WELCOME

Bakersfield to Solstice
345-kV Transmission Line Project

OPEN HOUSE
AEP Texas Inc. is a division of American Electric Power, one of the largest electric utilities in the United States. AEP Texas uses the services of its affiliate AEP Transmission to build and operate its network of high voltage transmission lines that are vital to delivering electricity to customers.

- AEP Transmission now operates more than 40,000 miles of transmission network.
- AEP Texas delivers electricity safely and reliably to homes, businesses and industry across its nearly 100,000 square mile service territory in south and west Texas.
- AEP Texas is connected to and serves more than one million electric consumers in the deregulated Texas Marketplace.
- AEP Texas is regulated by the Public Utility Commission of Texas and pays sales and property taxes on facilities it owns.
LCRA Transmission Services Corporation (LCRA TSC) is a nonprofit utility that provides safe, reliable and environmentally responsible electric transmission services in Texas. LCRA TSC’s transmission lines and substation play a vital role in the transmission of electricity between power generation plants and local electric service providers.

- LCRA TSC facilities include approximately 5,200 miles of transmission lines and nearly 400 substations.
- LCRA TSC facilities connect to electric generators and other transmission providers to transmit electricity to municipal utilities, electric cooperatives and other electric distribution service providers within Texas.
- The electricity LCRA TSC transmits is delivered by local distribution service providers to homes and businesses to meet the energy needs of Texas’ growing population.
- LCRA TSC is regulated by the Public Utility Commission of Texas and pays sales and property taxes on facilities it owns.
Electricity travels from generation sources through voltage transformation equipment and a network of transmission lines.

Voltage is reduced to a lower distribution level through a transformer at a substation.

Electricity then flows through local distribution lines to homes and businesses.

THE ELECTRIC SYSTEM

1. Electricity travels from generation sources through voltage transformation equipment and a network of transmission lines.

2. Voltage is reduced to a lower distribution level through a transformer at a substation.

3. Electricity then flows through local distribution lines to homes and businesses.
LCRA TSC and AEP Texas are proposing to construct and operate a new double-circuit, 345-kV transmission line—approximately 70 miles in length—in Pecos County, and to expand the existing Bakersfield and Solstice substation facilities. The Electric Reliability Council of Texas conducted studies on the electric transmission infrastructure in West Texas and endorsed this transmission solution because it will serve the load growth and mix of generation sources. The ERCOT Board recently designated this project critical to reliability.

Why is this project needed?

• Current and planned oil and gas production and processing in the region require lots of electrical energy.

• The existing transmission system is near or beyond its capacity.

• The proposed project will provide West Texans and others with more reliable electrical energy.

• Current and planned renewable generation (such as wind and solar farms) require additional capacity to transmit the electricity produced.
The Electric Reliability Council of Texas, more commonly known as ERCOT, manages the generation and transmission of electricity to 24 million consumers—representing 90 percent of the state’s electric load. This project was designated as critical by ERCOT because of significant load growth—current and forecasted—in the West Texas region.

• Projects designated as “critical” to the reliability of the ERCOT system are considered by the Public Utility Commission of Texas (PUC) on an expedited basis.

• Rather than a 12-month review process for a typical Certificate of Convenience and Necessity application review, the PUC will approve or deny a critical application in six months.
Public Utility Commission of Texas
Certification Process for 345-kV Transmission Line with Critical Designation

Transmission Utilities Define Project
- Conduct research and review studies to determine need.
- Identify needed facilities and end points of the project.

Transmission Utilities Conduct Environmental Assessment and Routing Analysis
- Establish study area based on project definition.
- Gather data about study area and map environmental and land use constraints in study area.
- Determine preliminary transmission line segments.
- **Hold open house to gather public input.**
- Analyze data and feedback from the public to develop primary transmission line routes, including multiple alternatives.
- Prepare an Environmental Assessment report.

Transmission Utilities Apply for CCN Amendments
- Submit application to the Public Utility Commission of Texas (PUC) to amend Certificate of Convenience and Necessity (CCN).
- Send notices to landowners whose properties may be crossed or who own a habitable structure within 500 feet of route alternatives (also referred to as the “notification corridor”) at the time CCN application is filed.
- Send notices to municipalities and electric utilities within five miles of the project and to local government entities where the project will potentially be located.

Public Participation
- After the CCN application is filed, people who are potentially impacted by the project have an opportunity to participate in the application proceeding at the PUC by filing a request to participate (intervene).
- If no parties intervene in the proceeding, the PUC staff conducts a review and issues a recommendation to the PUC.
- If parties have intervened in the proceeding, testimony may be filed, an administrative hearing may be held, and an administrative law judge will prepare a recommendation to the PUC regarding the application.

PUC Decision
- Within six months of the CCN application filing, the PUC will approve or deny the application, or approve it with modifications.
- PUC approval directs the transmission utilities to build the new transmission line along the route selected by the PUC.
EASEMENT ACQUISITION PROCESS

LCRA TSC or AEP Texas will work with affected landowners to acquire an easement to construct, operate and maintain the new transmission line.

<table>
<thead>
<tr>
<th>Transmission utility contacts landowners to arrange property access to conduct one or more of the following:</th>
</tr>
</thead>
</table>
| • Property survey
• Environmental/cultural resources survey
• Engineering site visits
• Geotechnical testing and soil boring |

<table>
<thead>
<tr>
<th>Property value is determined through an independent appraisal or available market data.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Transmission utility provides landowner with an offer letter, survey, appraisal/compensation summary and copy of the State’s Landowner’s Bill of Rights.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Transmission utility works with landowners to reach an agreement for acquisition of the necessary easement.</th>
</tr>
</thead>
</table>

| Agreement reached:
Transmission utility pays landowner and enters into an easement agreement. |
| Agreement not reached:
Transmission utility initiates eminent domain process as described in the Landowner’s Bill of Rights. |
TRANSMISSION RIGHTS OF WAY

A transmission line right of way is the strip of land used to construct, operate and maintain transmission infrastructure.

- LCRA TSC and AEP Texas purchase easements or other property rights and maintain these rights of way for safety and the long-term reliability of the transmission line.

- The transmission line is typically centered in the right of way, which can vary in width.

- The National Electrical Safety Code, American National Standard Institute and state law require minimum clearance distances between the transmission structures and wires and objects within the right of way.

- For new construction, rights of way are cleared of all vegetation. Over time, low-growing vegetation can generally be planted in the outer edges of the right of way, as long as the plants maintain safe clearances.

- Many land uses within the right of way generally don’t interfere with the safe operation of the transmission line, including farming, grazing, gardening, hunting, biking and hiking, to name a few.

- There are restrictions though, so it is important to speak to LCRA TSC or AEP Texas about how to keep rights of way clear of encroachments that could threaten the safety or accessibility of the transmission line.
TYPICAL 345-kV
LATTICE TOWER DESIGN

Typical Height
130 to 180 feet

Typical Easement Width
150 feet

Typical Span Length
900 to 1,500 feet

Structure Material
Galvanized steel

Example: Image of a typical 345-kV lattice tower.
ENVIRONMENTAL AND LAND USE CONSIDERATIONS

These items will be quantified and mapped when developing possible routing alternatives:

Land use

- Length of primary alternative route (miles)
- Total number of habitable structures within 500 feet of right of way (ROW) centerline
- Length of ROW using existing transmission line ROW
- Length of ROW parallel and adjacent to existing transmission line ROW
- Length of ROW parallel and adjacent to existing 138-kV transmission line ROW
- Length of ROW parallel and adjacent to existing 69-kV transmission line ROW
- Length of ROW parallel to other existing ROW (roadways, railways, etc.)
- Length of ROW parallel and adjacent to apparent property lines
- Length of ROW across parks/recreational areas
- Number of additional parks/recreational areas within 1,000 feet of ROW centerline
- Length of ROW across University Lands
- Length of ROW across cropland
- Length of ROW across pasture/rangeland
- Length of ROW across land irrigated by traveling systems (rolling or pivot type)
- Length of ROW parallel and adjacent to existing natural gas pipelines (steel and six inch diameter or greater)
- Number of pipeline crossings
- Number of transmission line crossings
- Number of interstate, U.S. and state highway crossings
- Number of farm-to-market (FM) road crossings
- Number of cemeteries within 1,000 feet of the ROW centerline
- Number of FAA registered airports with at least one runway more than 3,200 feet in length located within 20,000 feet of ROW centerline
- Number of FAA registered airports having no runway more than 3,200 feet in length located within 10,000 feet of ROW centerline
- Number of private airstrips within 10,000 feet of the ROW centerline
- Number of heliports within 5,000 feet of the ROW centerline
ENVIRONMENTAL AND LAND USE CONSIDERATIONS

These items will be quantified and mapped when developing possible routing alternatives:

Land Use
- Number of commercial AM radio transmitters within 10,000 feet of the ROW centerline
- Number of FM radio transmitters, microwave towers and other electronic installations within 2,000 feet of ROW centerline

Aesthetics
- Estimated length of ROW within foreground visual zone of interstate, U.S. and state highways
- Estimated length of ROW within foreground visual zone of FM roads
- Estimated length of ROW within foreground visual zone of parks/recreational areas

Ecology
- Length of ROW across upland woodlands/brushlands
- Length of ROW across bottomland/riparian woodlands
- Length of ROW across National Wetlands Inventory mapped wetlands
- Length of ROW across known habitats of federally listed endangered or threatened species
- Length of ROW across open water (lakes, ponds)
- Number of stream crossings
- Number of river crossings
- Length of ROW parallel (within 100 feet) to streams or rivers
- Length of ROW across 100-year floodplains

Archeological
- Number of recorded cultural resource sites crossed by ROW
- Number of additional recorded cultural resource sites within 1,000 feet of ROW centerline
- Number of National Register of Historic Places (NRHP) listed properties crossed by ROW
- Number of additional NRHP listed properties within 1,000 feet of ROW centerline
- Length of ROW across areas of high archeological site potential
OUTREACH AND COORDINATION

LCRA TSC and AEP Texas seek input from the following:

Local Agencies/Governments/Organizations

<table>
<thead>
<tr>
<th>City of Fort Stockton</th>
<th>Pecos County</th>
<th>Utilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>City administrators</td>
<td>Chamber of Commerce</td>
<td>AEP Texas Inc.</td>
</tr>
<tr>
<td>City council members</td>
<td>County commissioners</td>
<td>City of Fort Stockton Utilities</td>
</tr>
<tr>
<td>Mayor</td>
<td>County judge</td>
<td>Oncor Electric Delivery Company LLC</td>
</tr>
<tr>
<td>Mayor pro tem</td>
<td>Historical Commission</td>
<td>Rio Grande Electric Cooperative</td>
</tr>
<tr>
<td>School district</td>
<td>School districts</td>
<td>Southwest Texas Electric Cooperative</td>
</tr>
</tbody>
</table>

State and Regional Agencies/Government

Permian Basin Regional Planning Commission	Texas General Land Office
Railroad Commission of Texas	Texas Historical Commission
Texas Commission on Environmental Quality	Texas House of Representatives, Rep. Poncho Nevarez
Texas Department of Transportation, Aviation Division	Texas Parks and Wildlife Department
Texas Department of Transportation, Odessa District	Texas Senate, District 19
Texas Department of Transportation, Environmental Affairs	Texas Water Development Board
Texas Department of Transportation, Planning and Programming	

Federal Agencies/Government

Federal Aviation Administration, Southwest Region	U.S. Environmental Protection Agency, Region 6
Federal Emergency Management Agency, Region 6	U.S. Fish and Wildlife Service
Natural Resources Conservation Service	U.S. Senate, Sen. John Cornyn
U.S. Army Corps of Engineers, Albuquerque District	U.S. Senate, Sen. Ted Cruz
U.S. Department of Defense, Siting	