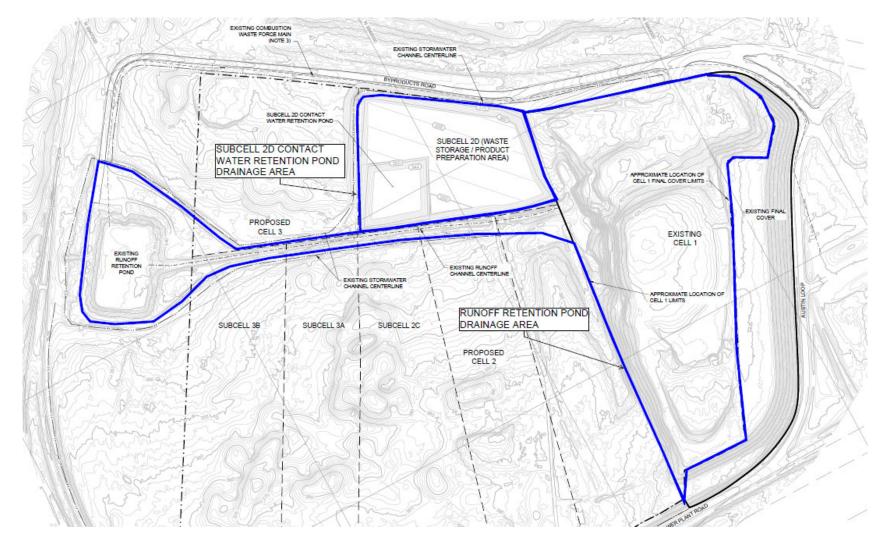



Figure 3 – Contributing Drainage Areas

# APPENDIX C-1 HYDRAULIC ANALYSIS CALCULATIONS

Design/Check: Trapezoidal/Triangular Channel

Methodology: Manning's Equation

Project: FPP CBL Run-on Run-off Active Landfill Conditions

Ditch ID: Runoff Channel

| Peak Discharge, $Q_{25}$ =          | 180.81 | cfs (25-yr Event)      |
|-------------------------------------|--------|------------------------|
| Bottom Width, B =                   | 10.00  | ft                     |
| Left Side Slope, $Z_1$ =            | 3.00   | horizontal :1 vertical |
| Right Side Slope, $Z_2$ =           | 3.00   | horizontal :1 vertical |
| Channel Depth, Y =                  | 3.00   | ft                     |
| Top Width, T =                      | 28.0   | ft                     |
| Manning's Roughness Coeff., n =     | 0.027  |                        |
| Longitudinal Channel Slope, $S_o =$ | 0.013  | ft/ft                  |

| Depth<br>of Flow<br>Y<br>ft | Area<br>of Flow<br>A<br>ft <sup>2</sup> | Wetted<br>Perimeter<br>P<br>ft | Hydraulic<br>Radius<br>R=A/P<br>ft | Average<br>Velocity<br>V<br>ft/s | Discharge<br>(Flow Rate)<br>Q=AV<br>ft <sup>3</sup> /s | Avg. Tractive Stress τ <sub>0</sub> Ib/ft² | Comments        |
|-----------------------------|-----------------------------------------|--------------------------------|------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------|-----------------|
|                             |                                         |                                |                                    |                                  |                                                        |                                            |                 |
| 0.01                        | 0.10                                    | 10.06                          | 0.01                               | 0.29                             | 0.0                                                    | 0.01                                       |                 |
| 0.16                        | 1.67                                    | 11.01                          | 0.15                               | 1.77                             | 3.0                                                    | 0.12                                       |                 |
| 0.31                        | 3.38                                    | 11.95                          | 0.28                               | 2.68                             | 9.0                                                    | 0.22                                       |                 |
| 0.46                        | 5.22                                    | 12.90                          | 0.40                               | 3.40                             | 17.7                                                   | 0.32                                       |                 |
| 0.61                        | 7.19                                    | 13.85                          | 0.52                               | 4.02                             | 28.9                                                   | 0.41                                       |                 |
| 0.76                        | 9.30                                    | 14.79                          | 0.63                               | 4.56                             | 42.4                                                   | 0.50                                       |                 |
| 0.91                        | 11.54                                   | 15.74                          | 0.73                               | 5.06                             | 58.3                                                   | 0.58                                       |                 |
| 1.06                        | 13.91                                   | 16.68                          | 0.83                               | 5.51                             | 76.7                                                   | 0.66                                       |                 |
| 1.21                        | 16.42                                   | 17.63                          | 0.93                               | 5.93                             | 97.4                                                   | 0.74                                       |                 |
| 1.36                        | 19.07                                   | 18.57                          | 1.03                               | 6.33                             | 120.7                                                  | 0.81                                       |                 |
| 1.51                        | 21.85                                   | 19.52                          | 1.12                               | 6.70                             | 146.5                                                  | 0.89                                       |                 |
| 1.65                        | 24.76                                   | 20.46                          | 1.21                               | 7.06                             | 174.8                                                  | 0.96                                       |                 |
| 1.80                        | 27.80                                   | 21.41                          | 1.30                               | 7.40                             | 205.8                                                  | 1.03                                       |                 |
| 1.95                        | 30.98                                   | 22.36                          | 1.39                               | 7.73                             | 239.6                                                  | 1.10                                       |                 |
| 2.10                        | 34.30                                   | 23.30                          | 1.47                               | 8.05                             | 276.0                                                  | 1.17                                       |                 |
| 2.25                        | 37.75                                   | 24.25                          | 1.56                               | 8.35                             | 315.4                                                  | 1.23                                       |                 |
| 2.40                        | 41.33                                   | 25.19                          | 1.64                               | 8.65                             | 357.6                                                  | 1.30                                       |                 |
| 2.55                        | 45.05                                   | 26.14                          | 1.72                               | 8.94                             | 402.8                                                  | 1.37                                       |                 |
| 2.70                        | 48.90                                   | 27.08                          | 1.81                               | 9.22                             | 451.0                                                  | 1.43                                       |                 |
| 2.85                        | 52.88                                   | 28.03                          | 1.89                               | 9.50                             | 502.3                                                  | 1.50                                       |                 |
| 3.00                        | 57.00                                   | 28.97                          | 1.97                               | 9.77                             | 556.7                                                  | 1.56                                       |                 |
|                             |                                         |                                |                                    |                                  |                                                        |                                            |                 |
| 1.68                        | 25.33                                   | 20.65                          | 1.23                               | 7.13                             | 180.60                                                 | 0.97                                       | Q (25-yr Event) |
|                             |                                         |                                |                                    |                                  |                                                        |                                            |                 |