Quality Assurance Project Plan Lower Colorado River Authority

PO Box 220 Austin, Texas 78767

Clean Rivers Program

Water Quality Planning Division

Texas Commission on Environmental Quality

P.O. Box 13087, MC 234

Austin, Texas 78711-3087

Effective Period: FY 2020 to FY 2021

Questions concerning this QAPP should be directed to: Dave Bass Sr. Water Quality Coordinator PO Box 220 Austin, Texas 78767 (512) 578-2112 dbass@lcra.org

A6 Project/Task Description

The Lower Colorado River Authority will collect water samples from the Colorado River below O.H. Ivie Reservoir to its mouth, as well as all the major tributaries and reservoirs. Parameters collected will include field, flow, bacteria, and conventionals. A total of 57 sites will be routinely monitored. Sampling frequency at 49 locations will be six times per year, in order to maintain a consistent data set, to determine inter-seasonal variability and examine possible pollution impacts. Quarterly monitoring will occur at seven locations. These locations are mostly rural, and have few sources of large impacts on water quality. One location will be monitored semiannually, and has little chance of developing water quality concerns.

The Upper Colorado River Authority will collect water samples at sites in the Concho River and upper Colorado River watersheds, including tributaries and reservoirs. UCRA's monitoring program will include collection of field, E. coli, flow, and conventional parameters. Diel data will be collected at three sites in Segment 1421 which have significant dissolved oxygen issues caused by urban runoff and lack of base flows. Nutrients, chlorophyll a and E. coli will be collected at select sites throughout the upper basin. Bacteria will not be collected in segment 1412 due to the inability to meet the holding time for Enterococcus bacteria. UCRA sampling frequencies vary from quarterly to semiannually, based upon data needs.

City of Austin, an in-kind contributor of CRP data, will collect water samples at routine sites in and around Austin. Field and conventional parameters, flow, sediment and bacteria will be collected, analyzed and reported for Lady Bird and Walter E. Long lakes and several tributaries to the Colorado River. Field measurements are collected at all sites. Organics and metals in sediment will be collected from Lake Walter E. Long, Lake Austin, Lady Bird Lake and Barton Springs. Nutrients and bacteria will be collected at select sites. Chlorophyll *a* will be collected from select sites in Lady Bird Lake and in Lake Walter E. Long. Overall, sampling frequencies vary from once per year to biweekly based on parameter, sites and internal uses for the data.

See Appendix B for the project-related work plan tasks and schedule of deliverables for a description of work defined in this QAPP.

See Appendix B for sampling design and monitoring pertaining to this QAPP.

Amendments to the QAPP

Revisions to the QAPP may be necessary to address incorrectly documented information or to reflect changes in project organization, tasks, schedules, objectives, and methods. Requests for amendments will be directed from the Lower Colorado River Authority Project Manager to the CRP Project Manager electronically. The Basin Planning Agency will submit a completed QAPP Amendment document, including a justification of the amendment, a table of changes, and all pages, sections, and attachments affected by the amendment. Amendments are effective immediately upon approval by the Lower Colorado River Authority Project Manager, the Lower Colorado River Authority QAO, the CRP Project Manager, the CRP Lead QA Specialist, the TCEQ QA Manager or designee, the CRP Project QA Specialist, and additional parties affected by the amendment. Amendments are not retroactive. No work shall be implemented without an approved QAPP or amendment prior to the start of work. Any activities under this contract that commence prior to the approval of the governing QA document constitute a deficiency and are subject to corrective action as described in section C1 of this QAPP. Any deviation or deficiency from this QAPP which occurs after the execution of this QAPP will be addressed through a Corrective Action Plan (CAP). An Amendment may be a component of a CAP to prevent future recurrence of a deviation.

Amendments will be incorporated into the QAPP by way of attachment and distributed to personnel on the distribution list by the Lower Colorado River Authority Project Manager.

Special Project Appendices

Projects requiring QAPP appendices will be planned in consultation with the Lower Colorado River Authority and the TCEQ Project Manager and TCEQ technical staff. Appendices will be written in an abbreviated format and will reference the Basin QAPP where appropriate. Appendices will be approved by the Lower Colorado River Authority Project Manager, the Lower Colorado River Authority QAO, the Laboratory (as applicable), and the CRP Project Manager, the CRP Project QA Specialist, the CRP Lead QA Specialist and additional parties affected by the Appendix, as appropriate. Copies of approved QAPP appendices will be distributed by the Lower Colorado River Authority to project participants before data collection activities commence. The Lower Colorado River Authority will secure written documentation from each sub-tier project participant (e.g., subcontractors, subparticipants, other units of government) stating the organization's awareness of and commitment to requirements contained in each special project appendix to the QAPP. The Lower Colorado River Authority will maintain this documentation as part of the project's QA records, and ensure that the documentation is available for review.

Appendix B: Task 3 Work Plan & Sampling Process Design and Monitoring Schedule (Plan)

The actual number of sites, location, frequency, parameters and locations for FY2020 were determined at the FY2020 Coordinated Monitoring Meetings were based on priorities identified at the basin Water Quality Advisory Committee and Coordinated Monitoring meetings.

Objectives: Water quality monitoring will focus on the characterization of a variety of locations and conditions. This will include a combination of the following:

- planning and coordinating basin-wide monitoring;
- routine, regularly-scheduled monitoring to collect long-term information and support statewide assessment of water quality; and
- systematic, regularly-scheduled short-term monitoring to screen water bodies for issues.

Task Description: The Performing Party will monitor water quality in the Colorado River and tributaries downstream of O.H. Ivie Reservoir and coordinate with the Upper Colorado River Authority (UCRA) to ensure sites are monitored upstream of O.H. Ivie Reservoir. Coordinated monitoring meetings will be held annually and the statewide coordinated monitoring schedule will be maintained.

The Performing Party will complete the following subtasks:

LCRA Monitoring

The Performing Party will routinely monitor at least 44 sites in the Colorado River basin below O.H. Ivie Reservoir; 37 sites will be sampled six times per year, 6 sites will be sampled quarterly and one site will be sampled twice per year. Field data only will be collected from one site. The remainder of the sites will be analyzed for field, conventional, flow and bacteria parameters. Additional details about the monitoring activities conducted by the Performing Party are outlined in the Performing Party basin-wide QAPP.

UCRA Monitoring

In cooperation with the Upper Colorado River Authority (UCRA), the Performing Party will have at least 32 sites in the Colorado River basin above O.H. Ivie Reservoir routinely monitored. Stream sites will be monitored quarterly for flow, conventional and field parameters and bacteria. Reservoir sites will be monitored twice annually to include field and conventional parameters, bacteriological samples and elevation. Twenty-four hour diel monitoring will be done twice annually at three sites, with one event during the index period and one event during the critical period. Additional details concerning the monitoring activities conducted by UCRA are outlined in the Performing Party basin wide QAPP.

Additional details concerning the monitoring activities conducted by unfunded data providers will be outlined in the Performing Party basin-wide QAPP.

In FY 2021, partners will monitor at a similar level of effort as in FY 2020. The actual number of sites, location, frequency, and parameters collected for FY 2019 will be based on priorities identified at the basin Water Quality Advisory Committee and Coordinated Monitoring meetings and included in the amended Appendix B schedule of the QAPP.

All monitoring will be completed in accordance with the Performing Party's QAPP, the TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415) and the TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416).

Coordinated Monitoring Meeting - The Performing Party will hold an annual coordinated monitoring meeting as described in the FY2020-2021 CRP Guidance. Qualified monitoring organizations will be invited to attend the working meeting in which monitoring needs and purposes will be discussed segment by segment and station by station. Information from participants and stakeholders will be used to select stations and parameters that will enhance overall water quality monitoring coverage, eliminate duplication of effort, and address basin priorities. A summary of the changes to the monitoring schedule will be provided to the participants within two weeks of the meeting. Changes to the monitoring schedule will be entered into the statewide Coordinated Monitoring Schedule and communicated to meeting attendees. Changes to monitoring schedule and communicated to meeting attendees.

The Performing Party will maintain the statewide Internet-based Coordinated Monitoring Schedule web site (CMS). The Performing Party will provide technical support to authorized users of the database by responding to calls, making changes to schedules and adapting the web page as determined by the TCEQ CRP Project Manager and the Performing Party Staff.

Progress Report - Each Progress Report will include all types of monitoring and indicate the number of sampling events and the types of monitoring conducted in the quarter.

Deliverables and Dues Dates:

September 1, 2019 through August 31, 2020

- A. Conduct water quality monitoring, summarize activities, and submit with Progress Report December 15, 2019; March 15 and June 15, 2020
- B. Coordinated Monitoring Meeting between March 15 and April 30, 2020
- C. Coordinated Monitoring Meeting Summary of Changes within 2 weeks of the meeting
- D. Email notification that Coordinated Monitoring Schedule updates are complete May 31, 2020

September 1, 2020 through August 31, 2021

- A. Conduct water quality monitoring, summarize activities, and submit with Progress Report September 15 and December 15, 2020; March 15 and June 15 and August 31, 2021
- B. Coordinated Monitoring Meeting between March 15 and April 30,2021
- C. Coordinated Monitoring Meeting Summary of Changes within 2 weeks of the meeting
- D. Email notification that Coordinated Monitoring Schedule updates are complete May 31, 2021

Sample Design Rationale FY 2020

The sample design is based on the legislative intent of CRP. Under the legislation, the Basin Planning Agencies have been tasked with providing data to characterize water quality conditions in support of the Texas Water Quality Integrated Report, and to identify significant long-term water quality trends. Based on Steering Committee input, achievable water quality objectives and priorities and the identification of water quality issues are used to develop work plans which are in accord with available resources. As part of the Steering Committee process, the Lower Colorado River Authority coordinates closely with the TCEQ and other participants to ensure a comprehensive water monitoring strategy within the watershed. A discussion of past or ongoing water quality issues should be provided here to justify the monitoring schedule.

The Upper Colorado River Authority (UCRA) will routinely monitor 48 sites in the Colorado River basin above O.H. Ivie Reservoir. Stream sites will be monitored quarterly for flow, conventional and field parameters and bacteria. Reservoir sites will be monitored twice annually to include field and conventional parameters, bacteriological samples and elevation. Twenty-four hour diel monitoring will be done twice annually at three sites, with one event during the index period and one event during the critical period.

The City of Austin will monitor 37 locations for conventional chemistry, bacteria, flow and field parameters. At five of these sites metals and organics in sediment will be collected.

LCRA will collect data from 57 locations. Parameters collected will include field, flow, bacteria and conventional chemistry.

Below is a segment by segment list of changes from the FY19 sampling schedule:

Segment	Site	CE	Change
1401			No Changes
1402			No Changes
1403	12216	AU	Frequency change from 1 to 3
1403	12218	AU	Frequency change from 1 to 3
1403	16322	AU	Frequency change from 1 to 3
1403	16320	AU	Frequency change from 1 to 3
1403	16321	AU	Frequency change from 1 to 3
1403	12232	AU	Investigating
1404	12302	LC	Frequency change from 12 to 6
1404	12307	LC	Frequency change from 12 to 6
1404	12309	LC	Frequency change from 12 to 6
1404	15428	LC	Frequency change from 12 to 6
1404	12313	LC	Frequency change from 12 to 6
1404	20070	LC	Frequency change from 12 to 6
1404	12316	LC	Frequency change from 12 to 6
1405	12319	LC	Frequency change from 12 to 6
1406	12324	LC	Frequency change from 12 to 6
1406	12327	LC	Frequency change from 12 to 6
1406	12330	LC	Frequency change from 12 to 6
1407	12336	LC	Frequency change from 12 to 6
1408	12344	LC	Frequency change from 12 to 6
1408	12347	LC	Frequency change from 12 to 6
1408	12349	LC	Frequency change from 12 to 6
1408	12352	LC	Frequency change from 12 to 6
1408	12353	LC	Frequency change from 12 to 6
1409			No Changes
1410			No Changes
1414			No Changes

Segment	Site	CE	Change
1415			No Changes
1416			No Changes
1417			No Changes
1427	12434	AU	Frequency change from 1 to 3
1427	12440	AU	Frequency change from 1 to 3
1427	12447	AU	Frequency change from 1 to 3
1427	12451	AU	Frequency change from 1 to 3
1427	12456	AU	Frequency change from 1 to 3
1427	17275	AU	Frequency change from 1 to 3
1427	12189	GS	Discontinued
1427	13653	GS	Discontinued
1427	12451	GS	Discontinued
1428	12231	AU	Frequency change from 3 to 1
1428	15743	AU	Frequency change from 3 to 1
1428	12235	AU	Frequency change from 3 to 1
1428	12236	AU	Frequency change from 3 to 1
1428	17469	AU	Frequency change from 3 to 1
1428	12232	GS	Discontinued
1429	12476	GS	Discontinued
1430	13555	AU	Frequency change from 3 to 1
Segment	Site	CE	Change
1430	12488	AU	Frequency change from 3 to 1
1430	12495	AU	Frequency change from 3 to 1
1430	12497	AU	Frequency change from 3 to 1
1430	12500	AU	Frequency change from 3 to 1
1434			No Changes

Site Selection Criteria

This data collection effort involves monitoring routine water quality using procedures that are consistent with the TCEQ SWQM program. Some general guidelines are followed when selecting sampling sites, as outlined below, and discussed thoroughly in SWQM Procedures, Volumes I and II. Overall consideration is given to accessibility and safety. All monitoring activities have been developed in coordination with the CRP Steering Committee and with the TCEQ. The site selection criteria specified are those the TCEQ would like considered to produce data which is complementary to that collected by the state and which may be used in assessments, etc.

- Locate stream sites so that samples can be safely collected from the centroid of flow. Centroid is defined as
 the midpoint of that portion of stream width which contains 50 percent of the total flow. If multiple
 potential sites on a stream segment are appropriate for monitoring, choose one that would best represent
 the water body, and not a site that displays unusual conditions or contaminant source(s). Avoid backwater
 areas or eddies when selecting a stream site.
- 2. At a minimum for reservoirs, locate sites near the dam (reservoirs) and in the major arms. Larger reservoirs might also include stations in the middle and upper (riverine) areas. Select sites that best represent the water body by avoiding coves and back water areas. A single monitoring site is considered representative of 25 percent of the total reservoir acres, but not more than 5,120 acres.
- 3. Monitoring sites are selected to maximize stream coverage or basin coverage. Very long segments may require more stations. As a rule of thumb, stream segments between 25 and 50 miles long require two stations, and longer than 50 miles require three or more depending on the existence of areas with significantly different sources of contamination or potential water quality concerns. Major hydrological features, such as the confluence of a major tributary or an instream dam, may also limit the spatial extent of an assessment based on one station.
- 4. Because historical water quality data can be very useful in assessing use attainment or impairment, it may be best to use sites that are on current or past monitoring schedules.
- 5. All classified segments (including reservoirs) should have at least one Monitoring site that adequately characterizes the water body, and monitoring should be coordinated with the TCEQ or other qualified monitoring entities reporting routine data to TCEQ.
- 6. Monitoring sites may be selected to bracket sources of pollution, influence of tributaries, changes in land

 Lower Colorado River Authority QAPP

 Page 55

 Last revised on September 3, 2019

 qapp accessible.docx

- uses, and hydrological modifications.7. Sites should be accessible. When possible, stream sites should have a USGS or IBWC stream flow gauge. If not, it should be possible to conduct flow measurement during routine visits.

Monitoring Sites for FY 2020

Table B1.1 Sample Design and Schedule, FY 2020

Table B1.1 Sample Desi	gii anu s	chedule	, F I 2	020																		
Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
COLORADO RIVER TIDAL AT SELKIRK ISLAND 2 MI DOWNSTREAM FROM FM 521 SW OF WADSWORTH	12281	1401	12	LC	LC	RT	6	6	6													
COLORADO RIVER 20 METERS UPSTREAM OF FM 960 NEAR GLEN FLORA	21809	1402	12	LC	LC	RT	6		6	6												Added in 2017 to bracket site 12286 for bacteria impairment
COLORADO RIVER APPROXIMATELY 15 M OFF EAST BANK IMMEDIATELY DOWNSTREAM OF US ALT 90 NEAR ALTAIR	18351	1402	12	LC	LC	RT	6	6	6	6												Garwood site dropped FY 06
COLORADO RIVER APPROXIMATELY 367 METERS DOWNSTREAM OF SH 183 IN WHARTON	12286	1402	12	LC	LC	RT	6	6	6	6												
COLORADO RIVER AT OLD HWY 71 IN COLUMBUS	12290	1402	12	LC	LC	RT	6	6	6	6												
COLORADO RIVER AT PECAN VALLEY ROAD BOAT RAMP 290 METERS NORTH AND 50 METERS EAST OF THE INTERSECTION OF PECAN VALLEY ROAD AND NELSON ROAD / WHARTON CR 167	21808	1402	12	LC	LC	RT	6		6	6												Added in 2017 to bracket site 12286 for bacteria impairment
COLORADO RIVER AT SH 35 BRIDGE AT BAY CITY	12284	1402	12	LC	LC	RT	6	6	6	6												

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
FAYETTE RESERVOIR AT THE MID POINT OF THE LAKE OVER CEDAR CREEK CHANNEL APPROX 150 YDS NORTH OF THE BAFFLE DIKE	17017	1402G	11	LC	LC	RT	6	6	6													
LAKE AUSTIN NEAR METROPOLITAN PARK TO THE SOUTH OF CITY PARK RD AND TO THE EAST OF WESTON RD	12297	1403	11	LC	AU	RT	3	3	3													added samples for the growing season (May, July, September)
LAKE AUSTIN NEAR METROPOLITAN PARK TO THE SOUTH OF CITY PARK RD AND TO THE EAST OF WESTON RD	12297	1403	11	LC	LC	RT	6	6	6													
LAKE AUSTIN NEAR TOM MILLER DAM TO THE WEST OF LAKE AUSTIN BLVD	12294	1403	11	LC	AU	RT	3	3	3								1	1				field added to match Bact and Conv in consult W/ COA
LAKE AUSTIN NEAR TOM MILLER DAM TO THE WEST OF LAKE AUSTIN BLVD	12294	1403	11	LC	LC	RT	6	6	6													,
BULL CREEK 0.29MI SOUTH OF THE EASTERN INTRSCTION OF WYNDHAM DR AND CORLEY DR	16322	1403A	11	LC	AU	RT	3	3	3	3												
BULL CREEK AT LOOP 360 1 MILE NORTH OF FM 2222 INTERSECTION WEST OF AUSTIN	12216	1403A	11	LC	AU	RT	3	3	3	3												
BULL CREEK AT SPICEWOOD SPRINGS RD 5TH CROSSING TO THE WEST OF YUCCA MOUNTAIN RD	12218	1403A	11	LC	AU	RT	3	3	3	3												

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
UNNAMED TRIB TO BULL CREEK 0.26MI WEST OF SOUTHERN PICKFAIR DR AND BRIGHTLING LANE INTRSCTION	16320	1403H	11	LC	AU	RT	3	3	3	3												
UNNAMED TRIB TO BULL CREEK 0.33MI WEST OF SOUTHERN PICKFAIR DR AND BRIGHTLING LN INTRSCTION	16321	1403I	11	LC	AU	RT	3	3	3	3												
SPICEWOOD TRIBUTARY OF SHOAL CREEK APPROX 13 METERS DOWNSTREAM OF CEBERRY DR IN AUSTIN	16316	1403J	11	LC	AU	RT	4	4	4	4												Added for TMDL
TAYLOR SLOUGH SOUTH 20 M DOWNSTREAM OF PECOS STREET SOUTH OF RIVER ROAD IN AUSTIN	17294	1403K	11	LC	AU	RT	4	4	4	4												Added for TMDL
LAKE TRAVIS AT ARKANSAS BEND TO THE WEST OF RANCH ROAD 620	12309	1404	11	LC	LC	RT	6	6	6													
LAKE TRAVIS IN BEE CREEK COVE 191 M NORTH AND 443 M WEST OF THE INTERSECTION OF BEE CREEK ROAD AND CORY LANE	20070	1404	11	LC	LC	RT	6	6	6													
LAKE TRAVIS IN BIG SANDY CREEK COVE 1.25 KM DOWNSTREAM OF THE CONFLUENCE WITH LIME CREEK/BRUSHY CREEK 140 M SE OF THE END OF TRAIL END RD AND 1.4 KM	12307	1404	11	LC	LC	RT	6	6	6													

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
WEST OF FM 973																						
LAKE TRAVIS IN THE HURST CREEK ARM APPROX 200 YDS UPSTREAM OF HURST HARBOR NEAR LADIN LANE IN LAKEWAY SUBDIVISION	15428	1404	11	LC	LC	RT	6	6	6													
LAKE TRAVIS MID LAKE AT CONFLUENCE WITH COW CREEK ARM AT PACE BEND APPROXIMATELY 2.02 KILOMETERS TO THE SOUTH OF FM 1431	12313	1404	11	LC	LC	RT	6	6	6													
LAKE TRAVIS NEAR DAM AT LCRA TRAVIS COUNTY PARK	12302	1404	11	LC	LC	RT	6	6	6													
LAKE TRAVIS NEAR SPICEWOOD EAST OF SHAW RD AND NORTH OF MULE SHOE BEND RD	12316	1404	11	LC	LC	RT	6	6	6													
LAKE MARBLE FALLS NEAR MAX STARCKE DAM/TO SOUTHEAST OF COMINO REAL RD	12319	1405	11	LC	LC	RT	6	6	6													
LAKE LYNDON B JOHNSON AT CONFLUENCE WITH LLANO RIVER ARM NEAR KINGSLAND APPROX 51 METERS TO THE SOUTHWEST OF SCENIC RD	12330	1406	11	LC	LC	RT	6	6	6													

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
LAKE LYNDON B JOHNSON AT CONFLUENCE WITH SANDY CREEK APPROX 453 METERS TO THE NORTH OF BLUE MOUNTAIN RD	12327	1406	11	LC	LC	RT	6	6	6													
LAKE LYNDON B JOHNSON NEAR ALVIN WIRTZ DAM APPROX 658 METERS NORTH OF FM 2147	12324	1406	11	LC	LC	RT	6	6	6													
SANDY CREEK APPROXIMATELY 73 M DOWNSTREAM OF SH 71 SOUTH OF KINGSLAND	12214	1406A	11	LC	LC	RT	6	6	6	6												
INKS LAKE NEAR INKS DAM APPROX 161 METERS TO THE NORTHEAST OF ROY INKS DAM	12336	1407	11	LC	LC	RT	6	6	6													
CLEAR CREEK 1.28 KM UPSTREAM OF SH 29	18710	1407A	11	LC	LC	RT	6			6												stopped conventional/metals in 2014. Will resume when TCEQ permit is approved
LAKE BUCHANAN AT CONFLUENCE OF COUNCIL AND MORGAN CREEKS APPROX 302 METERS SOUTH OF LAKESHORE RD	12349	1408	11	LC	LC	RT	6	6	6													
LAKE BUCHANAN AT ROCKY POINT APPROX 1.3.KM NORTHWEST OF ROCKY RIDGE	12347	1408	11	LC	LC	RT	6	6	6													
LAKE BUCHANAN NEAR BEAVER CREEK COVE ADJACENT TO PARADISE POINT APPROX 1.4 KM TO THE SOUTH OF RANCH	12352	1408	11	LC	LC	RT	6	6	6													

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
ROAD 2341																						
LAKE BUCHANAN NEAR BUCHANAN DAM APPROX 475 METERS TO THE WEST OF CORONADO RD	12344	1408	11	LC	LC	RT	6	6	6													
LAKE BUCHANAN NEAR LAKE HEADWATER APPROX 687 METERS TO THE NORTHEAST OF LLANO TOW VALLEY RD	12353	1408	11	LC	LC	RT	6	6	6													
COLORADO RIVER AT US 190 EAST OF SAN SABA	12355	1409	9	LC	LC	RT	6	6	6	6												
CHEROKEE CREEK AT FM 501 5 MILES WEST OF BEND	12274	1409A	9	LC	LC	RT	2	2	2	2												
COLORADO RIVER BRIDGE ON US 377 AT WINCHELL	12358	1410	3	LC	LC	RT	6	6	6	6												
E V SPENCE RESERVOIR APPROX 5.3 KM WEST OF STATE HIGHWAY 208	12359	1411	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
E V SPENCE RESERVOIR AT DAM 1.75 KM WEST OF THE INTERSECTION OF FM 1904 AND ST LOOP 229	13863	1411	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
E V SPENCE RESERVOIR FM 2059 BRIDGE NEAR SILVER	12360	1411	8	LC	UC	RT	4	4	4	4												
COLORADO RIVER AT MITCHELL CR343/PECAN CROSSING 7.5KM WEST OF SH208 AND 25.0KM SOUTH OF COLORADO CITY AT IH20	17002	1412	3	LC	UC	RT	4	4		4												Chlorophyll 4x year

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
BEALS CREEK 35 M DOWNSTREAM OF SH 163 APPROXIMATELY 11 MI SOUTH OF WESTBROOK	12156	1412B	3	LC	UC	RT	4	4		4												Chlorophyll 4x year
LAKE J B THOMAS AT DAM APPROX 1.0 KM WEST OF THE INTERSECTION OF FM 1298 AND SCURRY CR 8	21614	1413	3	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
PEDERNALES RIVER 20 METERS UPSTREAM OF PEDERNALES HILLS ROAD	21398	1414	11	LC	LC	RT	6	6	6	6												added in 2014 to replace 12372 (Ped at Johnson City)
PEDERNALES RIVER AT CR 962 AT HAMMETT'S CROSSING APPROX 532 METERS TO THE EAST OF HAMMETS ROAD	12369	1414	11	LC	LC	RT	6	6	6	6												
PEDERNALES RIVER AT FM 1320	12375	1414	11	LC	LC	RT	6	6	6	6												
PEDERNALES RIVER AT GOEHMAN LANE CROSSING EAST OF FREDRICKSBURG OFF OF US 290 E APPROX 1.5 KM TO THE NORTH OF US HWY290	12377	1414	13	LC	LC	RT	6	6	6	6												Added in 2016 after TCEQ San Antonio dropped
PEDERNALES RIVER AT US 87 APPROX 3.0 MILES SOUTH OF FREDERICKSBURG	17472	1414	13	LC	LC	RT	6	6	6	6												
LLANO RIVER 0.4 MILE DOWNSTREAM FROM BRIDGE ON SH 16 AT LLANO	12386	1415	11	LC	LC	RT	6	6	6	6												
LLANO RIVER AT YATES CROSSING ON RR 385 15 MI EAST OF JUNCTION IN KIMBLE COUNTY	14231	1415	8	LC	LC	RT	4	4	4	4												

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
LLANO RIVER COUNTY ROAD 6.5 MILES UPSTREAM FROM KINGSLAND/LLANO RIVER AT RANCH ROAD 3404	12383	1415	11	LC	LC	RT	6	6	6	6												
NORTH LLANO RIVER 75 METERS UPSTREAM OF US 377 IN JUNCTION	21548	1415	8	LC	LC	RT	4	4	4	4												moved upstream of 17245 in 2015 because site was frequently dry
SOUTH LLANO RIVER APPROXIMATELY 10 MI UPSTREAM OF SOUTH LLANO RIVER STATE PARK 204 YD UPSTREAM OF SECOND US 377 CROSSING	18197	1415	8	LC	LC	RT	4	4	4													
JOHNSON FORK CREEK 10 METERS UPSTREAM OF KIMBLE CR 410 SOUTHEAST OF JUNCTION	21812	1415A	8	LC	LC	RT	4	4	4	4												Site 13550 was taken over from TCEQ in 2014. Moved downstream in 2017 to capture more of the watershed
JAMES RIVER ON PRIVATE RANCH ROAD/ZESCH 1.2 MILES UPSTREAM OF LLANO RIVER 8 MI SOUTHWEST OF MASON	12208	1415C	8	LC	LC	RT	4	4	4	4												
JAMES RIVER/AT JAMES RIVER RD AT UPPER MASON COUNTY ROAD CROSSING 14 MILES SOUTHWEST OF MASON	12210	1415C	8	LC	LC	RT	4	4	4	4												
SAN SABA RIVER AT SH 16 NORTH OF SAN SABA	12392	1416	9	LC	LC	RT	6	6	6	6												

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
SAN SABA RIVER IMMEDIATELY DOWNSTREAM OF US87	17004	1416	8	LC	LC	RT	4	4	4	4												
BRADY CREEK 2.81 KM DOWNSTREAM OF RR 714	14232	1416A	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
BRADY CREEK RESERVOIR MID LAKE NEAR DAM/SOUTHEAST BOUND OFF RANCH ROAD 3022	12179	1416B	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
LOWER PECAN BAYOU AT FM 573 SOUTHWEST OF MULLIN	12394	1417	9	LC	LC	RT	6	6	6	6												
CONCHO RIVER 235 M DOWNSTREAM OF S BELL ST AND 540 M DOWNSTREAM FROM CONFLUENCE OF NORTH AND SOUTH FORKS IN SAN ANGELO	12409	1421	8	LC	UC	BS	2			2	2											24 hour DO sampling
CONCHO RIVER 235 M DOWNSTREAM OF S BELL ST AND 540 M DOWNSTREAM FROM CONFLUENCE OF NORTH AND SOUTH FORKS IN SAN ANGELO	12409	1421	8	LC	UC	RT	4	4	4	4												Chloroyphyll 4x year
CONCHO RIVER AT FM1692 SOUTH OF MILES	12403	1421	8	LC	UC	RT	4	4	4	4												Chloroyphyll 4x year
CONCHO RIVER AT FM380 NEAR VERIBEST	12407	1421	8	LC	UC	RT	4	4	4	4												
CONCHO RIVER AT FM381	12402	1421	8	LC	UC	RT	4	4		4												
CONCHO RIVER BRIDGE ON US83 AT PAINT ROCK	12401	1421	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
CONCHO RIVER SOUTH FORK AT US87	12416	1421	8	LC	UC	RT	4	4	4	4												
NORTH CONCHO RIVER 20M UPSTREAM OF IRVING STREET DAM IN SAN ANGELO TOM GREEN COUNTYTEXAS	12412	1421	8	LC	UC	BS	2			2	2											24 hour DO sampling. Flow is measured at 15886
NORTH CONCHO RIVER AT CADDO ST IN SAN ANGELO	15886	1421	8	LC	UC	BS	2			2	2											24 hour DO sampling
NORTH CONCHO RIVER AT CADDO ST IN SAN ANGELO	15886	1421	8	LC	UC	RT	4	4	4	4												
DRY HOLLOW CREEK AT HEADWATERS OF CHANDLER LAKE APPROXIMATELY 484 M TO THE EAST OF PRIVATE ROAD 1775	12257	1421A	8	LC	UC	RT	4	4		4												
KICKAPOO CREEK AT FM 380	12255	1421B	8	LC	UC	RT	4	4		4												
LIPAN CREEK APPROX 900M UPSTREAM OF THE CONFLUENCE OF THE CONCHO RIVER ON PRIVATE PROPERTY	12254	1421C	8	LC	UC	RT	4	4		4												
LAKE NASWORTHY 40 M WEST OF DAM CENTERPOINT APPROX 1.3 KM TO THE NORTH OF COUNTRY CLUB RD	12418	1422	8	LC	UC	RT	2	2	2													Chlorophyll 2X year at dam only , UCRA Sample Q2 and Q4
LAKE NASWORTHY IN RIVER CHANNEL IN SOUTH CONCHO ARM 880 M WEST AND 220 M NORTH OF SOUTH COUNTRY CLUB ROAD AT LAS LOMAS COURT	12419	1422	8	LC	UC	RT	2	2	2													UCRA Sample Q2 and Q4

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
LAKE NASWORTHY MIDDLE COVE 120 M DOWNSTREAM OF CENTER POINT OF CONFLUENCE OF MIDDLE CONCHO AND SPRING CREEK CHANNELS	12421	1422	8	LC	UC	RT	2	2	2													UCRA Sample Q2 and Q4
TWIN BUTTES RESERVOIR AT DAM 695 M SOUTH AND 195 M WEST OF INTAKE STRUCTURE TO LAKE NASWORTHY	12422	1423	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
TWIN BUTTES RESERVOIR SOUTH POOL RIVER CHANNEL NEAR DAM APPROX 21 METERS TO THE WEST OF MOTL DAM	12425	1423	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
SPRING CREEK AT LAKE AVENUE CROSSING IN MERTZON	17346	1423A	8	LC	UC	RT	4	4	4	4												
SPRING CREEK S BANK 20 M DOWNSTREAM OF FM2335 NEAR TANKERSLEY	12161	1423A	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
DOVE CREEK AT BRIDGE SE BOUND ON FM2335 NEAR KNICKERBOCKER	12166	1423B	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
MIDDLE CONCHO RIVER AT FM 853 NORTH OF MERTZON	16903	1424	8	LC	UC	RT	4	4	4	4												
SOUTH CONCHO RIVER 175 M DOWNSTREAM OF ANSON SPRING APPROXIMATELY 6.3 KM SOUTH OF CHRISTOVAL	18712	1424	8	LC	UC	RT	4	4		4												
SOUTH CONCHO RIVER IMMEDIATELY DOWNSTREAM OF US	12427	1424	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
277 AT CHRISTOVAL																						
WEST ROCKY CREEK AT FM 853 43.4 KM/27 MI NORTHEAST OF MERTZON	12165	1424A	8	LC	UC	RT	4	4		4												
COLD CREEK 817 M UPSTREAM OF CONFLUENCE WITH SOUTH CONCHO RIVER APPROXIMATELY 5 KM SOUTH OF CHRISTOVAL	18711	1424B	8	LC	UC	RT	4	4		4												
O C FISHER RESERVOIR MID LAKE 425 M WEST OF DAM RELEASE CONTROL TOWER	12429	1425	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
N CONCHO RIVER AT SHERWOOD LANE CROSSING 2.1MI SE OF STERLING CITY .75MI SOUTH OF SH87	16779	1425A	8	LC	UC	RT	4	4	4	4												
NORTH CONCHO RIVER 664 METERS UPSTREAM OF WILLOW CREEK CONFLUNCE 6.2MI NW OF STERLING CITY ON SH87.	16780	1425A	8	LC	UC	RT	4	4		4												
NORTH CONCHO RIVER AT COUNTY ROAD BRIDGE 0.6 MILE SOUTHWEST OF CARLSBAD	12171	1425A	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
NORTH CONCHO RIVER AT RR 2034 SOUTHWEST OF WATER VALLEY	17350	1425A	8	LC	UC	RT	4	4	4	4												

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
COLORADO RIVER AT BLAIR RANCH APPROX 0.75 KM DOWNSTREAM OF MUSTANG CREEK CONFLUENCE SOUTHEAST OF BALLINGER	17244	1426	3	LC	UC	RT	4	4		4												
COLORADO RIVER AT FM 2111 0.4 MI UPSTREAM FROM ROCKY CREEK 5.0 MI SW OF BALLINGER	13651	1426	3	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
COLORADO RIVER AT FM3115 SOUTH OF MAVERICK	16901	1426	3	LC	UC	RT	4	4	4	4												
COLORADO RIVER USGS STATION IMMEDIATELY DOWNSTREAM OF SH 208 IN ROBERT LEE TEXAS	18338	1426	8	LC	UC	RT	4	4		4												
OAK CREEK RESERVOIR MID LAKE NEAR DAM OFF BONNER POINT AND WEST OFF RANCH RD 3399	12180	1426A	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
ELM CREEK AT BALLINGER CITY PARK APPROX 71 M W TO CITY RD AND 120 M NE TO CROSSON RD UPSTREAM FROM STORAGE DAM	12169	1426B	3	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
BLUFF CREEK AT RUNNELS CR 351/HATCHELL- EAGLE-BRANCH ROAD	17474	1426C	3	LC	UC	RT	4	4		4												
COYOTE CREEK AT RUNNELS CR 342 NORTH OF BALLINGER	16899	1426D	3	LC	UC	RT	4	4		4												

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
ONION CREEK 0.8 KM UPSTREAM OF RIVER PLANTATION DRIVE WEST OF INTERSECTION RIVER PLATATION DRIVE AND SAHALEE LANE SOUTH OF AUSTIN	17275	1427	11	LC	AU	RT	3	3	3	3												
ONION CREEK AT FM 150 0.61 KM DOWNSTREAM OF FLAT CREEK CONFLUENCE	12451	1427	11	LC	AU	RT	3	3	3	3												
ONION CREEK AT LOWER FALLS IN MCKINNEY FALLS STATE PARK 125 METERS DOWNSTREAM OF WILLIAMSON CREEK CONFLUENCE	12440	1427	11	LC	AU	RT	3	3	3	3												
ONION CREEK AT MCMORRIS RANCH 1.70 KM UPSTREAM OF COLORADO RIVER CONFLUENCE APPROX 450 METERS TO THE SOUTHEAST OF THREE ISLAND RD	12434	1427	11	LC	AU	RT	3	3	3	3												
ONION CREEK AT OLD HAYS CR 165/ONION CREEK AT SMITH RANCH RD NEAR THE INTERSECTION WITH LOOP 165	12456	1427	11	LC	AU	RT	3	3	3	3												
ONION CREEK AT TWIN CREEKS ROAD 200 METERS UPSTREAM OF BEAR CREEK CONFLUENCE	12447	1427	11	LC	AU	RT	3	3	3	3												
ONION CREEK AT US 183 SOUTHEAST OF AUSTIN	12436	1427	11	LC	LC	RT	6	6	6	6												

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
COLORADO RIVER AT COUNTY PARK IN WEBBERVILLE APPROX 334 METERS TO THE WEST OF WATER ROAD	12466	1428	11	LC	LC	RT	6	6	6	6												
COLORADO RIVER AT FM 973 AT DEL VALLE	12469	1428	11	LC	LC	RT	6	6	6	6												
COLORADO RIVER BRIDGE ON US 183 SOUTHEAST OF AUSTIN/COLORADO RIVER ON LOCKHART BRIDGE NEXT TO US 183 BRIDGE	12474	1428	11	LC	LC	RT	6	6	6	6												
WALNUT CREEK 5 M DOWNSTREAM OP OLD MANOR ROAD AND 175 M EAST OF INTERSECTION OF OLD MANOR ROAD AND FERGUSON CUTOFF NORTH OF PRESERVE	17469	1428B	11	LC	AU	RT	1	1	1	1												
WALNUT CREEK AT IH35 WEST FRONTAGE ROAD IN AUSTIN	15743	1428B	11	LC	AU	RT	1	1	1	1												
WALNUT CREEK AT SOUTHERN PACIFIC RR APPROXIMATELY 26 M DOWNSTREAM OF AUSTIN AND NORTHWESTERN 1.2 MILES SOUTH OF FM 969 IN EAST AUSTIN	12231	1428B	11	LC	AU	RT	1	1	1	1												
WALNUT CREEK IMMEDIATELY DOWNSTREAM OF LOOP 1/MOPAC EXPWY IN AUSTIN	17251	1428B	11	LC	AU	RT	4	4	4	4												Quarterly sampling for TMDL in conjunction with EII
GILLELAND CREEK AT FM 973 SOUTH OF MANOR	12235	1428C	11	LC	AU	RT	1	1	1	1												for Gilleland TMDL IP monitoring

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
GILLELAND CREEK AT US 290 NORTH OF MANOR	12236	1428C	11	LC	AU	RT	1	1	1	1												for Gilleland TMDL IP monitoring
GILLELAND CREEK IMMEDIATELY DOWNSTREAM OF WEBBERVILLE ROAD/FM 969 EAST OF AUSTIN	17257	1428C	11	LC	LC	RT	6	6	6	6												
WALTER E LONG LAKE EASTERN ARM MID- LAKE 1.8 KM NORTH AND 315 M WEST OF DECKER CREEK RELEASE	21023	1428K	11	LC	AU	RT	3	3	3													
WALTER E LONG LAKE WESTERN ARM MID- LAKE 725 METERS NORTH AND 1.17 KILOMETERS WEST OF DECKER CREEK RELEASE	21022	1428K	11	LC	AU	RT	3	3	3													
WALTER E. LONG LAKE MID LAKE NEAR DAM 200 M NORTH AND 30 M WEST OF THE DECKER CREEK RELEASE	20161	1428K	11	LC	AU	RT	3	3	3								1	1				
LADY BIRD LAKE AT LONGHORN DAM APPROXIMATELY 280 METERS SOUTH AND 250 METERS EAST OF INTERSECTION OF CANTERBURY STREET AND PEDERNALES STREET	12476	1429	11	LC	AU	RT	9	9	9								1	1				
TOWN LAKE NEAR HEADWATER/TOWN LAKE NEAR AT REDBUD ROAD	12486	1429	11	LC	AU	RT	9	9	9													
TOWN LAKE USGS SITE CC 45 METERS DOWNSTREAM FROM SOUTH 1ST ST	14067	1429	11	LC	AU	RT	9	9	9													

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
WALLER CREEK AT 24TH STREET ON UT CAMPUS IN AUSTIN	15962	1429C	11	LC	AU	RT	4	4	4	4												Added for TMDL
WALLER CREEK AT 2ND STREET/RED RIVER STREET IN AUSTIN/TO THE NORTHWEST OF TOWNLAKE	12222	1429C	11	LC	AU	RT	4	4	4	4												Added for TMDL
WALLER CREEK AT AVENUE H AT THE ELISABET NEY MUSEUM	16331	1429C	11	LC	AU	RT	4	4	4	4												Added for TMDL
BARTON CREEK AT LOST CREEK BLVD	13555	1430	11	LC	AU	RT	1	1	1	1												
BARTON CREEK AT SH 71 5.3 MILES NORTHWEST OF OAK HILL	12495	1430	11	LC	AU	RT	1	1	1	1												
BARTON CREEK AT THE END OF PATTERSON LANE OFF FM2244 EAST OF INTERSECTION OF SH71 AND FM2244	15959	1430	11	LC	AU	RT	1	1	1	1												
BARTON CREEK IMMEDIATELY DOWNSTREAM OF SHIELD RANCH ROAD 5.49 KM DOWNSTREAM OF HAYS CR 185	12497	1430	11	LC	AU	RT	1	1	1	1												
BARTON CREEK JUST UPSTREAM UPPER DAM OF SWIMMING POOL UPSTREAM BARTON SPRINGS IN AUSTIN APPROX 75 METERS TO THE SOUTH OF WILLIAM BARTON RD	12488	1430	11	LC	AU	RT	1	1	1	1												

Site Description	Site ID	Segment	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal W	Organic W	Metal Sed	Organic Sed	Fish Tissue	Amb Tox W	Amb Tox Sed	Comments
BARTON SPRINGS 0.4 MI UPSTREAM FROM BARTON SPRINGS RD IN AUSTIN	15696	1430A	11	LC	AU	RT	20	20	20	20							2	2				
BARTON CREEK AT HAYS CR 169/BELL SPRINGS ROAD	12500	1430B	11	LC	AU	RT	1	1	1	1												
O H IVIE RESERVOIR IN COLORADO RIVER ARM AT ABILENE PUMP STATION	12513	1433	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
O H IVIE RESERVOIR IN CONCHO RIVER ARM AT FM 1929	12512	1433	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
O H IVIE RESERVOIR NEAR DAM	12511	1433	3	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
COLORADO RIVER AT LOOP 150 SOUTH OF BASTROP	12462	1434	11	LC	LC	RT	6	6	6	6												
COLORADO RIVER AT SH 71 AT LA GRANGE	12292	1434	11	LC	LC	RT	6	6	6	6												
COLORADO RIVER DOWNSTREAM SH 95 1 MI AT OLIVE RD IN SMITHVILLE	12293	1434	11	LC	LC	RT	6	6	6	6												
LAKE BASTROP OFF TRIANGLE POINT OVER SPICER CREEK CHANNEL APPROX 185M EAST OF LANDMARK/TRIANGLE POINT	17020	1434C	11	LC	LC	RT	6	6	6													

Appendix A: Measurement Performance Specifications (Table A7.1-15

Measurement performance specifications define the data quality needed to satisfy project objectives. To this end, measurement performance specifications are qualitative and quantitative statements that: clarify the intended use of the data define the type of data needed to support the end use

identify the conditions under which the data should be collected

Appendix A of the QAPP addresses measurement performance specifications, including: analytical methodologies
AWRLs
limits of quantitation
bias limits for LCSs
precision limits for LCSDs
completeness goals
qualitative statements regarding representativeness and comparability

The items identified above should be considered for each type of monitoring activity. The CRP encourages that

data be collected to address multiple objectives to optimize resources; however, caution should be applied when attempting to collect data for multiple purposes because measurement performance specifications

may vary according to the purpose. For example, limits of quantitation may differ for data used to assess standards attainment and for trend analysis. When planning projects, first priority will be given to the main use

of the project data and the data quality needed to support that use, then secondary goals will be considered.

Procedures for laboratory analysis must be in accordance with the most recently published edition of Standard Methods for the Examination of Water and Wastewater, 40 CFR 136, or otherwise approved independently. Only data collected that have a valid TCEQ parameter code assigned in Tables A7 are stored in SWQMIS. Any parameters listed in Tables A7 that do not have a valid TCEQ parameter code assigned will not be stored in SWQMIS.

TABLE A7.1 Measurement Performance Speci	ifications for LO	CRA			
Field	l Parameters				
Parameter	Units	Matrix	Method	Parameter Code	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE)*	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field
TRANSPARENCY, SECCHI DISC (METERS)*	meters	water	TCEQ SOP V1	00078	Field
SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)*	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field
OXYGEN, DISSOLVED (MG/L)*	mg/L	water	SM 4500- O G and TCEQ SOP V1	00300	Field
OXYGEN, DISSOLVED SATURATION (%)*	%	water	SM 4500- O G	00301	Field
PH (STANDARD UNITS)*	s.u	water	EPA 150.1 and TCEQ SOP V1	00400	Field
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field
ELEVATION, RESERVOIR SURFACE WATER IN FEET	FT	water	other	00062	Field
RESERVOIR PERCENT FULL***	% RESERVOIR CAPACITY	water	TWDB	00053	Field
RESERVOIR ACCESS NOT POSSIBLE LEVEL TOO LOW ENTER 1 IF REPORTING	NS	other	TCEQ Drought Guidance	00051	Field
TURBIDITY, FIELD NEPHELOMETRIC TURBIDITY UNITS, NTU	NTU	water	SM 2130B	82078	ELS
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field
MACROPHYTE BED AT COLLECTION POINT (%)	%	other	NA	89926	Field
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field

- * Reporting to be consistent with SWQM guidance and based on measurement capability.
- *** As published by the Texas Water Development Board on their website https://www.waterdatafortexas.org/reservoirs/statewide

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.2 Measurement Performance S	pecific	cations fo	or LCRA		
Flow Param	eters	ı	1		
Parameter	Units	Matrix	Method	Parameter Code	Lab
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field
STREAM FLOW ESTIMATE (CFS)	cfs	Water	TCEQ SOP V1	74069	Field
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard

Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.3 Measurement Pe	erforman	ce Specific	ations for LCR	A						
		Conventio	nal Parameter	s in Water						
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	100	LOQ Check	Precision (RPD)	Bias %Rec. of	Lab
ALKALINITY, TOTAL (MG/L AS CACO3)	mg/L	water	SM 2320B	00410	20	20	NA	20	NA	ELS
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	1	NA	NA	NA	ELS
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	EPA 350.1 Rev. 2.0 (1993)	00610	0.1	0	70- 130	20	80- 120	ELS
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2 Rev 2 (1993)	00625	0.2	0.2	70- 130	20	80- 120	ELS
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500- NO3 H	00630	0.05	0	70- 130	20	80- 120	ELS
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 365.4	00665	0.06	0	70- 130	20	80- 120	ELS
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70- 130	20	80- 120	ELS
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	5	70- 130	20	80- 120	ELS
PHEOPHYTIN-A UG/L FLUOROMETRIC METHOD	μg/L	Water	EPA 445.0	32213	3	2	NA	NA	NA	ELS
RESIDUE, TOT DISS,UNSPEC CALC BASED ON COND (MG/	mg/L	water	calculation	70294	NA	NA	NA	NA	NA	ELS
CHLOROPHYLL-A, FLUOROMETRIC METHOD, UG/L	μg/L	water	EPA 445.0	70953	3	2	NA	20	80- 120	ELS

^{*}Hardness is not used for regulatory purposes but is used to assess metals in water at inland sites (estuarine sites do not require hardness analysis).

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE A7.4 Measurement Perform	nance Specifi	cations f	or LCRA							
	E	Bacteriol	ogical Paran	neters in V	Vater					
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	LOQ	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab
E. COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	SM 9223- B**	31699	1	1	NA	0.50*	NA	ELS
ENTEROCOCCI, ENTEROLERT, IDEXX, (MPN/100 ML)	MPN/100 mL	water	ASTM D- 6503	31701	1***	10	NA	0.50*	NA	ELS
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	ELS

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

^{***}Enterococcus Samples should be diluted 1:10 for all waters.

TABLE A7.5 Measurement Performance Specifications for UCRA									
Fiel	d Parameters	5	T		1				
Parameter	Units	Matrix	Method	Parameter Code	Lab				
TEMPERATURE, WATER (DEGREES CENTIGRADE)*	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field				
TRANSPARENCY, SECCHI DISC (METERS)*	meters	water	TCEQ SOP V1	00078	Field				
SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)*	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field				
OXYGEN, DISSOLVED (MG/L)*	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field				
OXYGEN, DISSOLVED SATURATION (%)*	%	water	SM 4500-O G	00301	Field				
PH (STANDARD UNITS)*	s.u	water	EPA 150.1 and TCEQ SOP V1	00400	Field				
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field				
RESERVOIR STAGE (FEET ABOVE MEAN SEA LEVEL)***	FT ABOVE MSL	water	TWDB	00052	Field				
RESERVOIR PERCENT FULL***	% RESERVOIR CAPACITY	water	TWDB	00053	Field				
RESERVOIR ACCESS NOT POSSIBLE LEVEL TOO LOW ENTER 1 IF REPORTING	NS	other	TCEQ Drought Guidance	00051	Field				
RESERVOIR STORAGE - ACRE FEET	acre-feet	other	NA Calculation	00054	Field				
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)**	meters	other	TCEQ SOP V2	89864	Field				
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)**	meters	other	TCEQ SOP V2	89865	Field				
POOL LENGTH, METERS**	meters	other	TCEQ SOP V2	89869	Field				
% POOL COVERAGE IN 500 METER REACH**	%	other	TCEQ SOP V2	89870	Field				
MACROPHYTE BED AT COLLECTION POINT (%)	%	other	NA Calculation	89926	Field				
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field				
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field				

- * Reporting to be consistent with SWQM guidance and based on measurement capability.
- ** To be routinely reported when collecting data from perennial pools.
- *** As published by the Texas Water Development Board on their website https://www.waterdatafortexas.org/reservoirs/statewide

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEO SOP, V1 - TCEO Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.6 Measurement Performance Specifications for UCRA								
Flow Paran	neters	5						
Parameter	Units	Matrix	Method	Parameter Code	Lab			
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field			
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field			
STREAM FLOW ESTIMATE (CFS)	cfs	Water	TCEQ SOP V1	74069	Field			
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field			

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard

Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.7 Measurement Perfor	mance S	pecificat	ions for UCRA	1						
	(Conventio	onal Paramete	ers in Wat	er					
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	T00	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Lab
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2 Rev 2 (1993)	00625	0.2	0.2	70- 130	20	80- 120	ELS
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500- NO3 H	00630	0.05	0	70- 130	20	80- 120	ELS
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 365.4	00665	0.06	0	70- 130	20	80- 120	ELS
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70- 130	20	80- 120	ELS
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	5	70- 130	20	80- 120	ELS
PHEOPHYTIN-A UG/L FLUOROMETRIC METHOD	μg/L	Water	EPA 445.0	32213	3	2	NA	NA	NA	ELS
RESIDUE, TOT DISS,UNSPEC CALC BASED ON COND (MG/	mg/L	water	calculation	70294	NA	NA	NA	NA	NA	NA
CHLOROPHYLL-A, FLUOROMETRIC METHOD, UG/L	μg/L	water	EPA 445.0	70953	3	2	NA	20	80- 120	ELS

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE A7.8 Measurement Perform	TABLE A7.8 Measurement Performance Specifications for UCRA										
		Bacteriol	ogical Parar	neters in \	Water						
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	T00	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab	
E. COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	SM 9223- B**	31699	1	1	NA	0.50*	NA	ELS	
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	ELS	

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

TABLE A7.9 Measurement Performan	ce Specific	cations fo	r UCRA		
24 Hour Pa	rameters	in Water			
Parameter	Units	Matrix	Method	Parameter Code	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE), 24HR AVG	DEG C	Water	TCEQ SOP V1	00209	field
WATER TEMPERATURE, DEGREES CENTIGRADE, 24HR MAX	DEG C	Water	TCEQ SOP V1	00210	field
TEMPERATURE, WATER (DEGREES CENTIGRADE) 24HR MIN	DEG C	Water	TCEQ SOP V1	00211	field
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR AVG	uS/cm	Water	TCEQ SOP V1	00212	field
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MAX	uS/cm	Water	TCEQ SOP V1	00213	field
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MIN	uS/cm	Water	TCEQ SOP V1	00214	field
PH, S.U., 24HR MAXIMUM VALUE	std. units	Water	TCEQ SOP V1	00215	field
PH, S.U., 24HR, MINIMUM VALUE	std. units	Water	TCEQ SOP V1	00216	field
WATER TEMPERATURE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00221	field
SPECIFIC CONDUCTANCE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00222	field
pH, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00223	field
DISSOLVED OXYGEN, 24-HOUR MIN. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89855	field
DISSOLVED OXYGEN, 24-HOUR MAX. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89856	field
DISSOLVED OXYGEN, 24-HOUR AVG. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89857	field
DISSOLVED OXYGEN, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	89858	field

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 $_$

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.10 Measurement Performan	nce Specificati	ons for C	COA		
	Field Paramet	ers			
Parameter	Units	Matrix	Method	Parameter Code	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE)*	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field
TRANSPARENCY, SECCHI DISC (METERS)*	meters	water	TCEQ SOP V1	00078	Field
SPECIFIC CONDUCTANCE,FIELD (US/CM @ 25C)*	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field
OXYGEN, DISSOLVED (MG/L)*	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field
PH (STANDARD UNITS)*	s.u	water	EPA 150.1 and TCEQ SOP V1	00400	Field
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE*	meters	water	TCEQ SOP V2	82903	Field
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)**	meters	other	TCEQ SOP V2	89864	Field
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)**	meters	other	TCEQ SOP V2	89865	Field
POOL LENGTH, METERS**	%	other	TCEQ SOP V2	89869	Field
% POOL COVERAGE IN 500 METER REACH**	%	other	TCEQ SOP V2	89870	Field

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} To be routinely reported when collecting data from perennial pools.

TABLE A7.11 Measurement Performance	Specif	ications	for COA		
Flow Paran	neters	5			
Parameter	Units	Matrix	Method	Parameter Code	Lab
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field
STREAM FLOW ESTIMATE (CFS)	cfs	Water	TCEQ SOP V1	74069	Field
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard

Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

	Conv	entional	Paramete		ter					
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	100	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Lab
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	1	NA	NA	NA	ELS
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	EPA 350.1 Rev. 2.0 (1993)	00610	0.1	0.02	70- 130	20	80- 120	ELS
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2 Rev 2 (1993	00625	0.2	0.2	70- 130	20	80- 120	ELS
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500- NO3 H	00630	0.05	0.02	70- 130	20	80- 120	ELS
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 365.4	00665	0.06	0.02	70- 130	20	80- 120	ELS
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70- 130	20	80- 120	ELS
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	5	70- 130	20	80- 120	ELS
PHEOPHYTIN-A UG/L FLUOROMETRIC METHOD	μg/L	Water	EPA 445.0	32213	3	2	NA	NA	NA	ELS
ORTHOPHOSPHATE PHOSPHORUS,DISS,MG/L,FILTER >15MIN	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	70507	0.04	0.04	70- 130	20	80- 120	ELS
CHLOROPHYLL-A, FLUOROMETRIC METHOD, UG/L	μg/L	water	EPA 445.0	70953	3	2	NA	20	80- 120	ELS

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE A7.13 Measurement Performance Specifications for COA

Bacteriological Parameters in V	Vater									
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	ТОО	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab
E. COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	SM 9223- B**	31699	1	1	NA	0.50*	NA	ELS
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	ELS

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B₅.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

^{**} E.coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

· ·	TABLE A7.14 Measurement Performance Specifications for COA											
Metals in Sediment		T										
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	дол	LOQ Check Sample %Rec	Precision (RPD of LCS/LCSD)	Bias %Rec. of LCS	Lab		
ARSENIC, BOTTOM DEPOSITS (MG/KG AS AS DRY WT)	mg/kg	sediment	EPA 6020A	01003	17	1	70- 130	20	80- 120	DHL		
CADMIUM,TOTAL, BOTTOM DEPOSITS (MG/KG,DRY WT)	mg/kg	sediment	EPA 6020A	01028	2.5	0.3	70- 130	20	80- 120	DHL		
CHROMIUM,TOTAL, BOTTOM DEPOSITS (MG/KG,DRY WT	mg/kg	sediment	EPA 6020A	01029	56	2	70- 130	20	80- 120	DHL		
COPPER, BOTTOM DEPOSITS (MG/KG AS CU DRY WT)	mg/kg	sediment	EPA 6020A	01043	75	2	70- 130	20	80- 120	DHL		
LEAD, BOTTOM DEPOSITS (MG/KG AS PB DRY WT)	mg/kg	sediment	EPA 6020A	01052	64	0.3	70- 130	20	80- 120	DHL		
MANGANESE, BOTTOM DEPOSITS (MG/KG AS MN DRY WG	mg/kg	sediment	EPA 6020A	01053	550	2	70- 130	20	80- 120	DHL		
NICKEL, TOTAL, BOTTOM DEPOSITS (MG/KG,DRY WT)	mg/kg	sediment	EPA 6020A	01068	24	2	70- 130	20	80- 120	DHL		
SILVER, BOTTOM DEPOSITS (MG/KG AS AG DRY WT)	mg/kg	sediment	EPA 6020A	01078	1.1	0.2	70- 130	20	80- 120	DHL		
ZINC, BOTTOM DEPOSITS (MG/KG AS ZN DRY WT)	mg/kg	sediment	EPA 6020A	01093	205	2.5	70- 130	20	80- 120	DHL		
IRON, BOTTOM DEPOSITS (MG/KG AS FE DRY WT)	mg/kg	sediment	EPA 6020A	01170	###	37.5	70- 130	20	80- 120	DHL		
MERCURY,TOT. IN BOT. DEPOS. (MG/KG) AS HG DRY WG	mg/kg	sediment	EPA 7471A	71921	0.4	0.04	60- 140	25	85- 115	DHL		
SEDIMENT PRTCL.SIZE CLASS >2.0MM GRAVEL %DRY WT*	% DRY WT	sediment	ASTM D422	80256	NA	NA	NA	%gravel 30	NA	DHL		
SOLIDS IN SEDIMENT, PERCENT BY WEIGHT (DRY)	% BY WT	sediment	ASTM D2216	81373	NA	NA	NA	30	NA	DHL		
TOTAL ORGANIC CARBON,NPOC(TOC), SED DRY WT,MG/KG*	mg/kg	sediment	EPA 9060	81951	NA	1500	65- 135	30	65- 135	ELS**		
PARTICLE SIZE, 0.05- 0.002mm SILT, DRYWT,SEDIMENT*	%	sediment	ASTM D422	49906	NA	NA	NA	%silt 30	NA	DHL		
PARTICLE SIZE, CLAY0.002- 0.0002mm DRYWT, SEDIMENT%*	%	sediment	ASTM D422	49900	NA	NA	NA	%clay 30	NA	DHL		
SEDIMENT PRCTL.SIZE CLASS 0.05- 2.0MM,SAND,%DRYWT*	%	sediment	ASTM D422	49925	NA	NA	NA	%sand 30	NA	DHL		

*Sediment conventionals are not used for regulatory purposes but are extremely important in determining the availability of sediment toxics. Sediment grain size and TOC are recommended when analyzing metals and/or organics in sediment.

** While ELS is responsible for the final QA of TOC data, it subcontracts the analysis to Analysys Laboratory which is NELAP accredited for the method and matrix listed.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.) TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).

TABLE A7.15 Measurement Performance Specifications for COA										
Organics in Sediment	е вресни	ations for C	OA							
Parameter	Units	Matrix	Method	Parameter Code	ICEQ AWRL	Ç0Q	LOQ Check Sample %Rec	Precision (RPD	Bias %Rec. of LCS	Lab
ACENAPHTHYLENE, DRY WT, BOTTOM (UG/KG)	μg/kg	sediment	EPA 8270D	34203	65	10	20- 200	30	44- 125	DHL
ACENAPHTHENE, DRY WT, BOTTOM (UG/KG)	μg/kg	sediment	EPA 8270D	34208	44.5	10	20- 200	30	46- 125	DHL
ANTHRACENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34223	422.5	10	20- 200	30	53- 125	DHL
BENZO(B)FLUORANTHENE,SEDIMENTS, DRY WT, (UG/KG)	μg/kg	sediment	EPA 8270D	34233	NA	10	20- 200	30	45- 125	DHL
BENZO(K)FLUORANTHENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34245	NA	10	20- 200	30	45- 125	DHL
BENZO(A)PYRENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34250	725	10	20- 200	30	50- 125	DHL
CHRYSENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34323	645	10	20- 200	30	53- 125	DHL
FLUORANTHENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34379	1115	10	20- 200	30	54- 125	DHL
FLUORENE DRY, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34384	268	10	20- 200	30	49- 125	DHL
INDENO (1,2,3-CD) PYRENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34406	NA	10	20- 200	30	38- 125	DHL
NAPHTHALENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34445	280.5	10	20- 200	30	40- 125	DHL
PHENANTHRENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34464	585	10	20- 200	30	50- 125	DHL
PYRENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34472	760	10	20- 200	30	46- 125	DHL
BENZO(GHI)PERYLENE / 1,12- BENZOPERYLENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34524	NA	10	20- 200	30	38- 126	DHL
DIBENZ(AH)ANTHRACENE / 1,2,5,6- DIBENZANTHRACENE, DRY WT, BOT (UG/KG)	μg/kg	sediment	EPA 8270D	34559	70	10	20- 200	30	41- 125	DHL
PCP (PENTACHLOROPHENOL), IN BOT DEPOS DRY, (UG/KG)	μg/kg	sediment	EPA 8270D	39061	NA	133	20- 200	30	25- 125	DHL
BHC-ALPHA ISOMER, BOTTOM DEPOS (UG/KG DRY SOL)	μg/kg	sediment	EPA 8270D	39076	50	6	10- 400	30	62- 127	DHL
ALDRIN, BOTTOM DEPOS. (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8270D	39333	40	6	10- 400	30	47- 120	DHL
CHLORDANE(TECH MIX&METABS) SED,DRY WT,UG/KG	μg/kg	sediment	EPA 8270D	39351	2.4	6*	10- 400	30	63- 141	DHL

TABLE A7.15 con't Measurement Perfor	<mark>mance S</mark> j	pecifications	for COA	con't.						
DIELDRIN IN BOTTOM DEPOS. (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8270D	39383	2.15	6*	10- 400	30	67- 125	DHL
ENDRIN, IN BOTTOM DEPOS. (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8270D	39393	103.5	6	10- 400	30	61- 133	DHL
TOXAPHENE, IN BOTTOM DEPOS., (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8270D	39403	16	250*	10- 400	30	31- 136	DHL
PCBS, BOTTOM DEPOSITS, (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8082A	39519	90	100*	20- 200	50	41- 138	DHL
DIAZINON, IN BOT. DEPOS., (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8270D	39571	NA	6	10- 400	30	37- 159	DHL
GUTHION, BOTTOM DEPOSITS, (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8270D	39581	NA	6	10- 400	30	40- 160	DHL
2,4-D, BOTTOM DEPOSITS, (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8321A	39731	NA	40	10- 300	30	32- 131	DHL
2,4,5-T, BOTTOM DEPOSITS, (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8321A	39741	NA	40	10- 300	30	43- 139	DHL
SILVEX, BOTTOM DEPOSITS, (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8321A	39761	NA	40	10- 300	30	46- 128	DHL
DEMETON, IN SEDIMENT (SYSTOX), DRY WEIGHT (UG/KG)	μg/kg	sediment	EPA 8270D	82400	NA	6	10- 400	30	40- 160	DHL
METHYL PARATHION, IN BOT. DEPOS., (UG/KG DRY SOLIDS)	μg/kg	sediment	EPA 8270D	39601	NA	6	10- 400	30	35- 140	DHL
DICAMBA, (BANVEL) SED, DRYWT (UG/KG)	μg/kg	sediment	EPA 8321B	38444	NA	400	10- 300	30	56- 120	DHL
DINOSEB, SED DRYWT, (UG/KG)	μg/kg	sediment	EPA 8321B	38781	NA	40	10- 300	30	20- 131	DHL

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998. (Note: The 21st edition may be cited if it becomes available.) TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416).